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Numerical Flow Simulation

Linear system

= After discretization (and linearization if needed), the conservation
equation(s) yield a linear system to be solved:

Ad = b A n x n matrix

®,b: n x 1 vectors
a;; 7 0 if ¢; depends on ¢;

* The size n depends on:

= the mesh: number of control volumes
= the physical dimension: 1D/2D/3D
= the equations: single vs. coupled (1 unknown vs. several unknowns)



Numerical Flow Simulation

Linear system

* The structure of the matrix A depends on:
= The mesh: structured vs. unstructured

= The equations that are solved (the order of
the derivatives)

= The discretization method: different schemes

involve a different number of neighbors (e.g. UD vs.
CD vs. QUICK, see week 2)

= The physical dimension: 1D vs. 2D vs. 3D

= Solution methods depend on this structure.




Numerical Flow Simulation

Directvs. iterative methods

* Direct methods:
= Build a series of equivalent exact systems
= Compute the solution in a finite number of operations
= Overall complexity generally O(n?)

= |[terative methods:
= Build a series of approximate solutions
= May converge after an infinite number of steps

= Complexity at each step generally O(n?)
- useful if practical number of stepsis <n



Numerical Flow Simulation

Direct methods: Gaussian elimination

( CL1,1¢1 iR CL1,2¢2 T ... T a1,n¢n = by

a2,1¢1 iR a2,2¢52 T ... T az,n¢n = by

Ap=Db < :
L an,1¢1 + an,2¢2 + ...+ an,n¢n — bn

= Naively:
= Use eq. 1 to express ¢; as function of ¢z ... ¢,
= Substitute in other egs. (2... n)
= Repeat with ¢2, ¢35 ... until ¢, Is known explicitly
= Substitute back into eq. n-1 to get ¢,,_1, eq. n-2to get ¢,,_2,... €q. 1 to get ¢,

= Systematically: find suitable linear combinations of rows
to eliminate variables successively

= Step 1: "forward elimination” to make the system triangular
= Step 2: "backward substitution” to solve the triangular system



Numerical Flow Simulation

Direct methods: Gaussian elimination

= Step 1: “forward elimination”
1. Replace each row i>1 of A by (row 1)

A¢

b

a1
a2 1

_an,l

a1 2
a2 2

Un, 2

ai,3
a2 3

an.3

l.e. define new coefficients and rhs:

ai,2
az 1
2,2 — 57 ;41,2
n,l
Ap,2 — . . d1,2

1.3
a1
2,3 — 4, ;41,3
.1
an,3 — 5.7 01,3

a2 n —

a1l

al,n- / ®1 \
a2 n P2
an,n_ \ ¢n /
;. 1
— (row 1
mﬂ( )
(L;
ag,lj) — ij ai,i
al,n | ¢1
Z?ialan / P2 \
_ an,lal,n_ \ gbn )

[ o)

o

o b=
by
- a0
\ b — 222,

AW g =pW

/




Numerical Flow Simulation

Direct methods: Gaussian elimination

AWM g =pl)

a11

= Step 1: “forward elimination”

2. Replace each row i>2 of A by (row 1)

- (1 1
4
1 0 1 %22

Ly :1
12| C’J?(q,,)z
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Numerical Flow Simulation

Direct methods: Gaussian elimination

AF=D g = plE=1)

= Step 1: “forward elimination” (k=1)
k. Replace each row i>k of A*~1 by (row i) z’:_n (row k)
(k1) ok (1)
: : _ (k)  (k—1) 1,k (k—1) (k)  (k—1) 1,k (k—1)
.e. define:  a; 7 =a; alikk_l) ay, b,”’ =0, ag{k_l) b,
| AR ¢ = p*) |

oy (o

n-1. Finally: & by

_A(n—1)¢ — pn—1)




Numerical Flow Simulation

Direct methods: Gaussian elimination

- (n—1) (n—1) a(n—l) o (n—1)7

a1 aq 2 1,3 a1 n (n—1)
R I ] I A
P2 b,

A=V = pn—1)

N I /o \ e

0 0 anm .

= Step 2: “backward substitution” to solve the triangular system

b
= Row n-: by = — (omit superscript (")
Un. n
b, _1— a,_
= Row n-1: 1 = ——" L
Un—1,n—1
1 n
= Row 1 ¢; = -~ (bi — Z ai,k%)
vt k=i+1

= Complexity O(n3) -2 not practical for large systems.



Numerical Flow Simulation

Direct methods: TDMA algorithm

= “TriDiagonal Matrix Algorithm” (also called Thomas algorithm)

» Particular case of Gaussian elimination for tridiagonal systems
(suitable for 1D problems)

= Complexity O(n)
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Numerical Flow Simulation

Direct methods
11 ax

a2 1
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0
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0

Un—1

Un.n—1 Un.n |

= Step 1: forward elimination
= Express ¢; as fct of ¢

= EXxpress ¢2 as fct of ¢s:

= EXpress ¢;:

= Obtain finally:
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®2 by
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P2 =
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Numerical Flow Simulation

Direct methods: TDMA algonthm

CL11 a2

a2 1

0

0 .. 0 Gnn—1

= Step 2: backward substitution

= Algorithm:

( 2; " 2; \
0 - = E

¢n 1 bp—1
P AN
¢n:Qn

¢n—1 — Pn—1¢n T Qn—l
¢i = Pigit1 + Qi

o1 = Pi1ga + Q1

= Compute P, @)y, then P, )5, €tc.

