=Pr-L

Solving the linear system

Numerical Flow Simulation

cole Edouard Boujo
I ue
cderale Fall 2022

eeeeeeee

Numerical Flow Simulation

Linear system

= After discretization (and linearization if needed), the conservation
equation(s) yield a linear system to be solved:

Ad = b A n x n matrix

®,b: n x 1 vectors
a;; 7 0 if ¢; depends on ¢;

* The size n depends on:

= the mesh: number of control volumes
= the physical dimension: 1D/2D/3D
= the equations: single vs. coupled (1 unknown vs. several unknowns)

Numerical Flow Simulation

Linear system

* The structure of the matrix A depends on:
= The mesh: structured vs. unstructured

= The equations that are solved (the order of
the derivatives)

= The discretization method: different schemes

involve a different number of neighbors (e.g. UD vs.
CD vs. QUICK, see week 2)

= The physical dimension: 1D vs. 2D vs. 3D

= Solution methods depend on this structure.

Numerical Flow Simulation

Directvs. iterative methods

* Direct methods:
= Build a series of equivalent exact systems
= Compute the solution in a finite number of operations
= Overall complexity generally O(n?)

= |[terative methods:
= Build a series of approximate solutions
= May converge after an infinite number of steps

= Complexity at each step generally O(n?)
- useful if practical number of stepsis <n

Numerical Flow Simulation

Direct methods: Gaussian elimination

(CL1,1¢1 iR CL1,2¢2 T ... T a1,n¢n = by

a2,1¢1 iR a2,2¢52 T ... T az,n¢n = by

Ap=Db < :
L an,1¢1 + an,2¢2 + ...+ an,n¢n — bn

= Naively:
= Use eq. 1 to express ¢; as function of ¢z ... ¢,
= Substitute in other egs. (2... n)
= Repeat with ¢2, ¢35 ... until ¢, Is known explicitly
= Substitute back into eq. n-1 to get ¢,,_1, eq. n-2to get ¢,,_2,... €q. 1 to get ¢,

= Systematically: find suitable linear combinations of rows
to eliminate variables successively

= Step 1: "forward elimination” to make the system triangular
= Step 2: "backward substitution” to solve the triangular system

Numerical Flow Simulation

Direct methods: Gaussian elimination

= Step 1: “forward elimination”
1. Replace each row i>1 of A by (row 1)

A¢

b

a1
a2 1

_an,l

a1 2
a2 2

Un, 2

ai,3
a2 3

an.3

l.e. define new coefficients and rhs:

ai,2
az 1
2,2 — 57 ;41,2
n,l
Ap,2 — . . d1,2

1.3
a1
2,3 — 4, ;41,3
.1
an,3 — 5.7 01,3

a2 n —

a1l

al,n- / ®1 \
a2 n P2
an,n_ \ ¢n /
;. 1
— (row 1
mﬂ()
(L;
ag,lj) — ij ai,i
al,n | ¢1
Z?ialan / P2 \
_ an,lal,n_ \ gbn)

[o)

o

o b=
by
- a0
\ b — 222,

AW g =pW

/

Numerical Flow Simulation

Direct methods: Gaussian elimination

AWM g =pl)

a11

= Step 1: “forward elimination”

2. Replace each row i>2 of A by (row 1)

- (1 1
4
1 0 1 %22

Ly :1
12| C’J?(q,,)z

l.e. define new coefficients and rhs:

- (2 2
af’] af?)
o~ aéQ%

I
I
-
-
I
= |

(2)

a3

2
a3

(1)

al,n

(1)

a2,n

(1)

Un,n

2 _ (1)

1,]

(

 n

61\

P2

[57

ey

b

o

(2) 7

al,n

(2)

a’2,n

U9 2

i

row 2)
(1)

Qi o2 (1)

t,J

[1)

1) 42,5
Ug 2

(57

P2

o

(2
Un.n

Y —

b

¥

AP g =p®

pt2) — ptb)

1
afg,z) p(1)

(1) 72
U9 2

Numerical Flow Simulation

Direct methods: Gaussian elimination

AF=D g = plE=1)

= Step 1: “forward elimination” (k=1)
k. Replace each row i>k of A*~1 by (row i) z’:_n (row k)
(k1) ok (1)
: : _ (k) (k—1) 1,k (k—1) (k) (k—1) 1,k (k—1)
.e. define: a; 7 =a; alikk_l) ay, b,”’ =0, ag{k_l) b,
| AR ¢ = p*) |

oy (o

n-1. Finally: & by

_A(n—1)¢ — pn—1)

Numerical Flow Simulation

Direct methods: Gaussian elimination

- (n—1) (n—1) a(n—l) o (n—1)7

a1 aq 2 1,3 a1 n (n—1)
R I] I A
P2 b,

A=V = pn—1)

N I /o \ e

0 0 anm .

