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Parallel computation
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Numerical simulation workflow

Geometry 
design

Mesh 
generation

Problem 
setup

Flow 
solution

Visualization

Quantitative analysis

Convergence study

Pre-processing  Computation  Post-processing

(Geometric modeling) (Physical modeling, numerical methods)

Identify key question and 
simulation outcome

Answer key question
Schematic outline of this lecture:

1. Why parallel CFD?
2. Implementation in Fluent
3. Mesh partitioning
4. Parallel performance
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 Basic idea: distribute the calculations among several processors that work 
simultaneously  more memory available & shorter calculation time.

 Perform larger simulations
 Larger meshes
 More complex physics

 Perform simulations faster
 Many designs (virtual prototyping). 
 Shorter turn-around time (e.g. from days to hours, for several-million cell meshes)

 Take advantage of state-of-the-art high-performance computers
 Fast computation
 Large memory

Why parallel CFD?
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 When should parallel computation NOT be used?

 When the problem is too small: too little work per processor and too much 
communication between processors  inefficient (or even slower!).

Why parallel CFD?
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 When should parallel computation NOT be used?

 When the problem is too small: too little work per processor and too much 
communication between processors  inefficient (or even slower!).

Why parallel CFD?
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 When should parallel computation NOT be used?

 When the problem is too small: too little work per processor and too much 
communication between processors  inefficient (or even slower!).

 When the computer resources are not appropriate (e.g. insufficient 
communication bandwidth)  must check parallel performance (see later).

 When the user doesn’t know what they are doing...

Why parallel CFD?
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 Assumption:
 Users of commercial software are interested in shortening turn-around time, not in 

parallel computing itself.
 May want to use software on different serial/parallel computer systems.

Implementation in Fluent

Basically, the user only 
has to choose the 
number of processors.

 Implementation:
 As “transparent” as possible: detailed knowledge of parallel computing not required.
 The code should be highly portable.
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 Memory model: supports both shared-memory and distributed-memory parallel 
computers (see later).

 Based on domain decomposition: computational mesh partitioned into sub-meshes, 
each partition assigned to a different compute node (see later).

 Communication between processors: message passing
 Scalable
 Complete control over communication for better performance optimization
 MPI standard has emerged with wide support

 Client/server model: separation of front-end tasks (GUI, visualization) and solver.

Implementation in Fluent
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 Basic concept: computational mesh automatically partitioned into several        
sub-meshes (partitions), each partition assigned to a different processor/node 
that solves the equations only in its own sub-mesh. 

Mesh partitioning

Compute Node 0 Compute Node 1

Original 
mesh

Partitioned 
mesh

Distributed sub-meshes (with “ghost cells”                   
to exchange information about neighboring cells)
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 Wide range of algorithms:
 Coordinate bisection,
 Recursive spectral bisection,
 Multi-level graph partitioning…

 Goals for optimal algorithm:
 Partitions with similar number of cells (similar load on each processor)
 Simply-connected partitions (no holes)
 Minimize data transfer (interface boundaries with short length and small number of faces)

Mesh partitioning
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 Fluent can use the following algorithms:
 Cartesian axes; Cartesian x,y,z; Cartesian strip
 Principal axes (default); principal x,y,z; principal strip
 Polar axes; polar r,𝜃𝜃 (only in 2D)
 Spherical axes; spherical 𝜌𝜌,𝜃𝜃,𝜑𝜑 (only in 3D)
 METIS (multi-level graph partitioning)

Mesh partitioning

Cartesian axes Cartesian x Principal axes

Polar axesPrincipal strip
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Mesh partitioning
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 Fluent can run parallel calculations on 2 types 
of architecture:

1. Shared memory: one machine with several 
processors (from simple PC/laptop to high-
performance workstations)

2. Distributed memory: cluster of several 
machines (e.g. EPFL clusters)

Architecture
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 Several high-performance clusters are available at EPFL.
 Some of them may be available for student projects.

EPFL SCITAS clusters

https://www.epfl.ch/research/facilities/scitas/

SCITAS Clusters
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 Two important characteristics of parallel communication:
 Bandwidth: transmission speed = max. amount of data sent in given time [MB/s]
 Latency: time to send data = delay [ms] or [𝜇𝜇s]

 Fluent can measure bandwidth and latency between processors.

Parallel performance
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 Both bandwidth and latency influence parallel performance.
 Latency tends to have a greater effect (over a range of common problem 

sizes and available networks)
 Scalability of Fluent largely determined by scalability of its linear equation solver. 

Multigrid limited by latency because requires several (small) message exchanges.
 A low-latency interconnect can greatly improve performance scalability of Fluent.

 Performance also depends on:
 Problem size
 Physical modeling
 Numerical method

Parallel performance
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 Optimal use
 For a given problem (size, physical modeling, numerical method): 

 Performance scales well for small number of processors
 Performance will saturate (or decrease) for large number of processors

 Optimal value of number of processors:
 Increases with problem size
 Increases (generally) with problem complexity

 Choose wisely:
 Parallel computer system (bandwidth & latency)
 Number of processors

Parallel performance
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 Dynamic load balancing
 Automatically redistributes the computational load more evenly among processors 

(cell migration from one processor’s memory to another).

 Load imbalance can result from:
 Change in performance of some processors due to other processes
 Non-uniform network performance
 Changes in mesh distribution from refinement/coarsening

 Associated with performance penalty (disabled by default in Fluent, must be explicitly 
enabled if desired).

Parallel performance
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 Dynamic load balancing: example (transonic flow over a NACA 0012 profile)

Parallel performance

Refined mesh
 imbalance

21’700 cells

15’400 cells

Refined mesh
after load balancing

18’500 cells

18’500 cells

12’300 cells

12’300 cells

Initial mesh                   
(here on 2 partitions)
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Number of processors

Initial
After refinement
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Initial
After refinement
After load balancing


Chart1

		1		1		1

		2		2		2

		4		4		4

		6		6		6

		8		8		8



Before Refinement

After Refinement

After Load Balancing

Number of processors

Elapsed time (s)

1.712

2.89

2.89

0.873

1.665

1.463

0.511

1.058

0.783

0.413

1.018

0.59

0.322

0.772

0.555



dataset

		1		1.712		2.89		2.89

		2		0.873		1.665		1.463

		4		0.511		1.058		0.783

		6		0.413		1.018		0.59

		8		0.322		0.772		0.555
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 Parallel computation allows “large” problems to be solved:
 Very fine mesh
 Long-time behavior
 Complex physics

 Network is characterized by bandwidth (transmission rate) & latency (delay)
 Performance of parallel computation depends on:

 Numerical problem
 Network properties
 Compute node properties

 To learn more: course “Parallel and high-performance computing” (MATH-454)
 Remember: numerical simulation has a cost and an energy footprint                         
 only run simulations that are needed!

Summary
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