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Schematic outline of this lecture:

1. Why parallel CFD?

2. Implementation in Fluent
3. Mesh partitioning

4. Parallel performance

(Physical modeling, numerical methods)
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Numerical Flow Simulation

Why parallel CFD?

= Basic idea: distribute the calculations among several processors that work
simultaneously = more memory available & shorter calculation time.

* Perform larger simulations
= Larger meshes
= More complex physics

* Perform simulations faster
= Many designs (virtual prototyping).
= Shorter turn-around time (e.g. from days to hours, for several-million cell meshes)

= Take advantage of state-of-the-art high-performance computers
= Fast computation
= Large memory



Numerical Flow Simulation

Why parallel CFD?

= When should parallel computation NOT be used?

= \When the problem is too small: too little work per processor and too much
communication between processors =2 inefficient (or even slower?!).
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Numerical Flow Simulation

Why parallel CFD?

= When should parallel computation NOT be used?

= \When the problem is too small: too little work per processor and too much
communication between processors =2 inefficient (or even slower?!).
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Numerical Flow Simulation

Why parallel CFD?

= When should parallel computation NOT be used?

= \When the problem is too small: too little work per processor and too much
communication between processors =2 inefficient (or even slower?!).

= When the computer resources are not appropriate (e.g. insufficient
communication bandwidth) = must check parallel performance (see later).

= When the user doesn’'t know what they are doing...
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Implementation in Fluent

= Assumption:

= Users of commercial software are interested in shortening turn-around time, not in
parallel computing itself.

= May want to use software on different serial/parallel computer systems.

= Implementation:

= As “transparent” as possible: detailed knowledge of parallel computing not required.

= The code should be highly portable.
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Numerical Flow Simulation

Implementation in Fluent

= Memory model: supports both shared-memory and distributed-memory parallel
computers (see later).

= Based on domain decomposition: computational mesh partitioned into sub-meshes,
each partition assigned to a different compute node (see later).

= Communication between processors: message passing
= Scalable
= Complete control over communication for better performance optimization
= MPI| standard has emerged with wide support

= Client/server model: separation of front-end tasks (GUI, visualization) and solver.
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Mesh partitioning

= Basic concept: computational mesh automatically partitioned into several
sub-meshes (partitions), each partition assigned to a different processor/node
that solves the equations only in its own sub-mesh.
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Numerical Flow Simulation

Mesh partitioning

= Wide range of algorithms:
= Coordinate bisection,
= Recursive spectral bisection,
= Multi-level graph partitioning...

= Goals for optimal algorithm:
= Partitions with similar number of cells (similar load on each processor)
= Simply-connected partitions (no holes)
= Minimize data transfer (interface boundaries with short length and small number of faces)
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Mesh partitioning

* Fluent can use the following algorithms:
= Cartesian axes; Cartesian x,y,z; Cartesian strip
= Principal axes (default); principal x,y,z; principal strip
= Polar axes; polar r,8 (only in 2D)
= Spherical axes; spherical p,8,¢ (only in 3D)
= METIS (multi-level graph partitioning)
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Mesh partitioning

Domain Physics User-Defined Solution
General Network Timer System
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Architecture

= Fluent can run parallel calculations on 2 types
of architecture:

1. Shared memory: one machine with several

processors (from simple PC/laptop to high-
performance workstations)

2. Distributed memory: cluster of several
machines (e.g. EPFL clusters)

n Fluent Launcher 2020 R2

Fluent Launcher

Simulate a wide range of industrial applications using the ge
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Solution Case Case and
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EPFL SCITAS clusters

= Several high-performance clusters are available at EPFL.
= Some of them may be available for student projects.

SCITAS Clusters
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Parallel performance

= Two important characteristics of parallel communication:
= Bandwidth: transmission speed = max. amount of data sent in given time [MB/s]
= Latency: time to send data = delay [ms] or [us]

= Fluent can measure bandwidth and latency between processors.
Domain User-Defined Solution I

General Network Timer System
4" Auto Partition... ™" Latency % usage | [Z] crunfo

V' E Thread Control... T‘m Bandwidth “) Reset

Check... == Partition/Load Balance... =" Connectivity...
Bandwidth (MB/s) with 5 messages of size 4MB Latency (usec) with 1000 samples
ID no nl n2 n3 n4 ns ID no nl n2 n3 n4 nb
no 111.8 *55 111.8 97.5 101.3 no 48.0 48.2 48.2 48.3 *50
nl 111.8 69.2 98.7 111.7 *51 nl 48.0 48.2 48.3 48.3 *48
n2 54.7 69.2 72.9 104.8 *45 n2 48.2 48.2 48.8 49.1 *53
n3 111.8 98.7 72.9 64.0 *45 n3 48.2 48.3 *49 48.6 48.5
n4 97.6 111.7 104.8 *64 76.9 n4 48.3 48.3 49.1 48.6 *50
nb5 101.2 50.9 45.5 *45 76.9 nb 49.7 48.5 *53 48.5 49.7 15
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Parallel performance

= Both bandwidth and latency influence parallel performance.

= | atency tends to have a greater effect (over a range of common problem
sizes and available networks)

= Scalablility of Fluent largely determined by scalability of its linear equation solver.
Multigrid limited by latency because requires several (small) message exchanges.

= A low-latency interconnect can greatly improve performance scalability of Fluent.

* Performance also depends on:
= Problem size
= Physical modeling
= Numerical method
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Parallel performance

= Optimal use

= For a given problem (size, physical modeling, numerical method):
= Performance scales well for small number of processors
» Performance will saturate (or decrease) for large number of processors

= Optimal value of number of processors:
= |ncreases with problem size
= Increases (generally) with problem complexity

= Choose wisely:
= Parallel computer system (bandwidth & latency)
= Number of processors

5000 |

4000 |-

Performance rating

1000 |

3D turbulent flow in a bend, 32’000 hex cells

3000 |

2000 |-

Compaqg SC (Alpha ev67

667MHz, Quadrics)

Swiss-T1 (Alpha ev6,
500MHz, Tnet)

Swiss-T1 (Alpha evo6,
500MHz, Ethernet)

Number of processors
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Parallel performance

= Dynamic load balancing

= Automatically redistributes the computational load more evenly among processors
(cell migration from one processor's memory to another).

= Load imbalance can result from:

= Change in performance of some processors due to other processes
= Non-uniform network performance
» Changes in mesh distribution from refinement/coarsening

= Associated with performance penalty (disabled by default in Fluent, must be explicitly
enabled if desired).
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Parallel performance

= Dynamic load balancing: example (transonic flow over a NACA 0012 profile)
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Summary

= Parallel computation allows “large” problems to be solved:
= Very fine mesh
= Long-time behavior
= Complex physics

= Network is characterized by bandwidth (transmission rate) & latency (delay)

= Performance of parallel computation depends on:
= Numerical problem
= Network properties
= Compute node properties

* To learn more: course "Parallel and high-performance computing” (MATH-454)

= Remember: numerical simulation has a cost and an energy footprint
-> only run simulations that are needed!
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