= Step 2: “backward substitution” to solve the triangular system

b
= Row n-: by = — (omit superscript (")
Un. n
b, _1— a,_
= Row n-1: 1 = ——" L
Un—1,n—1
1 n
= Row 1 ¢; = -~ (bi — Z ai,k%)
vt k=i+1

= Complexity O(n3) -2 not practical for large systems.

Numerical Flow Simulation

Direct methods: TDMA algorithm

= “TriDiagonal Matrix Algorithm” (also called Thomas algorithm)

» Particular case of Gaussian elimination for tridiagonal systems
(suitable for 1D problems)

= Complexity O(n)

10

Numerical Flow Simulation

Direct methods
11 ax

a2 1

0

TD

,2

0

0

MAaIg_orithm

0

Un—1

Un.n—1 Un.n |

= Step 1: forward elimination
= Express ¢; as fct of ¢

= EXxpress ¢2 as fct of ¢s:

= EXpress ¢;:

= Obtain finally:

p1 =

b1 — &1,2%

[0\ [)

®2 by

¢n—1 bn—l

\ ¢/ O\ bu)

= P1¢a + Q1

a1

az 902 = by — a2 11 — a2.393

P2 =

by —a21Q1 — a2 3¢3

— P
az.2 + ag. 1 203 + @2

¢i = Piip1 + Qs

¢n:Qn

bn__anﬂkJLQn—l
anﬂz%"anﬂr—LF%—l

ai 2
P =—-—=

a1

b1

ai,1

Q1 =

—a2 3
P, = ’
asz o+ as 1P

by — &2,1Q1

Q2 =

az o+ as1 P

— g 41

i+ Gii—1P—1
bi — a;;i—1Qi—1

a;; + a; i—185-1

11

Numerical Flow Simulation

Direct methods: TDMA algonthm

CL11 a2

a2 1

0

0 .. 0 Gnn—1

= Step 2: backward substitution

= Algorithm:

(2; " 2; \
0 - = E

¢n 1 bp—1
P AN
¢n:Qn

¢n—1 — Pn—1¢n T Qn—l
¢i = Pigit1 + Qi

o1 = Pi1ga + Q1

= Compute P, @)y, then P,)5, €tc.

= Set ¢n — Q'n,

= Compute ¢,_1, then ¢,,_», etc.

12

Numerical Flow Simulation

TDMA extended to 2D/3D problems

= TDMA can be applied iteratively to 2D/3D structured meshes

» First applied in 1D along one line, e.g. in the North-South direction:

rewrite apgp = awow + apPg +asps +anony + b

as appp = asps +anon + (b+ aw oy + apdrp)

= Repeat for all N-S lines,
sweeping the domain from W to E.

= Repeat for all W-E lines,
sweeping the domain from S to N.

= |terate, alternating the line/sweep
directions to improve the
propagation of boundary conditions
within the domain.

with guess values for W, E

13

Ilterative methods

= Build a series of approximate solutions ¢® to the actual system A¢ =b

= Error vector: el = ¢ — cb(k) (but generally the true solution is unknown)

= Residual vector: r®) = A¢™ — b (useful: can actually be computed)

= Convergence: lim [[e®|| =0 lim [|r®™]] =0

k— o0 k— o0
= Convergence can be assessed with different criteria: 160 _ k1)
= Absolute or relative iteration error: || — ¢ F7Y| G < tol

E « Absolute residual: ||r'®]|| < tol
7))
| | x| [l
- = Normalized residual (most common): - or —- < tol
S |diag(A)p™ || [r(ko)]]
£ < ko <10
Z

n n

1
Typically use L' norm [|x|| =) || or ||| = - pEN

1=1 1=1 14

Numerical Flow Simulation

Point-iterative methods

= At each iteration, solve each equation i for ¢;,
using guess values ¢; for the other unknows:

a1 Q12 13 - A1n
21 d22 dA23 - A2 n
an,l n2 Ap3 - a'n,n

P1
P2

b

b1 — ¢1
_ b.2 — P2

= Jacobi method: guess value taken from previous iteration.

HF) —

1

;g 4

J 71

15

Numerical Flow Simulation

Point-iterative methods

= Gauss-Seidel method: guess value taken from previous or current iteration,
using the most recently updated one.

(bi — Z ai,j_ Z ai,j-¢§k1))

J<1 J>1

P —

1
;g 4

= Both Jacobi and GS require O(n®) iterations. GS often faster than Jacobi.
= Successive Over-Relaxation (SOR) method:

¢§k) = (1 - w)qbf;k_l) | - (bi — Zai,j§b§-k) — Zai,j¢§k1)) 0 <w<?2

;g . .
bt 1<]>1

= w > 1:can speed up convergence
= w < 1: can stablilize the iterative procedure if needed
= Optimal value of w is case-dependent.