= Set ¢n — Q'n,

= Compute ¢,_1, then ¢,,_», etc.
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Numerical Flow Simulation

TDMA extended to 2D/3D problems

= TDMA can be applied iteratively to 2D/3D structured meshes

» First applied in 1D along one line, e.g. in the North-South direction:

rewrite apgp = awow + apPg +asps +anony + b

as appp = asps +anon + (b+ aw oy + apdrp)

= Repeat for all N-S lines,
sweeping the domain from W to E.

= Repeat for all W-E lines,
sweeping the domain from S to N.

= |terate, alternating the line/sweep
directions to improve the
propagation of boundary conditions
within the domain.

with guess values for W, E
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Ilterative methods

= Build a series of approximate solutions ¢® to the actual system A¢ =b

= Error vector: el = ¢ — cb(k) (but generally the true solution is unknown)

= Residual vector: r®) = A¢™ — b (useful: can actually be computed)

= Convergence: lim [[e®|| =0 lim [|r®™]] =0

k— o0 k— o0
= Convergence can be assessed with different criteria: 160 _ k1)
= Absolute or relative iteration error: || — ¢ F7Y| G < tol

E « Absolute residual:  ||r'®]|| < tol
7))
| | x| [l
- = Normalized residual (most common): - or —- < tol
S |diag(A)p™ || [r(ko)]]
£ < ko <10
Z

n n

1
Typically use L' norm  [|x|| =) || or ||| = - pEN
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Numerical Flow Simulation

Point-iterative methods

= At each iteration, solve each equation i for ¢;,
using guess values ¢; for the other unknows:

a1 Q12 13 - A1n
21 d22 dA23 - A2 n
_an,l n2 Ap3 - a'n,n_

P1
P2

b

b1 — ¢1
_ b.2 — P2

= Jacobi method: guess value taken from previous iteration.

HF) —

1

;g 4

J 71
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Numerical Flow Simulation

Point-iterative methods

= Gauss-Seidel method: guess value taken from previous or current iteration,
using the most recently updated one.

(bi — Z ai,j_ Z ai,j-¢§k1))

J<1 J>1

P —

1
;g 4

= Both Jacobi and GS require O(n®) iterations. GS often faster than Jacobi.
= Successive Over-Relaxation (SOR) method:

¢§k) = (1 - w)qbf;k_l) | - (bi — Zai,j§b§-k) — Zai,j¢§k1)) 0 <w<?2

;g . .
bt 1< ]>1

= w > 1:can speed up convergence
= w < 1: can stablilize the iterative procedure if needed
= Optimal value of w is case-dependent.
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Numerical Flow Simulation

Point-iterative methods

= Example: 1D steady diffusion, Dirichlet BCs, n=33 (see week 2)

10Y
Jacobi
, Gauss-Seidel

P 10 m—S0OR w=1.7
o]
£§ 4
E’E* 10
o
N
= -6
< 10
£
>

100 }

1040 |

500 1000 1500 2000 2500 3000 3500 4000 4500
lterations

-

= Still need hundreds of iterations, for a small number of unknows...
Can we do even faster?
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Numerical Flow Simulation

Multigrid methods

Two observations about iterative methods:

1. Finer mesh: more accurate solution (smaller final error), but slower
convergence (more iterations needed to decrease the residuals, and
each iteration is more expensive).

10"

Example: flow in a
lid-driven cavity

107 E

104:

u-velocity residual

10~ |

© 10 x 10 grid

1':'—4 ] ] ] |

1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1
200 400 600 800

lteration number



Numerical Flow Simulation

Multigrid methods

Two observations about iterative methods:

2. Consider this example (2D steady diffusion; see week 2). WWhat do we observe?
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Approximate solution T
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150

I 350

1300

I 250
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150

I 380
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300

280

(40 x 40 grid, iterations k=0, 5, 10, 30, 60, 150, 300, 600)
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Numerical Flow Simulation

Multigrid methods

Two observations about iterative methods:

2. Consider this example (2D steady diffusion; see week 2). What do we observe?

Is

- :00 ' ’ 0’ o‘ »
» » N + ‘.. ~
vt B ¥ SN e W
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Multigrid methods

Two observations about iterative methods:

2. These methods only have a local effect: they quickly reduce the
short-wavelength components of the error (wavelengths comparable
to the mesh size), but they act slowly on long wavelengths.

|terat|ons |terat|ons

/\’\/\

Schematically:

