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Numerical Flow Simulation

Numerical simulation workflow

Pre-processing Computation

ldentify key question and
simulation outcome

Post-processing
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Quantitative analysis
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(Geometric modeling) (Physical modeling, numerical methods)

Convergence study
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When setting up the physical model, one must choose how to

Answer key question

compute turbulent flows.
Schematic outline of this lecture:

1. What is turbulence? (Brief overview)
2. Numerical simulation of turbulent flows

3. Overview of turbulence models




Numerical Flow Simulation

Basic characteristics of turbulence

= Experimental observation from Osborne Reynolds:

Laminar flow

Transitional flow

e .

B -

Turbulent flow

ARZTEITT < 3 NS o 5 SN SR
Reynolds 1883 van Dyke 1982

* Flow becomes unstable (and later turbulent) with increasing velocity and size,
and with decreasing viscosity. Reynolds understood the role of *his”™ number:

UL Ratio of inertial div(pun) ~ pU®/L

Re . | | S
U to viscous forces: div(p grad(a)) ~ pU/L




Numerical Flow Simulation

Basic characteristics of turbulence

* Flows generally turbulent when Reynolds numbers above O(10
= \Wide variety of turbulent flows in nature and engineering:




Numerical Flow Simulation

Turbulence

<

?

Vorticity

<

?

“Rotation” (vortex)



Numerical Flow Simulation

Turbulent flows contain

There is vorticity In

small-scale vortices. simple shear flows too.
) . ) 7" - 7
Turbulence <~ Vorticity 7~ Rotation” (vortex)
Laminar flows too In general vortices have non-
can have vorticity. zero vorticity, but there are

irrotational vortices too: for ex.

(

Zg) e (1(/)r) >w=0

Uz 0



Numerical Flow Simulation

Basic characteristics of turbulence

Re< 35 REGIME OF UNSEPARATED FLOW.

= Turbulent flows contain
small-scale vortices,
but vortical flows
are not necessarily
turbulent.

< A FIXED PAIR OF FOPPL
VORTICES IN THE WAKE.

40 € Re < 90 AND 90 € Re < 150

TWO REGIMES IN WHICH VORTEX
STREET IS LAMINAR:

PERIODICITY GOVERNED IN LOW
Re RANGE BY WAKE
INSTABILITY

PERIODICITY GOVERNED IN HIGH
Re RANGE BY VORTEX
SHEDDING.

I50 € Re <300 TRANSITION RANGE TO TURBU-
LENCE IN VORTEX.

Increasing Re 300 gRe Z 3x10° VORTEX STREET IS FULLY

TURBULENT.

—/\-\_‘\——\,N :"'t {; =llg‘

& LAMINAR BOUNDARY LAYER HAS UNDERGUNE

TURBULENT TRANSITION. THE WAKE 13
NARROWER AND DISORGANIZED. NO

\w/____ VORTEX STREET IS APPARENT.

3.5x10° < Re < @ (P)

RE-ESTABLISHMENT OF THE TURBU-
LENT VORTEX STREET THAT .'HIE
EVIDENT IN 300% Re?% 3ri0.

THIS TIME THE BOUNDARY LAYER
IS TURBULENT AND THE WAKE

1S THINNER,

/



Numerical Flow Simulation

Basic characteristics of turbulence

= No universal definition, but a set of characteristics:

1. Always unsteady (even with steady boundary
conditions).
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Numerical Flow Simulation

Basic characteristics of turbulence

= No universal definition, but a set of characteristics:

2. Random process.
= Signals seem unpredictable in time

and space. Repetitions of the same (@) 20 |
experiment under same conditions | il | | rIH'I H |1|\ ViR T
yield different measurements. () N (N— (Lot 1l Y S (VWY W
(But statistical properties - i ||||“|| |” LA ] O 1) 0100
are predictable.) o) i
| |t|| | | nrum | | ||1|| | | ||| || | | 1.|| ”.L} 11||I
. r 0 r
» The NS equations are deterministic, 0 il | ||..||| |.1|4\ .m i | i | ”
L I|| LI I |1l | i l l || | l
but become extremely sensitive to 20 PSP,
perturbations as Re increases. i o ,
Similar to chaotic systems ) |
(“butterfly effect”). 20 1R ™ T T
: |..”'| ‘ |'41|I Jrr||| ”| l]'l
2 0 . f]'.ll ';” Jr | | I
X(t)=x(n ! "Jl' “ |ll ' L'i. " 'I ”.#]Il!
Example: Lorenz’ system (1963) of ODEs with only -20 : al ‘ ‘
3 degrees of freedom (x,y,z). Two simulations with 40 . |
nearby initial conditions, x(0)=0.1 and 0.100001. Wl S e SR e e S E

I



Numerical Flow Simulation

Basic characteristics of turbulence

= No universal definition, but a set of characteristics:
3. Always 3D.