16

Numerical Flow Simulation

Point-iterative methods

= Example: 1D steady diffusion, Dirichlet BCs, n=33 (see week 2)

10Y
Jacobi
, Gauss-Seidel

P 10 m—S0OR w=1.7
o]
£§ 4
E’E* 10
o
N
= -6
< 10
£
>

100 }

1040 |

500 1000 1500 2000 2500 3000 3500 4000 4500
lterations

-

= Still need hundreds of iterations, for a small number of unknows...
Can we do even faster?

17

Numerical Flow Simulation

Multigrid methods

Two observations about iterative methods:

1. Finer mesh: more accurate solution (smaller final error), but slower
convergence (more iterations needed to decrease the residuals, and
each iteration is more expensive).

10"

Example: flow in a
lid-driven cavity

107 E

104:

u-velocity residual

10~ |

© 10 x 10 grid

1':'—4]]] |

1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1
200 400 600 800

lteration number

Numerical Flow Simulation

Multigrid methods

Two observations about iterative methods:

2. Consider this example (2D steady diffusion; see week 2). WWhat do we observe?

I 250

1200

1150

1100

50

Approximate solution T

I 350

1300

1250

200

150

I 350

1300

I 250

I 350

1300

1250
200
150

I 380
360

1340

1320

300

280

(40 x 40 grid, iterations k=0, 5, 10, 30, 60, 150, 300, 600)

350

1300

1250

200

150

380

1360

1340

320

300

T[K]

T[K]

19

Numerical Flow Simulation

Multigrid methods

Two observations about iterative methods:

2. Consider this example (2D steady diffusion; see week 2). What do we observe?

Is

- :00 ' ’ 0’ o‘ »
» » N + ‘.. ~
vt B ¥ SN e W

Residual vector r¥=AT®-b

IO.2

10

| 0.2

0.4
I -0.6
I -0.005

1-0.01

1-0.015

-0.02

-0.025

12
%1073

-0.03

(40 x 40 grid, iterations k=1, 5, 10, 30, 60, 150, 300, 600)

|I 1
O
)
N

O
o
=

O
o
>

o
()
oo
residual vector

=
—

A
1
&)

S
residual vector

1 II
RN
&)

%107

20

Multigrid methods

Two observations about iterative methods:

2. These methods only have a local effect: they quickly reduce the
short-wavelength components of the error (wavelengths comparable
to the mesh size), but they act slowly on long wavelengths.

|terat|ons |terat|ons

/\’\/\

Schematically:

Numerical Flow Simulation

Residual | 7 = "800 I5 I02
A1) B S T: :45) r30)
4 ' 'oT 0
0" .‘.;; ";). 10 | 02
b e b ‘
«’ g 4 ' 0.4
. - : . . . -5 ’ ‘
T Tk o

(40 x 40 grid)

S
(-]
N

O
o
iN

residual vector

O
o
(@)

O
o
(@)

=
—

N
—\

Numerical Flow Simulation

Multigrid methods

= |f we change to a coarser grid, the long-wavelength error becomes a
‘short” wavelength (comparable to the mesh size). “Smooth becomes

rough’.
Ve Ve

I -0.02

1-0.04

1 .0.06 >

-0.08

-0.1

= Now, on this coarser grid, the short-wavelength error can be reduced
very quickly.

22

Numerical Flow Simulation

Multigrid methods

= Multigrid idea: combine iterations on meshes of different sizes.
Schematically:

>
= [nitial solution on original fine mesh A/\/\ A S
- quickly reduce short-wavelength error. = "=
BA D INY

3 0o T . 8
R R

-
-
|

reduce the original long-wavelength error Aave
(which is now a short wavelength). @

= Propagate on coarse mesh - quickly ter.

= Come back to original fine mesh = improve final accuracy.

23

Numerical Flow Simulation

Multigrid methods

o(f)

| | |
System to be solved (on fine mesh): A(f)qb = b | \/ |

= |nitial fine-mesh iterations:
= Afew steps only (e.g. GS) > approximate solution ¢/
« Compute the residual from AN @) =p — ¢(F)
= Note that the error ef) = ¢ — ¢/) satisfies AV elf) = /)

= Restriction + coarse-mesh iterations:
= Transfer the residual to the coarser mesh (interpolation): r(¢)
» Solve for the error, which satisfies A(9el®) = y(c)

= Prolongation:
« Transfer back the error to the finer mesh (interpolation): e'/)

= Update o) = oY) +elf): perform a few fine-mesh iterations AP ¢ =b
= Repeat the whole process until convergence.

