
Time integration

Edouard Boujo

Fall 2022

Numerical Flow Simulation
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 Ubiquitous in nature and engineering: instabilities, moving or 
deforming boundaries, natural convection, multiphase flows, 
turbulent flows…

Unsteady flows
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 Need to integrate the equations in time.

Unsteady flows

Steady flow: solution u(x), p(x)
depends on space only.

Unsteady flow: solution u(x,t), p(x,t)
depends on both space and time.
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 General conservation equation:

 Steady/unsteady diffusion:

 Steady convection-diffusion, unsteady convection:

Simple “model” equations

unsteadiness convection diffusion source
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 Unknown        depends on time only. The RHS may depend 
explicitly on time, and may be nonlinear in   :

 Simplest methods: linear approximation of time derivative: 

 Can evaluate the RHS at different times:

Reminder: ordinary differential equations (ODE)

“Theta    
method” If         , must solve an implicit equation.
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 Explicit Euler (“forward Euler”): 1st-order accurate; can be unstable
 Implicit Euler (“backward Euler”): 1st-order accurate; unconditionally stable
 Crank-Nicolson (          ): 2nd-order accurate; unconditionally stable

Reminder: ordinary differential equations (ODE)

 Example:
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 Other families of methods: 
1. Linear multistep methods: use more than 1 previous time step 

2. Multistage methods: evaluate     at intermediate stages between    and 

Reminder: ordinary differential equations (ODE)

… …
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1. Linear multistep methods: a s-step method uses the known solution 
at s previous time steps

 Implicit if

 Adams family: LHS always                   , i.e. 
 Adams-Bashforth: explicit, accuracy s
 Adams-Moulton: implicit, accuracy s+1

 Backward-differentiation formula (BDF) family: RHS always         ,                       
i.e. 
 Implicit, accuracy s

Reminder: ordinary differential equations (ODE)
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Reminder: ordinary differential equations (ODE)

1. Linear multistep methods

Adams-Bashforth

Adams-Moulton

BDF

(Crank-Nicolson)
(Implicit Euler)

(Explicit Euler)

(Implicit Euler)
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2. Multistage methods
 Most famous: explicit Runge-Kutta

 RK2 (2nd-order accurate, 2 evaluations of the RHS per time step):                           
estimate the new solution with the current slope                                                                    
 recompute the slope using this estimate  correct the estimate

 RK4 (4th-order accurate, 4 evaluations of the RHS per time step): same idea, with 
intermediate values at time interval midpoint

 More stable than explicit multistep methods, but more expensive per time step.

Reminder: ordinary differential equations (ODE)



N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

11

 Now the unknown             depends on both time and space. 

 The time-marching problem looks qualitatively similar, because spatial 
discretization turns the PDE into an ODE in time:

 However, not so simple: small spatial errors at each time step can 
accumulate and compromise accuracy / stability. 

Partial differential equations (PDE)
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 Assume the density is constant.
 Integration over CV, with CD scheme for diffusion term:

 Linear approximation of the time derivative, theta method for the RHS:

 Algebraic equation for         :

 Assemble the system and march in time: 

Unsteady 1D diffusion

W        P        E

w         e
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 Algebraic equation:

 Explicit Euler (       ):

Unsteady 1D diffusion

Boundedness criterion: all coefficients should have 
the same sign. Here, if uniform grid and constant    : 

Each CV decoupled from neighbors. 
No need to solve a system!
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 Crank-Nicolson (          ):

Unsteady 1D diffusion

All coefficients always positive.

Similar boundedness criterion:

Each CV coupled to neighbors.                            
Must solve a linear system at each iteration!

 Implicit Euler (       ):
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 Example

Unsteady 1D diffusion

𝜌𝜌=1, 𝛤𝛤=0.1
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 Assume the density and velocity are known.
 Integration over CV, with UD scheme for convection term (        ):

 Linear approximation of the time derivative, theta method for the RHS:

 Algebraic equation for          :

 Assemble the system and march in time: 

Unsteady 1D convection

W        P        E

w         e
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 Algebraic equation:

 Explicit Euler (       ):

Unsteady 1D convection

Courant–Friedrichs–Lewy 
(CFL) condition

Each CV decoupled from neighbors. 
No need to solve a system.

Boundedness criterion: all coefficients should have 
the same sign. Here, if constant density:
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 Crank-Nicolson (          ):

 Implicit Euler (       ):

Unsteady 1D convection

All coefficients always positive.

Similar boundedness criterion:
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 Example

Unsteady 1D convection

𝜌𝜌=1, u=0.1
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 Example

Unsteady 1D convection-diffusion

𝜌𝜌=1, 𝛤𝛤=0.01, u=0.1
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 For any partially explicit theta method (        ), the time step must satisfy:

for pure diffusion: ,       for pure convection:                         .

 Physically:

 The time step      should be smaller than the                                                   
time needed for the diffusive / convective process                                                  
to travel over a distance       (one CV).

Boundedness criterion: physical interpretation

Char. convective length:Characteristic diffusive length:
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 For any partially explicit theta method (        ), the time step must satisfy:

for pure diffusion: ,       for pure convection:                         .