« Fluctuations in all directions, even in geometry invariant in 3™ direction.

= 3D is necessary for vortex stretching (intensification) and tilting
(deformation), an essential mechanism in turbulent flows.
Recall the (incompressible) vorticity equation:

%j - (u-V)w = vVw + (w- V)u

convection diffusion vortex stretching/tilting

= Really 2D only in strongly confined systems (e.g. soap films, geophysical
flows).

Jupiter

10



Numerical Flow Simulation

Basic characteristics of turbulence

= No universal definition, but a set of characteristics:

4. Turbulence mixes all quantities (mass, momentum, energy,
passive scalars), because fluid particles initially far away can be
brought close together by the eddying motions

-> increased mixing and heat transfer, but increased drag/losses too.

— Turbulent mean velocity

JLaminar velocity profile

11



Basic characteristics of turbulence

= No universal definition, but a set of characteristics: T

5. Wide range of length and time scales (broadband spectra).
For smallest vortices (“eddies”™), Kolmogorov length scale
and time scale:

L L/U
77 ~ 7‘ ~Y
Re3/4 Rel/?
= Examples (air: v ~ 107° m?/s): y
c e 3 [ ~1m
‘—é U~ 10 m/s
N UL
g Re = —— ~ 10°
™ 1%
©
O
o £~ L m Re3/* ~ 3 x 104
£ n 3x107°m
-
Z
L/U 0.1s 1 /9
-~ Rel/? ~ 103
T 104 s ©

12



Numerical Flow Simulation

Basic characteristics of turbulence

= No universal definition, but a set of characteristics: T

6. Energy cascade:
« Large structures created by hydrodynamic instabilities (energy injection),
« Vortex stretching breaks up eddies into smaller ones (energy transfer).
= Viscosity dissipates smallest eddies (energy dissipation).

Typical energy spectrum (log-log):

Ui
A e o

log E ‘ — & a " .-

Spectral energy [m3/s?] B o~ 1—5/3

(kinetic energy per unit mass and , . ;

unit wavenumber) : |

i ! i
: 1 :
Energy-cbntaining
. ragge I e 5
' [ ; Inertialisubrange . Dissipatlon range

“log k Spatial wavenumber [1/m]

13



Numerical Flow Simulation

Basic characteristics of turbulence

= No universal definition, but a set of characteristics: T
6. Largest eddies: Smallest eddies:
« Flow & geometry-dependent,  Homogeneous and isotropic,
= Most energetic, = Dissipate energy via viscosity,
= |nsensitive to viscosity. « Become smaller as Re increases,

but are still much larger than the

Typical energy spectrum (log-log): molecular free path (continuum).

o _ e U
logE 4 ~_>’\_> o °

Spectral energy [m3/s?] Ny B o~ 1—5/3
(kinetic energy per unit mass and 5 ! 5
unit wavenumber)

. ' .
Ehergy—c{)ntaini]ig
. range :
|

-—'—- increasing Re
| | \ decteasinig n

- O(L:_l) increasing k, = O(n™?) logk  Spatial wavenumber [1/m] 14



Numerical Flow Simulation

Turbulence is difficult

= Some (verified and unverified) quotations:

“When | meet God, | am going to ask him two questions: Why relativity? And why
turbulence? | really believe he will have an answer for the first.” (Heisenberg?)

“l am an old man now, and when | die and go to heaven there are two matters on
which | hope for enlightenment. One is quantum electrodynamics, and the other is

the turbulent motion of fluids. And about the former | am rather optimistic.” (Horace
Lamb?)

“The study of turbulence is not easy (...) even after various theoretical hypotheses
have been absorbed, there are relatively few situations in which we can make

positive predictions.” (P.A. Davidson, “Turbulence: an introduction for scientists and
engineers”, Oxford University Press, 2004)

15



Numerical Flow Simulation

Turbulence is difficult

= Why?
= \Wide range of length and time scales, that increases (dramatically) with Re.
= Extreme sensitivity (like chaotic systems), random character.

= How can we tackle it?
= Analytical approach: no simple analytical closed-form theory today.
= Empirical approach: describe turbulence statistically.

= Numerical approach: can solve the Navier-Stokes equations directly if enough
computational resources to resolve all the scales. Otherwise, need a turbulence
model (approximation).

