
Numerical Flow Simulation

Edouard Boujo

Fall 2022

Parallel computation

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

2

Numerical simulation workflow

Geometry
design

Mesh
generation

Problem
setup

Flow
solution

Visualization

Quantitative analysis

Convergence study

Pre-processing Computation Post-processing

(Geometric modeling) (Physical modeling, numerical methods)

Identify key question and
simulation outcome

Answer key question
Schematic outline of this lecture:

1. Why parallel CFD?
2. Implementation in Fluent
3. Mesh partitioning
4. Parallel performance

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

3

 Basic idea: distribute the calculations among several processors that work
simultaneously  more memory available & shorter calculation time.

 Perform larger simulations
 Larger meshes
 More complex physics

 Perform simulations faster
 Many designs (virtual prototyping).
 Shorter turn-around time (e.g. from days to hours, for several-million cell meshes)

 Take advantage of state-of-the-art high-performance computers
 Fast computation
 Large memory

Why parallel CFD?

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

4

 When should parallel computation NOT be used?

 When the problem is too small: too little work per processor and too much
communication between processors  inefficient (or even slower!).

Why parallel CFD?

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

5

 When should parallel computation NOT be used?

 When the problem is too small: too little work per processor and too much
communication between processors  inefficient (or even slower!).

Why parallel CFD?

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

6

 When should parallel computation NOT be used?

 When the problem is too small: too little work per processor and too much
communication between processors  inefficient (or even slower!).

 When the computer resources are not appropriate (e.g. insufficient
communication bandwidth)  must check parallel performance (see later).

 When the user doesn’t know what they are doing...

Why parallel CFD?

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

7

 Assumption:
 Users of commercial software are interested in shortening turn-around time, not in

parallel computing itself.
 May want to use software on different serial/parallel computer systems.

Implementation in Fluent

Basically, the user only
has to choose the
number of processors.

 Implementation:
 As “transparent” as possible: detailed knowledge of parallel computing not required.
 The code should be highly portable.

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

8

 Memory model: supports both shared-memory and distributed-memory parallel
computers (see later).

 Based on domain decomposition: computational mesh partitioned into sub-meshes,
each partition assigned to a different compute node (see later).

 Communication between processors: message passing
 Scalable
 Complete control over communication for better performance optimization
 MPI standard has emerged with wide support

 Client/server model: separation of front-end tasks (GUI, visualization) and solver.

Implementation in Fluent

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

9

 Basic concept: computational mesh automatically partitioned into several
sub-meshes (partitions), each partition assigned to a different processor/node
that solves the equations only in its own sub-mesh.

Mesh partitioning

Compute Node 0 Compute Node 1

Original
mesh

Partitioned
mesh

Distributed sub-meshes (with “ghost cells”
to exchange information about neighboring cells)

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

10

 Wide range of algorithms:
 Coordinate bisection,
 Recursive spectral bisection,
 Multi-level graph partitioning…

 Goals for optimal algorithm:
 Partitions with similar number of cells (similar load on each processor)
 Simply-connected partitions (no holes)
 Minimize data transfer (interface boundaries with short length and small number of faces)

Mesh partitioning

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

11

 Fluent can use the following algorithms:
 Cartesian axes; Cartesian x,y,z; Cartesian strip
 Principal axes (default); principal x,y,z; principal strip
 Polar axes; polar r,𝜃𝜃 (only in 2D)
 Spherical axes; spherical 𝜌𝜌,𝜃𝜃,𝜑𝜑 (only in 3D)
 METIS (multi-level graph partitioning)

Mesh partitioning

Cartesian axes Cartesian x Principal axes

Polar axesPrincipal strip

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

12

Mesh partitioning

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

13

 Fluent can run parallel calculations on 2 types
of architecture:

1. Shared memory: one machine with several
processors (from simple PC/laptop to high-
performance workstations)

2. Distributed memory: cluster of several
machines (e.g. EPFL clusters)

Architecture

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

14

 Several high-performance clusters are available at EPFL.
 Some of them may be available for student projects.