 Note: when refining the mesh, the time step must also be reduced                   
 simulations become more expensive for two reasons.

Boundedness criterion: physical interpretation
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Schematic algorithms for unsteady simulation

Linear eq., direct method Linear eq., iterative method

Jacobi, GS, SOR…

Converged? no

yes

Solve the 
linear system

 At each time step, must solve an algebraic system of equations.
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Schematic algorithms for unsteady simulation

Linearize

Jacobi, GS, SOR…

Converged? no

yes

no

yes

Nonlinear eq., iterative method

Guess

 So far (today), we have only dealt with 
linear governing equations.                               
If the equations are nonlinear, one 
must linearize at each time step.
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Schematic algorithms for unsteady simulation

 Reminder: so far (today), we have only dealt with the solution of a single
governing equation. If several equations are solved, 2 approaches (see also 
week 5 about the Navier-Stokes equations):

1. Coupled approach: all equations solved simultaneously one single large 
system (similar to previous slides). Requires more memory.

2. Segregated approach: equations solved separately. Two options:
a) iterative scheme: solve each equation once, then repeat until global 

convergence;
b) non-iterative scheme: iterate each equation until individual convergence, 

then proceed to next equation.
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Schematic algorithms for unsteady simulation

…

yes

Equation 2

Segregated approach, iterative scheme

Equation 1

Converged? no

yes

Segregated approach, non-iterative scheme

no

Equation 1

Converged?

Equation 2

Converged?

…

no

yes
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 Unsteady simulations are much more expensive than steady ones ( ask 
yourself if they are really needed).
 They also produce a lot of data ( be careful with what you store).

 Explicit schemes: strong stability limitation on the time step.
 Implicit schemes: unconditionally stable (ODEs), BUT the time step must 

be small enough to:
 avoid unphysical oscillations (PDEs),
 resolve time-dependent features accurately (diffusion, convection, buoyancy…),
 at the very least, converge the solution at each time step ( check the residuals).

 The initial condition may be very important.

Summary and guidelines



N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

28

 Enable transient solver:

Fluent specifics
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Fluent specifics

 Pressure-based solver: implicit schemes.
 1st order (implicit Euler): more stable but            

less accurate,
 2nd order (BDF2): more accurate but                       

may produce oscillations,
 Bounded 2nd order (weighted BDF2):                 

eliminates oscillations.

 Density-based solver: implicit (1st / 2nd order)
and explicit (Runge-Kutta) schemes.
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 Specify the time step:
 Fixed: constant value
 Adaptive: Fluent adjusts the time step to respect a target CFL number or 

a target truncation error (temporal error). 

Fluent specifics
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 Specify the maximum number of iterations allowed in each time step. 
Avoid too large values (better to reduce the time step).

 Specify the number of time steps, or the physical time to be simulated.

Fluent specifics
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 Matlab exercise: convection-diffusion

 Fluent tutorial: vortex shedding

This week’s exercise and tutorial
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 For steady problems, most natural approach is to use a steady solver (weeks 2-5). 

 In principle, one may also use an unsteady solver, simulate the physical 
process, and wait until reaching a steady state. However, this naive approach 
may be very slow because the flow may settle only very slowly (depending on 
the initial condition, the physical parameters, etc.).

Appendix: pseudo-transient simulation (1/4)

Example: flow past a 2D cylinder, sudden reduction 
of Re from 100 (unsteady flow) to 40 (steady flow).

With an unsteady solver, need several vortex-
shedding periods to reach the steady regime. Here:
• convective time (cylinder diameter divided by 

freestream velocity) = 1 s,
• physical time to reach steady state = O(103) s,
• constant time step = 0.1 s 

 O(104) iterations. 
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 For steady problems, most natural approach is to use a steady solver (weeks 2-5). 

 In principle, one may also use an unsteady solver, simulate the physical 
process, and wait until reaching a steady state. However, this naive approach 
may be very slow because the flow may settle only very slowly (depending on 
the initial condition, the physical parameters, etc.).

Appendix: pseudo-transient simulation (2/4)

Example: flow past a 2D cylinder, sudden reduction 
of Re from 100 (unsteady flow) to 40 (steady flow).

With a steady solver: need only 30 iterations.
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 One exception: so-called “pseudo-transient” simulation. An unsteady solver is 
used, but the time step does not correspond to a physical time step. Compare 
the following:

 Unsteady solver
(time integration;                                                                                                           
this week):

 Steady solver
(iterative method, 
under-relaxation; week 3):

Appendix: pseudo-transient simulation (3/4)

 Clear analogy: can identify

 Interpretation: pseudo-transient calculation equivalent to under-relaxed iterative 
steady calculation. The pseudo time step may be local (i.e. space-dependent).
 Useful in some cases, when stability problems in steady calculation.
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 In Fluent: available for pressure-based coupled solver, and density-based 
implicit solver. Can specify the pseudo time step, or leave the default 
automatic calculation. In both case, it is actually a global (not local) value.

Appendix: pseudo-transient simulation (4/4)
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