16



Simple turbulent flows

» Free turbulent flows:
Jet Mixing layer

Versteeg & Malalasekera, 2007
7
X —_

LYYYYYYYY

=

=
/Fll‘rihrr‘l

S
E -
2 = Mean flow and turbulent structures are self-similar (far enough downstream).
™ For instance, in jets:
3 . . Uu Y
5 Mean streamwise velocity: — = f (_)
% Umax b
Z _

. u'? Y w' v’ Y

urbulent correlations: — = g (—) — — h (—) etc.
umax b uma,aj b
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Simple turbulent flows

= Free turbulent flows:

Jet Mixing layer

Versteeg & Malalasekera, 2007

41 0.1
N - 0.05
-1 0.0
. -4 0.0 0.0 l l ] — ] —0.05
0.0 1.0 Y/Yir2 2.0 3.0 —0.2 0.1 0.0 ) 0.1 0.2 -3 —2 -1 0 1 2 3
Y~ Y/ Yasa

« Largest turbulent fluctuations where largest mean flow gradient.
. . . — —= . 18
= Turbulence is anisotropic (e.g. u/? > v’?) in these flows.



Numerical Flow Simulation

Simple turbulent flows

= \Wall-bounded flows: flat plate boundary layer, pipe flow, channel flow...

= Close to the wall, flow influenced by viscous effects and independent of free-stream
parameters - mean flow velocity depends on distance from the wall y and wall shear

stress 7. From dimensional analysis:
u yuT . . Tw aUCIj (11 " - - 7
Law ofthewall: — = f ( ) with velocity scale ur = 7 =\ |V oy (“friction velocity”)
U
Vi Buff Log-l
+ f(y_l_) sulli-ci:;:r I:yeerr r(;ggic?r;N

30 —

= \/iscous sub-layer (y*<5): dominated by
viscous effects, very thin, linear relationship

_|_
— y
= Log-law layer (30<y*, y/6<0.3): logarithmic
relationship 1

ut == ln(Ey+) k~04, E~9.8
K

= Quter layer (50<y*): viscous effects

negligible, fully turbulent.



Numerical Flow Simulation

Simple turbulent flows

= Wall-bounded flows
= Example: flat-plate boundary layer (without pressure gradient)

Klebanoff, 1955

0.0 0.2 04 06 08 10 12 14

= High turbulent production where large mean flow gradient.
= Turbulence strongly anisotropic near the wall, becomes isotropic farther away.

20



Numerical simulation of turbulent flows

= Challenging because of the wide range of length and time scales
= Recall the ratio of large scales to Kolmogorov scales: L Re3/%

= Number of operations needed to resolve all scales:

3
N = NN, ~ <£> (L/U> ~ Rell/A

L/U
1] T

N R61/2

1] T

Numerical Flow Simulation

= Starts to become accessible to fastest supercomputers, but not quite to regular

computers used in the industry. -



Numerical Flow Simulation

Numerical simulation of turbulent flows

= Three main methods:

1. Direct numerical simulation (DNS):
» Resolve all scales, all the way down to Kolmogorov scale

2. Large-eddy simulation (LES):

= Resolve larger eddies (flow & geometry-dependent) down to a size in the
inertial subrange

= Model the effect of smaller eddies (isotropic, universal behavior)

3. Reynolds-averaged Navier-Stokes (RANS) egs. + turbulence
models

= Solve for mean flow (ensemble average)
= Model fluctuations at all scales

More
accurate,
but more
expensive

22



Numerical Flow Simulation

Numerical simulation of turbulent flows

= Three main methods:

log &/

\ — Q" .ot )
computed DNS
I I More
Comput:ed —><«—— modeled —> LES iﬁ?%itree’
I expensive

modeled RANS

O(L™1)

23



Numerical Flow Simulation

Direct numerical simulation (DNS)

= Resolve all scales, all the way down to Kolmogorov scale. No modeling.

= Assessment:

= Highest possible level of description (all scales are resolved, all orders of the
statistical moments can be computed)

= Complete by nature (no flow-specific parameter)
= Prohibitive cost at high Re
= Range of applicability: theoretically unlimited

= Accuracy: theoretically unlimited (practically limited by the precision of the
numerical method)



Numerical Flow Simulation

Large-eddy simulations (LES)

= Compute explicitly large (energy-containing) eddies. Their dynamics is flow and
geometry-dependent.

= Model the effect of small (dissipative) eddies. They have a more isotropic and
flow-independent dynamics - easier to find a universal model.

= | arge savings compared to DNS (which spends most computational effort on
smallest dissipative scales).

log £ 1 ~_" - ..- °

“log k 25



Numerical Flow Simulation

Large-eddy simulations (LES)

= Two main steps:

1. Choice of a filtering operation to separate resolved scales and modeled scales
-> spatial filtering of the Navier-Stokes equations.

2. Choice of a closure model: subgrid-scale (SGS) modeling.

1. Spatial filtering:
= Total flow = filtered (resolved) scales + residual (subgrid) scales
u(x,t) =u(x,t) + u'(x,t)

u(x,t) = /u(x’,t)G(X — x')dx’

= Filtering = convolution in physical space T
= multiplication in spectral space
G: filter, or convolution kernel. Many types: sharp, Gaussian... Determines the size
of the resolved eddies.

