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Numerical Flow Simulation

Unsteady flows

= Ubiquitous in nature and engineering: instabilities, moving or
deforming boundaries, natural convection, multiphase flows,
turbulent flows...




Numerical Flow Simulation

Unsteady flows

= Need to integrate the equations in time.

Steady flow: solution u(x), p(x)
depends on space only.

Unsteady flow: solution u(x,t), p(x,t)
depends on both space and time.



Numerical Flow Simulation

Simple “model” equations

= General conservation equation:

unsteadiness convection diffusion source
: unsteady diffusion:
NP _ (T grad(s))
Ot
. unsteady convection:
O(po

) - div(pou) = 0

ot



Numerical Flow Simulation

Reminder: ordinary differential equations (ODE)

¢
= Unknown ¢(¢) depends on time only. The RHS may depend
explicitly on time, and may be nonlinear in ¢:
d
D= 1e)  6(0) = oo I
. . N . e dd Pt — g
= Simplest methods: linear approximation of time derivative: — N
= Can evaluate the RHS at different times: /
n+1  1n __
¢ ¢ _ fn — ¢n—|—1 _ ¢n+Atfn (‘9_0)
At / t t+ At
n+1  In
¢ ¢ _ fn—l—l — ¢n—|—1 _ ¢n —|—At fn—|—1 O
At | (0 =1)
¢n—|—1 o ¢n L n+1 . n n+1 _ n n—+1 n f ' b+ Al
=0T A0 = ¢t =gn A0+ (1 0)f7)
t “Theta
: . : method”
= |[f 90, must solve an implicit equation. p Y



Numerical Flow Simulation
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Reminder: ordinary differential equations (ODE)

= Explicit Euler (“forward Euler’): 1st-order accurate; can be unstable
= Implicit Euler (“backward Euler’): 1st-order accurate; unconditionally stable

= Crank-Nicolson (6 =1/2): 2"d-order accurate; unconditionally stable
d
= Example: d—f =—¢ —  P(t) = pge"
At =04 At = 0.8 , At = 2.1

— Exact — Exact .

B Euler explicit B Euler explicit ] : .

® Crank Nicolson ® Crank Nicolson

¢ Euler implicit ¢ Eulerimplicit | | \

< 0 ) 4 ¢ ¢
1 o
— = — — = 2




Numerical Flow Simulation

Reminder: ordinary differential equations (ODE)

= Other families of methods:
1. Linear multistep methods: use more than 1 previous time step

¢
f

LT

tn tn—l—l tn tn—l—l

2. Multistage methods: evaluate f at intermediate stages between ¢t and t + At

TN




Numerical Flow Simulation

Reminder: ordinary differential equations (ODE)

1. Linear multistep methods: a s-step method uses the known solution
at s previous time steps

o™ ¢ Fand" L g™ = At (Bo S T BT A Baf T B )

= [mplicit if 89 # 0
¢n—|—1 o ¢n
= Adams family: LHS always Az e . a=1 ap=-1, a;=0Vj>1
= Adams-Bashforth: explicit, accuracy s
« Adams-Moulton: implicit, accuracy s+17

» Backward-differentiation formula (BDF) family: RHS always f™*!,
i.e.ﬁ():l, 6]:O\V/j>1
= |Implicit, accuracy s



Numerical Flow Simulation

Reminder: ordinary differential equations (ODE)

1. Linear multistep methods
¢ a1 gt and" T e = AL (Bo " A B+ Bof T+ BT

Adams-Bashforth | s | accuracy | b B2 03 B4
1 1 1 (Explicit Euler)
2 2 3/2 -1/2
3 3 23/12  -16/12 5/12
4 4 55/24 -59/24 37/24 -9/24
Adams-Moulton | s | accuracy | Bo b1 b2 BE
0 1 1 (Implicit Euler)
1 2 1/2  1/2 (Crank-Nicolson)
2 3 5/12  8/12  -1/12
3 4 9/24 19/24 -5/24 1/24
BDF s | accuracy | ag Qg o o3 o4 Bo
1 1 1 -1 1 (Implicit Euler)
2 2 1 -4/3 1/3 2/3
3 3 1 -18/11  9/11  -2/11 6/11
4 4 ] -48/25 36/25 -16/25 3/25 | 12/25




