
Solving the linear system

Edouard Boujo
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Numerical Flow Simulation
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 After discretization (and linearization if needed), the conservation 
equation(s) yield a linear system to be solved:

 The size n depends on:
 the mesh: number of control volumes
 the physical dimension: 1D/2D/3D
 the equations: single vs. coupled (1 unknown vs. several unknowns)

Linear system

: n x n matrix
,   : n x 1 vectors

if      depends on 
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 The structure of the matrix      depends on:

 The mesh: structured vs. unstructured

 The equations that are solved (the order of              
the derivatives)

 The discretization method: different schemes 
involve a different number of neighbors (e.g. UD vs.                   
CD vs. QUICK, see week 2)

 The physical dimension: 1D vs. 2D vs. 3D

 Solution methods depend on this structure.

Linear system
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 Direct methods: 
 Build a series of equivalent exact systems 
 Compute the solution in a finite number of operations 
 Overall complexity generally          

 Iterative methods:
 Build a series of approximate solutions
 May converge after an infinite number of steps
 Complexity at each step generally                                            
 useful if practical number of steps is 

Direct vs. iterative methods
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Direct methods: Gaussian elimination

 Naively: 
 Use eq. 1 to express      as function of
 Substitute in other eqs. (2… n)
 Repeat with                until       is known explicitly
 Substitute back into eq. n-1 to get         , eq. n-2 to get         ,… eq. 1 to get   

 Systematically: find suitable linear combinations of rows                                       
to eliminate variables successively
 Step 1: “forward elimination” to make the system triangular
 Step 2: “backward substitution” to solve the triangular system
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 Step 1: “forward elimination” 
1. Replace each row i>1 of      by  

i.e. define new coefficients and rhs: 

Direct methods: Gaussian elimination
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Direct methods: Gaussian elimination

 Step 1: “forward elimination” 
2. Replace each row i>2 of         by       

i.e. define new coefficients and rhs: 
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Direct methods: Gaussian elimination

 Step 1: “forward elimination”
k. Replace each row i>k of             by       

i.e. define: 

…
…
n-1. Finally:
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Direct methods: Gaussian elimination

 Step 2: “backward substitution” to solve the triangular system

 Row n:

 Row n-1:

 Row i:

(omit superscript (n-1))

 Complexity              not practical for large systems.
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Direct methods: TDMA algorithm

 “TriDiagonal Matrix Algorithm” (also called Thomas algorithm)
 Particular case of Gaussian elimination for tridiagonal systems 

(suitable for 1D problems)

 Complexity       
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Direct methods: TDMA algorithm

 Step 1: forward elimination
 Express      as fct of     :

 Express      as fct of     : 

 Express     :

 Obtain finally: 
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Direct methods: TDMA algorithm

 Step 2: backward substitution

 Algorithm:
 Compute            , then            , etc.
 Set
 Compute         , then         , etc.
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 TDMA can be applied iteratively to 2D/3D structured meshes
 First applied in 1D along one line, e.g. in the North-South direction:

 Repeat for all N-S lines,                                                                                                                       
sweeping the domain from W to E.
 Repeat for all W-E lines,                                                                                        

sweeping the domain from S to N.
 Iterate, alternating the line/sweep                                                 

directions to improve the                                                                        
propagation of boundary conditions                                                                  
within the domain.

TDMA extended to 2D/3D problems

rewrite 

as with guess values for W, E 

13
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 Build a series of approximate solutions        to the actual system

Iterative methods

Typically use L1 norm                                or

 Error vector:                                        (but generally the true solution is unknown)

 Residual vector:                                  (useful: can actually be computed)

 Convergence: 
 Convergence can be assessed with different criteria:

 Absolute or relative iteration error:                                    or

 Absolute residual:

 Normalized residual (most common):                                or
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 At each iteration, solve each equation i for    ,                                     
using guess values for the other unknows:

Point-iterative methods

 Jacobi method: guess value taken from previous iteration.
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 Gauss-Seidel method: guess value taken from previous or current iteration, 
using the most recently updated one. 

Point-iterative methods

 Both Jacobi and GS require           iterations. GS often faster than Jacobi.
 Successive Over-Relaxation (SOR) method:

 : can speed up convergence 
 : can stabilize the iterative procedure if needed
 Optimal value of      is case-dependent.
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Point-iterative methods

 Example: 1D steady diffusion, Dirichlet BCs, n=33 (see week 2)

 Still need hundreds of iterations, for a small number of unknows… 
Can we do even faster?
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Two observations about iterative methods:
1. Finer mesh: more accurate solution (smaller final error), but slower 

convergence (more iterations needed to decrease the residuals, and 
each iteration is more expensive).

Multigrid methods

Example: flow in a 
lid-driven cavity

10 x 10 grid

20 x 20

40 x 40

Iteration number

u-
ve
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Multigrid methods

Two observations about iterative methods:
2. Consider this example (2D steady diffusion; see week 2). What do we observe?   

Approximate solution T(k) (40 x 40 grid, iterations k=0, 5, 10, 30, 60, 150, 300, 600)
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Two observations about iterative methods:
2. Consider this example (2D steady diffusion; see week 2). What do we observe?   

Multigrid methods

Residual vector r(k)=AT(k)-b (40 x 40 grid, iterations k=1, 5, 10, 30, 60, 150, 300, 600)
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Two observations about iterative methods:
2. These methods only have a local effect: they quickly reduce the                       

short-wavelength components of the error (wavelengths comparable 
to the mesh size), but they act slowly on long wavelengths. 

Multigrid methods

Schematically:

Residual 
r(1) r(5) r(30)

(40 x 40 grid)

iterations iterations
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 If we change to a coarser grid, the long-wavelength error becomes a 
“short” wavelength (comparable to the mesh size). “Smooth becomes 
rough”.

 Now, on this coarser grid, the short-wavelength error can be reduced 
very quickly. 

Multigrid methods
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 Multigrid idea: combine iterations on meshes of different sizes. 
Schematically:

 Initial solution on original fine mesh 
 quickly reduce short-wavelength error.

 Propagate on coarse mesh  quickly                                                                          
reduce the original long-wavelength error                                                                    
(which is now a short wavelength).

 Come back to original fine mesh  improve final accuracy.

Multigrid methods

iter.

iter.
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 Initial fine-mesh iterations:
 A few steps only (e.g. GS)  approximate solution
 Compute the residual from 
 Note that the error                            satisfies 

Multigrid methods

 Restriction + coarse-mesh iterations: 
 Transfer the residual to the coarser mesh (interpolation):
 Solve for the error, which satisfies 

 Prolongation:
 Transfer back the error to the finer mesh (interpolation):

 Update                            ; perform a few fine-mesh iterations
 Repeat the whole process until convergence.

System to be solved (on fine mesh):
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 Examples of restriction/prolongation operators on uniform 1D meshes:

Multigrid methods

3-CV and 5-CV meshes5-CV and 9-CV meshes
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 Can use more than 2 meshes:
 At each level i, solve for the error of the equation solved at level i-1.  
 Use only a few iterations, except on the coarsest mesh (full solution).

 Can use different types of cycles:

Multigrid methods

(finest)

(coarsest)

V-cycle W-cycle F-cycle

 Coarse-grid iterations are comparatively very cheap.
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 Example: 1D steady diffusion, Dirichlet BCs, n=33 (see week 2)

 Multigrid methods require much less fine-mesh iterations than single-
grid iterative methods. Widely used in CFD, including in Fluent.

Multigrid methods
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 In Fluent:

Multigrid methods
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