Total
----- Large-scale

U /= f-

26



Numerical Flow Simulation

Large-eddy simulations (LES)

1. Filtered NS egs. (incompressible): egs. for the resolved, large-scale eddies
B oa . 1__ .

V.-u=0, 5 .(u-V)u——;Vp+VV u—

= Additional term: subgrid-scale (SGS) stress tensor 7;; = u;u; — u;u;

= Effect of the small eddies on the dynamics of the resolved, large-scale eddies.

= Closure problem: SGS stress unknown (non-resolved terms)! Must be modeled.

2. SGS modeling

= Most common choice: eddy viscosity model. SGS stress proportional to rate of
deformation of the resolved flow, and same coefficient of proportionality for all components.

1
Tij — ngk(Sij = —VSGS (Vﬁ =+ VﬁT)ij Vsas . eddy viscosity [m?4/s]

= Many SGS models proposed for eddy viscosity.
For example: Smagorinsky-Lilly, dynamic Smagorinsky-Lilly, wall-adapted local eddy-viscosity
(WALE), dynamic kinetic energy subgrid-scale (all available in Fluent). 27



Numerical Flow Simulation

= Reynolds decomposition

= Total flow = mean flow (ensemble average) + fluctuations

u(x,t) =u(x,t) +u'(x,t)

= Averaging properties:
fr=0 g=fg
= of _of  of _of

e e N ]

= |[ncompressible NS equations
= Continuity eq.:

V-u=90 — V-u=090 and

The mean flow and fluctuations are incompressible.

28



Numerical Flow Simulation

Reynolds-averaged Navier-Stokes (RANS) equations

* |[ncompressible NS equations

= Momentum eq.:
; (?;; F(u-V)u = —%Vp+uv2u
8(u+u) 1

(@4 u) \/)(u+u)——;V(z_?—l—p')—l—VVQ(ﬁqLu’)

1
Ju - (u % /%I—F ——V]_?+Vv2ﬁ
ot p — V.- T
1

= RANS eqgs. for the mean flow: almost like NS egs., __— Turbulent mean velocity
but divergence of an additional stress, the Reynolds |~ L,y i velocly profie
stress tensor = = —u/u’ (variance of fluctuations, _ :
6 independent components). Makes all the difference! ] '

= Closure problem: Reynolds stress unknown! More unknown than equatibns.
To solve the RANS egs., must model the Reynolds stress. 29



Numerical Flow Simulation

Reynolds-averaged Navier-Stokes (RANS) equations

= Must model the Reynolds stress: 7= —-u'u’' =7

= Several types of turbulence models of increasing complexity
= Turbulent viscosity models:

= 0-equation models (algebraic models): mixing length models More accurate
= 1-equation models: Spalart-Alimaras, turbulent kinetic energy model or general,
. 2-equation models: k-, k-w models but more

N expensive
= Reynolds-stress eq. models (RSM): 7 additional transport egs.

= “‘Essentially, all models are wrong but some are useful.” (G. Box)
= “Models of turbulence are inevitably incomplete.” (S. Pope)

30



Numerical Flow Simulation

RANS + turbulent viscosity models

* To close the RANS equations, assume that the Reynolds stress is related to the mean
flow, I.e. 7 = —u/u’ can be expressed as a function of u.

= Boussinesq hypothesis (1877): Reynolds stress proportional to mean rate of deformation,
and same coefficient of proportionality for all components

T 23/@1 — 1 (Vﬁ + VﬁT)

where k=1 (W + 02 + W) is the turbulent kinetic energy (TKE) [m?/s2],
and v; is the turbulent viscosity (eddy viscosity) [m?/s].
= Analogy with viscous stress (proportional to rate of deformation) and molecular viscosity:

o+ pl =p(Vu+ Vu')

= Central issue: how to determine v,? Specific to each model (mixing length, Spalart-
Allmaras, k-¢, k-w...)

31



Numerical Flow Simulation

RANS + turbulent viscosity models

* To close the RANS equations, assume that the Reynolds stress is related to the mean
flow, I.e. 7 = —u/u’ can be expressed as a function of u.

