
Convection

Edouard Boujo

Fall 2024

Numerical Flow Simulation
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 General conservation equation:

 Steady/unsteady diffusion (e.g. heat conduction):

 Steady convection-diffusion (transport of a scalar, e.g. dye, salt, chemical species):

Simple “model” equations

unsteadiness convection diffusion source



N
um

er
ic

al
 F

lo
w

 S
im

ul
at

io
n

3

Convection-diffusion

Atmospheric simulation (GEOS-5 simulation, 10-km grid size), NASA Center for Climate 
Simulation at Goddard Space Flight Center. Dust (red) is lifted from the surface, sea salt (blue) 
swirls inside cyclones, smoke (green) rises from fires, and sulfate particles (white) stream from 
volcanoes and fossil fuel emissions.
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 Assume the density and velocity are known, and satisfy continuity:

 Integration over CV:

 Use CD to discretize the diffusion term, as usual: 

 What about the convection term? How to discretize the face values?

1D steady convection-diffusion

W        P        E

w         e

denoting                 the convective mass flux

denoting
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 Linear interpolation

 Governing equation becomes:

 Algebraic equation: 

 Same form as steady diffusion eq.                                                                              
(but additional terms for convection).

1D steady convection-diffusion: central differencing

W        P        E

w         e

On a uniform grid:

W        P        E
nodes

Note: by continuity, Fe=Fw
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 Example: 

1D steady convection-diffusion: central differencing

1     2        …         i … n-1   n

case 2: Pe=5
oscillations

case 3: Pe=1.25
OK

case 1: Pe=0.2
OK

Influence of the (numerical) Péclet number:
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 Why do we need to discuss that?
 In theory, better accuracy when refining the mesh, for all discretization schemes.
 In practice, can only use a finite number of CVs. 
 On a finite-size mesh, numerical results are physically realistic only when the 

scheme has some fundamental properties. 

 In particular, a discretization scheme must be:
1. Conservative
2. Bounded
3. Transportive

Properties of discretization schemes
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1. Conservativeness
 Local CV conservation ensures global conservation only if the flux leaving a CV 

across a face is equal to the flux entering the neighboring CV across the same 
face. (Relevant to both convective and diffusive terms.)

 To achieve this, the flux must be represented in a consistent way in both CVs, 
i.e. with the same expression.

Properties of discretization schemes

1         2

1 2

Linear across the face: 
conservative

Quadratic defined with respect 
to CV: NOT conservative

Quadratic defined with 
respect to face: conservative

0         1 2 3 0         1 2 3
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2. Boundedness
 In the absence of sources, internal values of     must be                                 

bounded by the boundary values (no local min. or max.).

Properties of discretization schemes

 One way of achieving boundedness: if all coefficients of the algebraic equation

have the same sign. Physical interpretation: all else being equal, an increase in     
at one node should yield an increase of     at neighboring nodes. With different 
signs, the solution may not converge or may contain unphysical oscillations.

for all rows i,

for at least 
one row i.

 One desirable feature for satisfying boundedness:                                                              
if the matrix      of the linear system is                                                                         
strictly diagonal dominant:

Strict diagonal dominance is a sufficient condition 
for the convergence of iterative methods 
(Scarborough criterion).
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3. Transportiveness
 With convection, the influence of neighboring                                                           

nodes is not symmetric.

 Characterized by the Péclet number:

 In the limit of pure convection:                .                                                                  
Upstream influence (W) only, no downstream influence (E).

 Numerical schemes should account for the asymmetry, the flow direction, and the 
relative strengths of convection/diffusion (Pe).

Properties of discretization schemes

Pure diffusion

Pure 
convectionConvection     

+ diffusion
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 Bounded?
 Satisfies the Scarborough criterion…
 … but coefficients can become negative:

 Transportive?
 Not transportive: symmetric, too much weight on E.

 Conservative?
 Yes

 Accuracy: 2nd-order

Steady convection-diffusion: central differencing CD
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 Constant interpolation, taking into account          
the flow direction (use upstream node):

 Governing equation becomes: 

 General expression:

Steady convection-diffusion: upwind differencing UD

W        P        E
nodes

W        P        E

w         e

case 2: OK

Coefficients 
always positive.
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 Drawback: numerical diffusion (“false diffusion”) when flow not aligned 
 Example: 2D pure convection (        ), prescribed velocity field

Steady convection-diffusion: upwind differencing UD

 Need higher-order scheme 
and/or finer mesh.