EPFL SCITAS clusters

https://www.epfl.ch/research/facilities/scitas/

SCITAS Clusters

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

15

 Two important characteristics of parallel communication:
 Bandwidth: transmission speed = max. amount of data sent in given time [MB/s]
 Latency: time to send data = delay [ms] or [𝜇𝜇s]

 Fluent can measure bandwidth and latency between processors.

Parallel performance

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

16

 Both bandwidth and latency influence parallel performance.
 Latency tends to have a greater effect (over a range of common problem

sizes and available networks)
 Scalability of Fluent largely determined by scalability of its linear equation solver.

Multigrid limited by latency because requires several (small) message exchanges.
 A low-latency interconnect can greatly improve performance scalability of Fluent.

 Performance also depends on:
 Problem size
 Physical modeling
 Numerical method

Parallel performance

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

17

 Optimal use
 For a given problem (size, physical modeling, numerical method):

 Performance scales well for small number of processors
 Performance will saturate (or decrease) for large number of processors

 Optimal value of number of processors:
 Increases with problem size
 Increases (generally) with problem complexity

 Choose wisely:
 Parallel computer system (bandwidth & latency)
 Number of processors

Parallel performance

0

1000

2000

3000

4000

5000

0 8 16 24 32 40 48 56 64

Number of processors

Pe
rfo

rm
an

ce
 ra

tin
g

3D turbulent flow in a bend, 32’000 hex cells

Compaq SC (Alpha ev67
667MHz, Quadrics)

Swiss-T1 (Alpha ev6,
500MHz,Tnet)

Swiss-T1 (Alpha ev6,
500MHz, Ethernet)

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

18

 Dynamic load balancing
 Automatically redistributes the computational load more evenly among processors

(cell migration from one processor’s memory to another).

 Load imbalance can result from:
 Change in performance of some processors due to other processes
 Non-uniform network performance
 Changes in mesh distribution from refinement/coarsening

 Associated with performance penalty (disabled by default in Fluent, must be explicitly
enabled if desired).

Parallel performance

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

19

 Dynamic load balancing: example (transonic flow over a NACA 0012 profile)

Parallel performance

Refined mesh
 imbalance

21’700 cells

15’400 cells

Refined mesh
after load balancing

18’500 cells

18’500 cells

12’300 cells

12’300 cells

Initial mesh
(here on 2 partitions)

El
ap

se
d

tim
e

(s
)

Number of processors

Initial
After refinement
After load balancing

Initial
After refinement
After load balancing

Chart1

		1		1		1

		2		2		2

		4		4		4

		6		6		6

		8		8		8

Before Refinement

After Refinement

After Load Balancing

Number of processors

Elapsed time (s)

1.712

2.89

2.89

0.873

1.665

1.463

0.511

1.058

0.783

0.413

1.018

0.59

0.322

0.772

0.555

dataset

		1		1.712		2.89		2.89

		2		0.873		1.665		1.463

		4		0.511		1.058		0.783

		6		0.413		1.018		0.59

		8		0.322		0.772		0.555

N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

20

 Parallel computation allows “large” problems to be solved:
 Very fine mesh
 Long-time behavior
 Complex physics

 Network is characterized by bandwidth (transmission rate) & latency (delay)
 Performance of parallel computation depends on:

 Numerical problem
 Network properties
 Compute node properties

 To learn more: course “Parallel and high-performance computing” (MATH-454)
 Remember: numerical simulation has a cost and an energy footprint
 only run simulations that are needed!

Summary

	Parallel computation
	Numerical simulation workflow
	Why parallel CFD?
	Why parallel CFD?
	Why parallel CFD?
	Why parallel CFD?
	Implementation in Fluent
	Implementation in Fluent
	Mesh partitioning
	Mesh partitioning
	Mesh partitioning
	Mesh partitioning
	Architecture
	EPFL SCITAS clusters
	Parallel performance
	Parallel performance
	Parallel performance
	Parallel performance
	Parallel performance
	Summary