= Boussinesq hypothesis (1877): Reynolds stress proportional to mean rate of deformation,
and same coefficient of proportionality for all components

2k

T SI:Vt(Vﬁ+VﬁT)
= With this hypothesis, the RANS egs. for the mean flow V. T
oua o _ | 9__ / /
are closed: - | o
u NETER 17 — — — | 255
at i (u V)u IOV (p | 2 ) -+ (V -+ Vt)v u

— Turbulent mean velocity

| i T Laminar velocity profil
= Note: turbulent viscosity must depend on space, v:(x) , ... /ieminar velocity profle

(otherwise, RANS eqgs. would simply be equal to NS egs. : :
with a different viscosity/different Re, which is not true). 1= "




Numerical Flow Simulation

Boussinesq hypothesis:

T + %I =7 (Vﬁ+ VﬁT)

RANS + turbulent viscosity models

= Zero-equation models (algebraic models): mixing length models
= From dimensional analysis, turbulent viscosity [m4/s] = length * velocity: v ~ liuy

= Assume strong connection between mean flow and behavior of largest (energy-
containing) eddies = build velocity scale on mean gradients:
1/2

N 07 \° ) e
Length scale = "mixing length”, Velocity scale o
to be specified (flow-dependent)
. e . ou , | Ou
= Simple 2D flows: only one significant mean gradient: u; = [, 5 v =175 W
+ only one significant Reynolds stress: g y
— ou 2 ou | Ou
TCU — r — — UV —= /)y — — m
v 'Oy Oy | Oy

33



Numerical Flow Simulation

RANS + turbulent viscosity models

Boussinesq hypothesis:

T + %I =7 (Vﬁ+ VﬁT)

= Zero-equation models (algebraic models): mixing length models
= Easy to implement, and computationally cheap.

= Works well only in simple 2D flows: mixing layers, wakes, jets, boundary layers...
Cannot describe flows with separation/recirculation.

Flow

Mixing layer

Jet

Wake

Axisymmetric jet

Boundary layer (dp/dx = 0)
viscous sub-layer and
log-law layer (y/L <0.22)
outer layer (y/L =0.22)

Pipes and channels
(fully developed flow)

Rodi, 1980

Mixing length €,

0.07L

0.09L

0.16L

0.075L

Ky|1— exp(—y*/26)]
0.09L

L[0.14—0.08(1 — y/L)* — 0.06(1 — y/L)*]

L

Layer width

Jet half width
Wake half width
Jet half width

Boundary layer
thickness

Pipe radius or
channel half width

_CYIincljer wake

Mixing length
theory

Qo -~ A
P | | | | | | | | |
25 =20 =15 =10 =05 Y 05 10 15 20

Schlichting, 1979



Numerical Flow Simulation

Boussinesq hypothesis:

T+ %I = (Vu+ Vu')

RANS + turbulent viscosity models

= One-equation models: Spalart-Allmaras model

= Specifically designed for external aerodynamics (boundary layers with adverse
pressure gradients)

= Solve one transport equation for an “eddy viscosity parameter” [m2/s]

O (pv .
(éOt ) V- (qu _ {v 10( )VV] + CbQ/O VV }_|_Cb1,0VQ Cwl,O ( > fw
rate of change convection molecular and turbulent diffusion production dissipation

Yy : distance to closest wall

oy, Cpa, Cp1, Uy, K - empirical constants (flow-independent)

Q, f,, : functions containing other empirical constants

= Then, turbulent viscosity obtained as: v; =vf,;

fu1 : function that tends to
1 forlarge 7/v, and
0 for small 7/v. 35



Numerical Flow Simulation

Boussinesq hypothesis:

T + %I =7 (Vﬁ+ VﬁT)

RANS + turbulent viscosity models

» One-equation models: turbulent kinetic energy model
= |[mprovement on mixing length model

« Turbulent viscosity: still v ~ lLiu;, and I, = 1,,,, but build velocity scale as u; = cVk
with ¢ a constant and k the turbulent kinetic energy [m?/s?]

—> UV = Clm\/E

= An equation for k can be derived rigorously from NS (same method as for RANS egs.):

0(pk —
((‘I;t) -V - (pka) =V - —|-,0VVk] + p1 : Vu - pv||Vu'||?

rate of change convection diffusion production dissipation

Note (see later): € = v||Vu’||? is the rate of
dissipation of TKE per unit mass [m?4/s3]

= Again, closure problem: unknown diffusion and dissipation terms.

36



Numerical Flow Simulation

Boussinesq hypothesis:

T+ %I =7 (Vﬁ+ VﬁT)

RANS + turbulent viscosity models

» One-equation models: turbulent kinetic energy model

O(pk

(({19075 ) -V - (pkua) =V - {—p’u’ — pu’*u’ + ,OVVk} + p1 : Vu — pv||Vu'||?

= Solve a model transport equation for k: 13/2
» On dimensional ground, write € ~ U®/L and choose € = CDZ— with C, a constant.
» Model diffusive flux as pg—th:, with o3 a constant. m
k

O(pk ‘ ‘ k3/2

(PF) -V - (pku) =V - ,OEVIC + p7 :Vu — pCp—

(% i O 1 lm

= Major drawback: still need to specify mixing length /_.