Numerical Flow Simulation

Residual | 7 = "800 I5 I02
A1) B S T: :45) r30)
4 ' 'oT 0
0" .‘.;; ";). 10 | 02
b e b ‘
«’ g 4 ' 0.4
. - : . . . -5 ’ ‘
T Tk o
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Numerical Flow Simulation

Multigrid methods

= |f we change to a coarser grid, the long-wavelength error becomes a
‘short” wavelength (comparable to the mesh size). “Smooth becomes

rough’.
Ve Ve

I -0.02

1-0.04

1 .0.06 >

-0.08

-0.1

= Now, on this coarser grid, the short-wavelength error can be reduced
very quickly.
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Numerical Flow Simulation

Multigrid methods

= Multigrid idea: combine iterations on meshes of different sizes.
Schematically:

>
= [nitial solution on original fine mesh A/\/\ A S
- quickly reduce short-wavelength error. = "=
BA D INY

3 0o T . 8
R R

-
-
|

reduce the original long-wavelength error Aave
(which is now a short wavelength). @

= Propagate on coarse mesh - quickly ter.

= Come back to original fine mesh = improve final accuracy.
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Numerical Flow Simulation

Multigrid methods

o(f)

| | |
System to be solved (on fine mesh): A(f)qb = b | \/ |

= |nitial fine-mesh iterations:
= Afew steps only (e.g. GS) > approximate solution ¢/
« Compute the residual from AN @) =p — ¢(F)
= Note that the error ef) = ¢ — ¢/) satisfies AV elf) = /)

= Restriction + coarse-mesh iterations:
= Transfer the residual to the coarser mesh (interpolation): r(¢)
» Solve for the error, which satisfies A(9el®) = y(c)

= Prolongation:
« Transfer back the error to the finer mesh (interpolation): e'/)

= Update o) = oY) +elf): perform a few fine-mesh iterations AP ¢ =b
= Repeat the whole process until convergence.
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Multigrid methods

= Examples of restriction/prolongation operators on uniform 1D meshes:
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Numerical Flow Simulation

Multigrid methods

= Can use more than 2 meshes:
= At each level J, solve for the error of the equation solved at level i-1.

= Use only a few iterations, except on the coarsest mesh (full solution).

= Can use different types of cycles:

= Coarse-grid iterations are comparatively very cheap.

(finest)
Level 1

(coarsest)
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Numerical Flow Simulation

Multigrid methods

= Example: 1D steady diffusion, Dirichlet BCs, n=33 (see week 2)

10" |

» 107 Jacobi
© Gauss-Seidel |-
3 ——SOR w=1.7
‘w -4 —— Taln
E 10 Multigrid
=]
8
= -6
< 10
=
>

10°®

,ID—’H:] I I I I I

500 1000 1500 2000 2500
lterations  4o-10

0 100 200 300

= Multigrid methods require much less fine-mesh iterations than single-
grid iterative methods. Widely used in CFD, including in Fluent.
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Numerical Flow Simulation

Multigrid methods

= |n Fluent:

o S) J/x Equations...
iy P . E A
{Lr AR 4, Limits...

Methods... Controls...

n A:Fluid Flow (Fluent) Parallel Fluent@IfmiB117657.intranet.epfl.ch [2d, dp, pbns, lam] [CFD Solver - Lev

® @& 2 Y N T E

User-Defined

Solution I
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E Residuals...  Ax Convergence...

Definitions . [=] File... |/ Flot...

Outline View < Task Page <

Filter Text Solution Controls @|

Pseudo Transient Explicit Relaxation Factors

v Method Pressure
0.5
+/ % Report Definitions Momentum
+ Q@ Monitors 0.5
+ @ cell Registers Density
2% Initialization
+ # Calculation Activities 1
(=) Run Calculation Body Forces
+ Results 1

+ Parameters & Customization

|Defau|t_|

[Equatinns...] [Limits...]

|Advanced..._|

n Advanced Solution Controls
Multigrid Multi-Stage Expert

Cycle Type Termination  Restriction AMG Method Stabilization Method
Flow F-Cycle ~ 0.1 None v

Algebraic Multigrid Controls
Scalar Parameters

Flexible Cycle Parameters
Fixed Cycle Parameters Coarsening Parameters
- Sweeps 2
Pre-Sweeps 0 « Max Coarse Levels 40 =
Max Fine Relaxations 30
Post-Sweeps 3 « Coarsen by 4 - _
Max Coarse Relaxations | 50
Max Cycles 30 - ¥ Conservative Coarsening
Options
v Aggressive Coarsening -
Verbosity | 0 -
Laplace Coarsening
Smoother Type
Gauss-Seidel
® Iu

Coupled Parameters
Fixed Cycle Parameters Coarsening Parameters

Pre-Sweeps 0 « Max Coarse Levels 40 :
Post-Sweeps 3 » Coarsen by 4 -
Max Cycles 10 - ¥ Conservative Coarsening

v Aggressive Coarsening
Laplace Coarsening

Smoother Type

Gauss-Seidel
® LU

| [I'Efaultl

m [Eam:el | [Help |
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