Numerical Flow Simulation

Reminder: ordinary differential equations (ODE)

2. Multistage methods

= Most famous: explicit Runge-Kutta

« RK2 (2"9-order accurate, 2 evaluations of the RHS per time step):
estimate the new solution with the current slope
- recompute the slope using this estimate - correct the estimate

kl"‘kQ klzf(t7¢)
) ko = f (7 + AL, ¢" + At k)

« RK4 (4-order accurate, 4 evaluations of the RHS per time step): same idea, with
iIntermediate values at time interval midpoint

o= S0 w)At At
ko = t" 4 oL k
¢n—|—1 L ¢n 4 Atkl -+ 2k2 -+ 2k3 -+ k4 . f Azt ¢ Azt :
6 kg — f tn | 5 ] ¢n | 9 k2
ky = f(t" + At, ¢" + At k3)

= More stable than explicit multistep methods, but more expensive per time step. 19



Numerical Flow Simulation

Partial differential equations (PDE)

= Now the unknown ¢(x,t) depends on both time and space.

= The time-marching problem looks qualitatively similar, because spatial
discretization turns the PDE into an ODE in time:

. ™
%Of) - div(pou) = div (I grad(¢)) + S L 0p

b(x,t) = (1) = (61(2), da(t)... o

_/

A(o)

= However, not so simple: small spatial errors at each time step can
accumulate and compromise accuracy / stabillity.

11



Numerical Flow Simulation

Unsteady 1D diffusion

O(pp) O ( ﬁqb)

ot Oz Ox

= Assume the density is constant.
* |ntegration over CV, with CD scheme for diffusion term:

p/me@d%p%A _( aqb) _( aqb) P 9B=6p L dp—ow

ot o, ox ox 537PE 537WP

w

= | inear approximation of the time derivative, theta method for the RHS:

n—l—l - n+1l  n+l1 n+1l  n+17 n n n ]
p O Ny —g |1, 2 E_—r1,-* Y l4+(1-6) |T f —0b _p, Ob O
At I OLPE OTW P I OTPE 0T W P i
= Algebraic equation for ¢""":  ap¢™t = aw o™t + apdn + (")
= Assemble the system and march in time:
A" =b(¢") — "' =A"'b(¢") 12




Numerical Flow Simulation

Unsteady 1D diffusion

= Algebraic equation:

-~

h —

ap¢n+1 — qa ¢n—|—1 —I—CL ¢TEL'—|—1 + b(¢n)

aAw —

(SCEWP

((1 —o)r,

(S.CIZWP

)gba/

Each CV decoupled from neighbors.

No need to solve a system!

~_pAz 6T, 6T, 0T
P At | 5CIZPE | (SCEWP B (SCIZPE
pAr (100 (1=0LY (10T
At Szwp Sepr ) T\ dwvpr ) F
= Explicit Euler (6 = 0):
a 'OA—QU aywy = a 0
P — At 9 W — Y, E —
oAr T, r. \| . r, [
( At 537WP 5a7pE>¢P_|— (5 pE>¢E <5£EWP

Boundedness criterion: all coefficients should have
the same sign. Here, if uniform grid and constant I':

At <

)qfav

p(Az)?

21°

n—+1 n-+1 n-+1
%% P E
n n n
dw  Op  PE
13




Numerical Flow Simulation

Unsteady 1D diffusion

Each CV coupled to neighbors.
= Crank-Nicolson (¢ =1/2): Must solve a linear system at each iteration!

pAz T, TCw T T,

r = At | 25CISPE |

2537WP’
IOAZE P’U) Fe Fe Fw

h — n n n

( At 25£IZ’WP 2537PE> gbp * (2526135]) ng * (25ZEWP> W

Similar boundedness criterion: At <

* Implicit Euler (9 = 1):
IOA:E Fe Fw F’UJ Fe

CLP: I { a’W: a’E:
At (S$pE 5ZCWP7 551’)ij

_ (oA,
b_(At>¢P

All coefficients always positive.