37



Numerical Flow Simulation

Boussinesq hypothesis:

T + %I =y (Vu+ vu')

RANS + turbulent viscosity models

= Two-equation models: k- model (standard)
= Improvement on one-equation TKE model (no need to specify a mixing length)

. . . . . k
= Turbulent viscosity: on dimensional ground v; ~k*/e — let v, =C,—

. €
= Solve 2 model transport equations for k (same as TKE: theoretical eq. + closure approx.)
and for & (empirical, but based on the analysis of homogeneous turbulence, turbulent free-
shear flows, and wall-bounded turbulence):

O0(pk %
(Pk) -V - (pkua) =V - ,O—th' + p1 : VU — pe
8t . Ok - Ok,0c¢, 0167 026
O(pe) — RZe _¢€ €’ empirical constants
or TV pe) =V pmVel o+ pCher : Vi = plhe (flow-independent)
rate of change convection diffusion production dissipation

= Need special treatment at the wall (see later).

= Well established, widely validated, well calibrated for internal flows. However, poor
performance in unconfined flows, swirling/rotating flows, curved boundary layers.

= Three versions in Fluent: standard (Launder & Spalding, 1974), RNG, realizable. 38



Numerical Flow Simulation

Boussinesq hypothesis:

T + %I =7 (Vﬁ+ VﬁT)

RANS + turbulent viscosity models

= Two-equation models: k-w model (standard)

= |nstead of &, use the specific turbulent dissipation rate w = ¢/k [1/s] (not to be
confused with vorticity) as 2" variable.

= Turbulent viscosity: on dimensional ground, v; ~ k/w

= Solve 2 model transport equations for k (similar to that of k-¢) and for w.

= Unlike k-, no need for special treatment at the wall.

= More widely applicable than k-e. But problematic in some complex external flows.

= Several versions in Fluent: standard (Wilcox, 1998), SST (Menter, 1992; combines k-¢ in
the freestream and standard k-w near the wall), GEKO, BSL.

39



Numerical Flow Simulation

Boussinesq hypothesis:

T+ %I = (Vu+VﬁT)

RANS + Reynolds-stress model (RSM)

= Reynolds-stress model

= Don’t use Boussinesq hypothesis (isotropic turbulent viscosity). Instead, solve
explicitly transport egs. for the 6 Reynolds stresses (+1 eq. for ).

= Can derive a rigorous eq. for = = —u/u’:

production turbulent and molecular diffusion

au;u; !, ] 9 — |
P U Opuu J (u w, O, ujukakui) 8 V Ok WU ]

rate of change convection : ; I = ; 7

dissipation pressure-strain interaction

= Again, closure problem: must model the unknown correlations. The diffusion and
pressure-strain terms are modelled as a function of 7, the dissipation term as a function of «.

= Allow for anisotropic turbulence. Accurate in simple and complex flows.

» However, less validated than k-«.
40



Numerical Flow Simulation

RANS: summary

= The Reynolds stress tensor = = —u’u’ is unknown.

. . . . 2k _ _
» Turbulent viscosity models: Boussinesq hypothesis 7+ —-I = v, (Vu+ vu')

» Mixing length model: v, =12 ||Vu|| where the mixing length /_ is flow-dependent.
No additional equation.

» Spalart-Allmaras model: v, = U f,1 1 transport equation for U

 TKE model: Uy~ lm\/E where the mixing length /  is flow-dependent.
1 transport equation for k

= K-& models: Vp ~ k? /€ 2 transport equations for k and ¢

« k-w models: vy ~ kJw 2 transport equations for k and w

= Reynolds-stress eq. models (RSM): solve directly for .
/ transport eqgs. for the 6 independent components of T and for e.

41



Numerical Flow Simulation

RANS: summary

= The Reynolds stress tensor = = —u’u’ Is unknown.

2k

» Turbulent viscosity models: Boussinesq hypothesis 7 A o 1=w (Vu+ vu')

» Mixing length model: v, = 12 ||V

= Spalart-Allmaras model: vy = U f,4

» TKE model: vy ~ 1o Vk
= Kk-& models: vy ~ k* /e
» k-w models: vy ~ kJw

Note: in flows where turbulent regions and
laminar regions coexist, in principle all
turbulence models can predict laminar regions
(i.e. they can yield 1 =0 and 7 =0, and
the RANS egs. reduce to the standard NS
egs.), except the mixing length model (4 is
non-zero wherever the mean velocity gradient
IS non-zero). However, depending on the
model, BCs etc., spurious production or
insufficient dissipation of k (and 14 ) is possible.

= Reynolds-stress eq. models (RSM): solve directly for .

42




Near-wall treatment

= Walls are the main source of mean vorticity and turbulence - strong impact
on turbulence.

= Some hypotheses used to develop turbulence models are not valid near the

walls (e.g., the hypothesis that viscous dissipation is negligible compared to other terms
Is valid far from walls because Re is large, but not close to walls because the flow is

much slower, so the effective Re is much smaller) =2 near-wall modeling
significantly affects the accuracy of turbulent flow simulations.