24

Multigrid methods

= Examples of restriction/prolongation operators on uniform 1D meshes:

<«---0
O
\ ~
o/ o/
o —> ¢ e «<——-— ¢
(0p) O\ O\
(D) /
-
(7))
) @ ——-—-> 0 @ «(——--—- 0
-
nVu P
I o O -
O \.. ~~
.nnu O —HIF O O OO A
(qV)
> O ~HIND O N = NOD
@
Q_u O —HIFO ——-HNO O O
N—_—_
— O O
|)
= ~
O OO O —
(7))
D O OO HTFEO
B -~ ~
amuquJqu_QOqujqujjl_Zl
> O O HIFHITFO O O O O O N/ —HNOD
O
3 O OO O OO OHNAHND O O
o
% O HTFHIFO O O HN—H AN © O © O
W01_233311_23333333
~_____ —
T

uoneNWIS MO|{ [BolIBWNN

Numerical Flow Simulation

Multigrid methods

= Can use more than 2 meshes:
= At each level J, solve for the error of the equation solved at level i-1.

= Use only a few iterations, except on the coarsest mesh (full solution).

= Can use different types of cycles:

= Coarse-grid iterations are comparatively very cheap.

(finest)
Level 1

(coarsest)

26

Numerical Flow Simulation

Multigrid methods

= Example: 1D steady diffusion, Dirichlet BCs, n=33 (see week 2)

10" |

» 107 Jacobi
© Gauss-Seidel |-
3 ——SOR w=1.7
‘w -4 —— Taln
E 10 Multigrid
=]
8
= -6
< 10
=
>

10°®

,ID—’H:] I I I I I

500 1000 1500 2000 2500
lterations 4o-10

0 100 200 300

= Multigrid methods require much less fine-mesh iterations than single-
grid iterative methods. Widely used in CFD, including in Fluent.

27

Numerical Flow Simulation

Multigrid methods

= |n Fluent:

o S) J/x Equations...
iy P . E A
{Lr AR 4, Limits...

Methods... Controls...

n A:Fluid Flow (Fluent) Parallel Fluent@IfmiB117657.intranet.epfl.ch [2d, dp, pbns, lam] [CFD Solver - Lev

® @& 2 Y N T E

User-Defined

Solution I
Reports

E Residuals... Ax Convergence...

Definitions . [=] File... |/ Flot...

Outline View < Task Page <

Filter Text Solution Controls @|

Pseudo Transient Explicit Relaxation Factors

v Method Pressure
0.5
+/ % Report Definitions Momentum
+ Q@ Monitors 0.5
+ @ cell Registers Density
2% Initialization
+ # Calculation Activities 1
(=) Run Calculation Body Forces
+ Results 1

+ Parameters & Customization

|Defau|t_|

[Equatinns...] [Limits...]

|Advanced..._|

n Advanced Solution Controls
Multigrid Multi-Stage Expert

Cycle Type Termination Restriction AMG Method Stabilization Method
Flow F-Cycle ~ 0.1 None v

Algebraic Multigrid Controls
Scalar Parameters

Flexible Cycle Parameters
Fixed Cycle Parameters Coarsening Parameters
- Sweeps 2
Pre-Sweeps 0 « Max Coarse Levels 40 =
Max Fine Relaxations 30
Post-Sweeps 3 « Coarsen by 4 - _
Max Coarse Relaxations | 50
Max Cycles 30 - ¥ Conservative Coarsening
Options
v Aggressive Coarsening -
Verbosity | 0 -
Laplace Coarsening
Smoother Type
Gauss-Seidel
® Iu

Coupled Parameters
Fixed Cycle Parameters Coarsening Parameters

Pre-Sweeps 0 « Max Coarse Levels 40 :
Post-Sweeps 3 » Coarsen by 4 -
Max Cycles 10 - ¥ Conservative Coarsening

v Aggressive Coarsening
Laplace Coarsening

Smoother Type

Gauss-Seidel
® LU

| [I'Efaultl

m [Eam:el | [Help |

Ak (4K 4P

	Solving the linear system
	Linear system
	Linear system
	Direct vs. iterative methods
	Direct methods: Gaussian elimination
	Direct methods: Gaussian elimination
	Direct methods: Gaussian elimination
	Direct methods: Gaussian elimination
	Direct methods: Gaussian elimination
	Direct methods: TDMA algorithm
	Direct methods: TDMA algorithm
	Direct methods: TDMA algorithm
	TDMA extended to 2D/3D problems
	Iterative methods
	Point-iterative methods
	Point-iterative methods
	Point-iterative methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods
	Multigrid methods