5$pE

14



Numerical Flow Simulation

Unsteady 1D diffusion

= Example

p=1, '=0.1

40

130

0.5

i

L=1, Phi0=40, Phi_ =0, I'=0.1, p=1, n=51, At=0.1, 0=
w
405"_ I I ) I I
—— Numerical
- = Theoretical
30
200
10 1
Oo : = '
0 1 2 4

C

15



Numerical Flow Simulation

Unsteady 1D convection

Apd) , Olpgu) _

ot Ox : |Z/
= Assume the density and velocity are known.

» |Integration over CV, with UD scheme for convection term (« > 0):

Opp

T e O
[ w 20 i+ (pow), — (pow),, ~ p o Ax + (pu), dp — (pu),, b = 0

= | inear approximation of the time derivative, theta method for the RHS:

n+1l . n
p—Awt0 [(pu), 65" = (pu),, o3 |+(1=0) [(pu) ¢ — (pu),, d3] =0

= Algebraic equation for ¢"" : apdpt! = aw it + (™)

= Assemble the system and march in time:
A¢n—|—1 _ b(¢n) N ¢n+1 _ A—lb(¢n)

16



Numerical Flow Simulation

Unsteady 1D convection

= Algebraic equation:  apdp™ =aweéi + b(e"™)
A
ap = (pPAtw | H(pU)e>, aw =0 (pu),

bz: A 0| op+ (1 =0)(pu), o

= Explicit Euler (¢ = 0):

I ppAT o Each CV decoupled from neighbors.
T AL W No need to solve a system.

ppAT

b = A (pU)e_ b + (pu),, O

Boundedness criterion: all coefficients should have o
Ax Courant—Friedrichs—Lewy

the same sign. Here, if constant density: At < . (CFL) condition 17



Numerical Flow Simulation

Unsteady 1D convection

= Crank-Nicolson (0 = 1/2):

= (22224 (ow =2 (ow
ap = At |2,0U6 ) aAw = puU

2
| prAz 1 1,, 1 N
b = A9 (pU)e_ op + 5 (pu),, D
o L Ax
Similar boundedness criterion: At < 27

* Implicit Euler (6 = 1):

r = (2505 4w, )« aw = (pow),

ppAx
b = e
(2557 o

All coefficients always positive.

w

18



Numerical Flow Simulation

Unsteady 1D convection

= Example

0=1, u=0.1

§ 35
130

25
20 ©
15
10

L=1, Phiw=0, I'=0, p=1, n=201, At=0.02, /=0

40

19



Numerical Flow Simulation

Unsteady 1D convection-diffusion

= Example

p=1, '=0.01, u=0.1

§ 35
130

29
20 <
15
10

40

L=1, Phi =0, I'=0.01, p=1, n=201, At=0.02, /=0.5

20



Numerical Flow Simulation

Boundedness criterion: physical interpretation

= For any partially explicit theta method (¢ < 1), the time step must satisfy:

A 2
for pure diffusion: At <O (p( ) ) ,

I
- . dpgp) 0 (09
= Physically: — — (==
y y ot ox (F&L’
L Lo
T L2
e e I'T
Characteristic diffusive length: [ ~ ;| —
e,

= The time step At should be smaller than the

A
for pure convection: At <O (—m> .

U

d(pp) = O(ppu)

ot Oz =0
Lpe pou
T L

Char. convective length: L ~uT

VI At/p < Ax
u At < Ax

time needed for the diffusive / convective process K

to travel over a distance Az (one CV).

(—)i | 21



Numerical Flow Simulation

Boundedness criterion: physical interpretation

= For any partially explicit theta method (¢ < 1), the time step must satisfy:

Az)? A
for pure diffusion: At <O (p( ) ) , for pure convection: At < O (—$> .

I U

= Note: when refining the mesh, the time step must also be reduced
- simulations become more expensive for two reasons.

22



Numerical Flow Simulation

Schematic algorithms for unsteady simulation

= At each time step, must solve an algebraic system of equations.