Numerical Flow Simulation
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Numerical Flow Simulation

Near-wall treatment

= Numerically, two approaches:

—{ log(y™)
Log-law -1°
turbulent region & . turbulent
core S S . o core
buffer layer ] < - buffer
& Viscous - &
sublayer sub-:ayer | | | sublayer
wall R & 4+ = "o wall
Wall functions: Near-wall models:
= Viscosity-affected region (viscous sub-layer = Near-wall region is resolved all the way
+ buffer layer) is not resolved, but bridged down to the wall. Requires a sufficiently
with semi-empirical “wall functions”. fine mesh.
= Qutside this region, turbulent models can be = Some turbulence models must be modified
used “as is”. to account for the presence of the wall
= Cheaper, but less accurate. = More accurate, but more expensive.

44



Numerical Flow Simulation

Near-wall treatment

i

= Wall function approach: rtens
= For high-Re flows, this approach is economical, robust,

&

y
buffer

reasonably accurate - practical option for industrial flows. “

wall

—_—

= [nadequate where low-Re effects are important:
= Hypotheses of wall functions breaks down (actual profile # turbulent law of the wall).
= Must use near-wall model approach instead.

= First mesh cell center should be in the log layer y*>30 (less true with more recent
advanced wall functions; see Fluent Theory Guide).

= Near-wall model approach: rbens
= First mesh cell should be at y* ~ 1. Mesh should
have at least 10-20 cells in the boundary layer. "
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Numerical Flow Simulation

Near-wall treatment

= How to determine y*?

= Defined as distance to the wall normalized by flow quantities = in principle, need
to know flow solution to determine y* values!

L Yu; Tw \/ Ou,,
y' = where U, = 4/ — = 4|V
% \/ Ii 0y

= Estimation of y* for the first mesh cell:
= trial and error (compute, remesh, recompute),
= from experience,
= based on simple analytic formula.

= Online calculators based on formula for flat-plate boundary layer (only useful if
flat plate is a good analogy for problem being solved). For example:

= www.pointwise.com/yplus
= www.cfd-online.com/Tools/yplus.php
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Numerical Flow Simulation

Turbulence models: guidelines

1. Choosing a turbulence model

Depends on flow physics, accuracy required, computer resources available, etc.
Understand capabilities and limitations of turbulence model before using it.

For industrial applications: use RANS approach.

= Aeronautical applications involving wall-bounded flows (boundary-layer flows): consider
Spalart-Allmaras or k-w.

= “General” flow situations: consider k- or k-w.
= |If low-Re effects, compressibility or shear flow spreading are important: consider k-w.

» More complex flows (e.g. streamline curvature, swirl, rotation, rapidly changing strain
rate): consider RSM.

For detailed unsteady turbulent flow studies: use LES approach.
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Numerical Flow Simulation

Turbulence models: guidelines

2. Choosing a model variation

= For complex near-wall phenomena (e.g. separation from curved surface), use:

= RNG or realizable (rather than standard) k-¢ model,
= SST (rather than standard) k-w model.

= |f solution stabllity is a problem, use:

= standard (rather than RNG or realizable) k-€ model,
= standard (rather than SST) k-w model.

3. Choosing a near-wall treatment
= High-Re flows and/or limited computer resources: consider wall function.

= For complex near-wall phenomena (e.g. separation from curved surface), use:
= near-wall model approach (if practical),
= non-equilibrium wall functions.
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Numerical Flow Simulation

Turbulence models: guidelines

4. Choosing model parameters
= Never change model constants, unless expert user.

= |f solution stability is a problem, consider:
= decreasing under-relaxation factors for turbulence equations
= using first-order solution procedure for turbulence equations

= [nclude all model options that may be important in the flow (e.g. buoyancy, swirl,
compressibility, thermal effects)

5. Choosing an appropriate mesh
= |LES: use fine mesh to resolve all scales down to smallest resolved eddies

= RANS with near-wall model: set first mesh cell at y+ ~ 1
= RANS with wall function: set first mesh cell at y* ~ 30

49



Numerical Flow Simulation

Turbulence models: guidelines

= General comments

= Read Fluent Theory Guide and User’s Guide before applying turbulence models.
= Study influence of turbulence model on flow solution.
= Validate flow solution whenever possible (compare with experimental data).
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Numerical Flow Simulation

Turbulence models: example

Re, = 50’000

= Turbulent flow past a blunt flat plate. —>

= Four turbulence models considered. —

Recirculation zone _/ Reattachment

Turbulent kinetic energy:

0.70

0.63
0.56
0.49
0.42
0.35

{( Standard k-¢
\(H e ~—:_ ——

—

0.28

0.21
0.14

0.0/
0.00
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Numerical Flow Simulation

Turbulence models: example

= Turbulent flow past a blunt flat plate.
= Four turbulence models considered.

Predicted recirculation zone:

| — _‘_,__}

‘ Standard k-¢
T——

Standard k-¢ severely underpredicts the
size of the recirculation zone.
Realizable k- IS more accurate.

ReD = 50’000 Djilali & Gartshore, 1991
U >
O, — - rd
—_—
— 3>
——ai}
S—— I
5 '
Recirculation zone Reattachment
4
Skln |:|_1II
Frl.d.:lon -2 ;IN\ ® Exp. Data ]
COEffICIEﬂt | T gﬁgdﬁjgpk;%%silnn
Cf 8 1000 - Eggniﬁfﬁ:gsnun )
_E.' _J

4 5 - 7 8 9 10

Distance Along Plate, x /D

0 |

=

Experimentally observed reattachment
pointisatx /D =4.7



Numerical Flow Simulation

Summary

= Turbulent flows are complex and difficult to simulate numerically.
* Hierarchy of different approaches: DNS, LES, RANS.

= Modeling turbulent flow is difficult. Many different RANS models of varying
complexity.

= Choice of wall treatment is important for accuracy and mesh size (y*).

= Choice of most suitable turbulence model is generally difficult. Should be based
on physical guidelines (see manual) and computer resources.

= Validation is particularly important to gauge accuracy of solution.

= For more detalls on turbulence and its modeling:
= EPFL SGM Master course “Turbulence” (ME-467, T. Schneider)
= Turbulent Flows, S. Pope
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Numerical Flow Simulation

Appendix: derivation of some equations

= Equation for the fluctuations:

= Subtract the RANS eq. (mean flow) from the NS eq. (total flow), and recall the
Reynolds decomposition u(x,t) = u(x,t) +u'(x,t):

0 1
(,;: F(u-V)u = —;VP-I—VVQU
ou 1
— (6;1 -F(u-V)u = —;V§+VV2_— (u’ - V)u’)
ou’ 1_ .
ot | (U-V)u—(u.\/)u:—;Vp +vVou' + (0 - V!
ou’ / Ty e / / /
= Y F(u' -V)u+ (u-V)u' + (u' - V)u
ou’ ! 1_ 5 , B ! !
And It I(U‘V)UZ—EVP +vVu + (0 -V)u' — (0 -V)u— (u - V)u
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Appendix: derivation of some equations

= Equation for the turbulent kinetic energy:.
= Start from the eq. for the fluctuations (previous slide):

ou'. 1
8; -0 = - ip’ 4 v0ju; + u0ju; — 05U — w;0ju;
= Multiply each eq. 1 by u’, sum the 3 egs., and take the mean:
16u2| I—a ! ]‘!8; fa / !!8 / !!8— !!6 /
U, o W Uj05U; = ——U; 05D + VU0 U; + U W;05U; — U U 05U — Uy U 05Uy
S
‘—é = Rearrange each term (use product rule and/or incompressibility where needed):
'CB [
S ou, 10ul” 1 1
. » Istterm:; ol — = = —% « 39term: ——u.0;p’ = ——0;(uip
- ot 2 ot Ui’ = =2 di(wp’)
|5
E
2 o0 term: T Al — S 502 A0 term: o — 219 i Z — D)
: erm. U;u,0;u; = §Uj U, . erm. vu,0j;u; = 51/ iU, —l/( jui)
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Appendix: derivation of some equations

= Equation for the turbulent kinetic energy (continued):

. 5th T A T T T A T (). o] —
Sterm:  wiu’0ju; = u; ui0iu; =0 - w;0ju; =0

« 61 term: —u;ugﬁju_i
. Thterm:  —uful0;u) = —%u;aj(uf) = —%ajugu;Q
s = Gather: %8§ | %Ujaju_iz = —%@'(Uip’) + %Vajju—f —v(9ju})” — uju]9;u; — %aju}uf
é g]; - w05k = —%33' (W) + vk — v(d;uf)” — wju0u; - %@'U}’UEQ
g g]; -uj0jk = 0 (_%U;P’ + vk — %u;u;2> — v(9;u))* — uzu’ 0
) (Z]; F(a-V)kE=V- (—%u’p’ + vVk — %u’Qu‘) —v||VU||2+ 7 : VU
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Numerical Flow Simulation

Appendix: derivation of some equations

= Equation for the Reynolds stresses:

= Same idea as for the turbulent kinetic energy (2 previous slides).

= Start from the eq. for the fluctuations:
ou’

[
|

ot
= Multiply by fluctuations and combine to form the quantity

au’. 6%’*

= Take the mean:

au’. au’-
u’. L 4 w0l | + L Lo | = ...
(e +mdut) +ur (5 + o)
= Rearrange:
au;u; B —
5 | uké‘kuiuj:...
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