Linear eq., direct method

— t=nAt
¢n

A 4

Solve the
linear system

Linear eq., iterative method

>t:

n At

¢’I’L

¢(k)

Y
Jacobi, GS, SOR...

l H(k D)

{ Converged? |

) no

¢n—|—1

yes

A 4

n .—

n -+ 1

23



Numerical Flow Simulation

Schematic algorithms for unsteady simulation

= So far (today), we have only dealt with
linear governing equations.
If the equations are nonlinear, one
must linearize at each time step.

Nonlinear eq., iterative method

> t=n At

|

> Linearize

Guess qb* l ¢(k)

Jacobi, GS, SOR...

l Hk D)

1 no

{Converged? |
¢ lyes

0 [|g — ¢"|| < tol?

n:=n-+1

24



Numerical Flow Simulation

Schematic algorithms for unsteady simulation

= Reminder: so far (today), we have only dealt with the solution of a single

governing equation. If several equations are solved, 2 approaches (see also
week 5 about the Navier-Stokes equations):

1. Coupled approach: all equations solved simultaneously - one single large
system (similar to previous slides). Requires more memory.

2. Segregated approach: equations solved separately. Two options:

a) Iterative scheme: solve each equation once, then repeat until global
convergence,

b) non-iterative scheme: iterate each equation until individual convergence,
then proceed to next equation.

25



Numerical Flow Simulation

Schematic algorithms for unsteady simulation

Segregated approach, iterative scheme

> t=n At

¢n

h 4

> t=n At

|

Equation 1

Equation 1 <

l

Equation 2

:
|

no

v
|

{Converged? Mo

lyes

Equation 2 “—

{ Converged? }

n:=n-+1

v
1 no

{ Converged? |
lyes

¢n+1i

n:=n-+1

Segregated approach, non-iterative scheme

26



Numerical Flow Simulation

Summary and guidelines

= Unsteady simulations are much more expensive than steady ones (= ask
yourself if they are really needed).

* They also produce a lot of data (> be careful with what you store).

= Explicit schemes: strong stability limitation on the time step.

* Implicit schemes: unconditionally stable (ODEs), BUT the time step must
be small enough to:

= avoid unphysical oscillations (PDEs),
= resolve time-dependent features accurately (diffusion, convection, buoyancy...),
= at the very least, converge the solution at each time step (= check the residuals).

= The Initial condition may be very important.

27



Numerical Flow Simulation

Fluent specifics

= Enable transient solver:

| l::,,.-l Operating Conditions...
; ™
General... Reference Values...

Outline View <

Filter Text

General

+ @ Models
+ Q¥ Materials
+) [ cell Zone Conditions
+ [ Boundary Conditions
iﬁﬂ Mesh Interfaces
2 Dynamic Mesh
["] Reference Values
+ [/, Reference Frames
£+ Named Expressions
+ Solution
+ Results
+ Parameters & Customization

Domain User-Defined

Solution Res
Models
¥ Radiation... .Multiphase...
Energy ,ﬁ: Heat Exchanger... fﬂ; Species...
: Viscous... & Discrete Phase...
Task Page <
General @|
Mesh
[ Scale... |[ Check | [Repnrl: I:Juality.r]

[ Display... |[ Units... |

Solver

Type
® Pressure-Based
Density-Based

Time
Steady

® Transient

Gravity

Velocity Formulation

® Absolute

Relative

28



Numerical Flow Simulation

Fluent specifics

* Pressure-based solver: implicit schemes.

= 18t order (implicit Euler): more stable but
less accurate,

= 2nd order (BDF2): more accurate but
may produce oscillations,

= Bounded 2"9 order (weighted BDF2):
eliminates oscillations.

* Density-based solver: implicit (1st/ 2nd order)
and explicit (Runge-Kutta) schemes.

Transient Formulation
| First Order Impli ~ |

e order mplct [N et

Second Or... Implicit || &ian

v Warped-Face Gradient Correction

High Order Term Relaxation |Dp-tic-ns...|

Convergence Acceleration For Stretched Meshes

| Default |

Domain

User-Defined Solution

Reports
S Jx Equations... E Residuals... 3% Convergence...
_ 4D o4 Limits... Definitions . [ File... |/ Plot...
Methods... Controls... 2> advanced
Outline View < Task Page
Filter Text Solution Methods
s Setup Pressure-Velocity Coupling
% Methods
Controls 2l _
+ = Report Definitions Skewness Correction
+) Q Monitors 1

@ cCell Registers
2% Initialization
+ # Calculation Activities

(=) Run Calculation
+ Results
+ Parameters & Customization

Neighbor Correction
1

v Skewness-Neighbor Coupling

Spatial Discretization
Gradient

Least Squares Cell Based

Fressure

Second Order

Momentum

Second Order Upwind

Turbulent Kinetic Energy
First Order Upwind

Specific Dissipation Rate

=l il =

Transient Formulation
| First Order Impli ~ |

First Order Implicit

Second Order Implicit
Bounded Secon...rder Implicit

v Warped-Face Gradient Correction

High Order Term Relaxation |Dpticrns...|
| Default |




Numerical Flow Simulation

Fluent specifics

= Specify the time step:
= Fixed: constant value

= Adaptive: Fluent adjusts the time step to respect a target CFL number or
a target truncation error (temporal error).

Outline View < Task Page < Task Page
Filter Text Run Calculation @) Run Calculation @
& =il
m [ Check Case... | Preview Mesh Motion... [ Check Case... | Preview Mesh Motion...
" Methods ' '
Controls Time Advancement Time Advancement
+ = Report Definitions Type Method Type Method
+ & Monitors Fixed * |  User-Specified d Adaptive * || cFL-Based |
= ] . )
? Icft” Tngt'_Eteri Parameters Duration Specification Method | KSESEEEES
-2 Initialization : Error-Based
= ; 0 Activitie Number of Time Steps Time Step Size (s) Total Time
(=) Run Calculation 1000 : 0.1 - Parameters
+ Results Max Iterations/Time Step Reporting Interval Total Time (s) Courant Number
+ Parameters & Customization a Y
2 - 1 - 100 1
Profile Update Interval Mumber of Fixed Time Steps Initial Time Step Size (s)
1 - 1 v 1le-06
. Max Iterations/Time Ste Reporting Interval
Options Al f P g —
Extrapolate Variables
_ _ Profile Update Interval Time Step Size Update Interval
Report Simulation Status ~ re
1 v 1 -
Solution Processing
Settings...

Statistics

Data Sampling for Time Statistics



Numerical Flow Simulation

Fluent specifics

= Specify the maximum number of iterations allowed in each time step.
Avoid too large values (better to reduce the time step).

= Specify the number of time steps, or the physical time to be simulated.

Outline View

Filter Text

L 2 WS LT

"o Methods
Controls
+ [% Report Definitions
+ @ Monitors
+ @ Cell Registers
= Initialization
+ # Calculation Activitie

+ Results
+ Parameters & Customization

< Task Page < Task Page

Run Calculation @| Run Calculation @|

Check Case... Preview Mesh Motion... Check Case... | Preview Mesh Motion...
Time Advancement Time Advancement
Type Method Type Method
Fixed v User-Specified v Adaptive v | CFL-Based i |
Parameters Duration Specification Method — REESEEEES
. _ _ _ Error-Based
Number of Time Steps Time Step Size (s) Total Time
1000 0.1 - Parameters
Max Iterations/Time Step Reporting Interval Total Time (s) Courant Number
2 1 - 100 1
Profile Update Interval Mumber of Fixed Time Steps Initial Time Step Size (s)
1 - 1 v 1le-06
. Max Iterations/Time Ste Reporting Interval
Options Al f P g —
Extrapolate Variables
_ _ Profile Update Interval Time Step Size Update Interval
Report Simulation Status ~ re
1 v 1 -
Solution Processing [
. Settings...
Statistics :

Data Sampling for Time Statistics

31



Numerical Flow Simulation

This week’s exercise and tutoria

40

30 r
= Matlab exercise: convection-diffusion < 20|

10 1

ﬂﬂﬂﬂﬂﬂﬂﬂ

E3Ee-0]

11111111

= Fluent tutorial: vortex shedding

-3A0e-0Z

32



Numerical Flow Simulation

Appendix: pseudo-transient simulation (1/4)

* For steady problems, most natural approach is to use a steady solver (weeks 2-5).

= |n principle, one may also use an unsteady solver, simulate the physical
process, and wait until reaching a steady state. However, this naive approach
may be very slow because the flow may settle only very slowly (depending on

Example: flow past a 2D cylinder, sudden reduction
of Re from 100 (unsteady flow) to 40 (steady flow).

the initial condition, the physical parameters, etc.).

With an unsteady solver, need several vortex-

shedding periods to reach the steady regime. Here:

convective time (cylinder diameter divided by
freestream velocity) = 1 s,
physical time to reach steady state = O(103) s,
constant time step =0.1s

- 0(10%) iterations.

Cl

-0.20

ﬂ Eﬂ = o
" 12701
-
-ﬂ ﬂﬂ 28
-

-1.00

0.60 -
0.40 =
0.20

0.00

040 —

100 150 200 250 300 350
flow-time (s)



Numerical Flow Simulation

Appendix: pseudo-transient simulation (2/4)

* For steady problems, most natural approach is to use a steady solver (weeks 2-5).

= |n principle, one may also use an unsteady solver, simulate the physical
process, and wait until reaching a steady state. However, this naive approach
may be very slow because the flow may settle only very slowly (depending on
the initial condition, the physical parameters, etc.).

1.20 =

Example: flow past a 2D cylinder, sudden reduction ]
of Re from 100 (unsteady flow) to 40 (steady flow).

0.80

With a steady solver: need only 30 iterations. Cl o060 -

0.40

0.20

0.00

'GEG b ] ® |} b ] ® |} b ] ® |
14320 14325 14330 14335 14340 14345 14350
iteration



Numerical Flow Simulation

Appendix: pseudo-transient simulation (3/4)

= One exception: so-called “pseudo-transient” simulation. An unsteady solver is
used, but the time step does not correspond to a physical time step. Compare
the following:

= Unsteady solver
. . . ] - I ppA.CL‘ n+1 o " n-+1 ~ 7, | IOPACE n

meinreons (a5 )i = S e+ 6o+

= Steady solver - i .
(iterative method, (_P> B =N ael ™ + (™) + ( > appy
under-relaxation; week 3): e o

i : : ,OPAZE 1l — o -
= Clear analogy: can identify N =\ )ar

* |nterpretation: pseudo-transient calculation equivalent to under-relaxed iterative
steady calculation. The pseudo time step may be local (i.e. space-dependent).

= Useful in some cases, when stability problems in steady calculation. -



Numerical Flow Simulation

Appendix: pseudo-transient simulation (4/4)

* In Fluent: available for pressure-based coupled solver, and density-based
implicit solver. Can specify the pseudo time step, or leave the default
automatic calculation. In both case, it is actually a global (not local) value.

Filter Text

=]

- Solution
% Methods

Controls
= Report Definitions
+ Q@ Monitors
@ cell Registers
=6 Initialization
+ # Calculation Activities

(=) Run Calculation
+ Results
+ Parameters & Customization

Solution Methods

Pressure-Velocity Coupling
Scheme

Coupled

Spatial Discretization
Gradient
Least Squares Cell Based
Pressure

Second Order

Momentum

Second Order Upwind

Turbulent Kinetic Energy
First Order Upwind

Specific Dissipation Rate
First Order llmaind
Transient Formulation

First Order Impli
Non-Tterative Time Advancement

Frozen Flux Formulation

' Pseudo Transient

v Warped-Face Gradient Correction

High Order Term Relaxation |Dptic-ns...|

| Maf=nl+ |

@]

Filter Text

"o Methods
Controls
=/ Report Definitions
+) Q& Monitors
@ cell Registers
/2% Initialization

+ Results
+ Parameters & Customization

Run Calculation @|

Check Case... Update Dynamic Mesh...

Pseudo Transient Settings
Fluid Time Scale

Time Step Method Time Scale Factor
|_ Automatic o | 1 o

—

User-Specified

0 -
Parameters
Number of terations Reporting Interval
0 v |1 =
Profile Update Interval
1 -

Solution Processing
Statistics
Data Sampling for Steady Statistics

Data File Quantities...

Solution Advancement

Calculate
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