Numerical diffusion        
if not aligned

Better when refining 
the mesh

OK when flow 
aligned with mesh

Can be understood:
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 Bounded?
 Satisfies the Scarborough criterion
 Coefficients always positive

 Transportive?
 Yes by construction

 Conservative?
 Yes

 Accuracy: 1st-order, numerical diffusion 

Steady convection-diffusion: upwind differencing UD
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 “Linear upwind differencing” (or “second-order upwind”)
 2nd-order extension of UD: linear interpolation, taking                  

into account the flow direction (use 2 upstream nodes)

 Governing equation becomes: 

Steady convection-diffusion: LUD (SOU)

W        P        E

w         e

On a uniform grid:

W        P        E nodes

One negative coefficient.
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 LUD (2nd-order) more accurate but less stable. 

 Note: for nonlinear problems, 1st-order schemes (like UD) are 
useful to get a first solution, that can then be used as initial guess 
for a second calculation with a higher-order scheme (like LUD). 
This two-step procedure is generally faster than starting directly 
with a higher-order calculation from a poor initial guess.

Steady convection-diffusion: LUD (SOU)

UD 20x20  LUD 20x20

In this example, LUD 20x20 
better than UD 50x50
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 Bounded?
 Satisfies the Scarborough criterion
 One negative coefficient

 Transportive?
 Yes by construction

 Conservative?
 Yes

 Accuracy: 2nd-order

Steady convection-diffusion: LUD (SOU)
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 “Quadratic upstream interpolation for convective kinetics” 
 Quadratic interpolation, taking into account the flow 

direction (use 2 upstream / 1 downstream nodes):

 Governing equation becomes for  

Steady convection-diffusion: QUICK

W        P        E

W        P        E

w         e

On a uniform grid:
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 Governing equation becomes for   

 General expression:

Steady convection-diffusion: QUICK

Coefficients can 
be negative.
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Steady convection-diffusion: QUICK

LUD 20x20  QUICK 20x20

 QUICK is more accurate and has less numerical diffusion, but may produce 
minor under/overshoots.
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 Bounded?
 Satisfies the Scarborough criterion
 Coefficients can be negative

 Transportive?
 Yes by construction

 Conservative?
 Yes

 Accuracy: 3rd-order, but may give rise to slight under/overshoots

Steady convection-diffusion: QUICK
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 Procedure to facilitate convergence despite negative coefficients: “deferred 
correction”. 

Deferred correction

Example for                         rewrite                                                      

Deferred correction 
source term:

Only positive 
coefficients:

 Place troublesome coefficients in the source term, to retain positivity:

 Governing equation becomes:

 Use guess values for starred quantities, and iterate until convergence.

as
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 Procedure to facilitate convergence despite negative coefficients: “deferred 
correction”. 

Deferred correction

Example for                         rewrite                                                      

 Place troublesome coefficients in the source term, to retain positivity:

 There is flexibility in how much is put in the source term. Will affect the 
convergence rate, but not the converged result. The above choice is simple, 
but other choices are possible.

as
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 UD: bounded, transportive, but 1st-order (numerical diffusion)
 CD: 2nd-order, but not transportive and can be unbounded (oscillations)
 LUD, QUICK: 2nd/3rd-order, transportive, but can be unbounded (oscillations)

 Would like higher order without oscillations. 

Summary of discretization schemes (convective term)

 CD:

 LUD:

 QUICK:

 UD:

 General form:                                      

 Observation: higher-order schemes can be written as an extension of UD:

where

W        P        E

e
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Summary of discretization schemes (convective term)

 CD:

 LUD:

 QUICK:

 UD:

 General form:                                      where
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 General form: upwind flux + correction flux (related to gradient                         )

 Can also be seen as a linear combination of UD and CD: 

 Idea of “total-variation diminishing” (TVD) schemes: evaluate the convective 
flux with the above form, choosing a suitable         to achieve higher-order 
accuracy without introducing new extrema.

TVD schemes

ratio of upstream to downstream gradients

W        P        E

w         e
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 Criteria for boundedness:

is called “flux limiter” since it limits         
the higher-order correction flux: 

 Criteria for 2nd-order accuracy:

TVD schemes

Check: CD, LUD and QUICK are not 
bounded for some values of r.

Check: UD is not 2nd-order accurate.
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 Some examples:

 Governing equation becomes for

 With deferred correction approach:

TVD schemes



N
um

er
ic

al
 F

lo
w

 S
im

ul
at

io
n

29

 1D example:

TVD schemes

1     2        …         i … n-1   n
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 CD can be used for the diffusion term, but rarely for the convection term.

 For the convection term, UD most stable, but large numerical diffusion. 
Can be used to get an initial solution, before switching to a higher-order 
scheme.

 LUD (SOU) and QUICK more accurate. 

 TVD schemes avoid oscillations.

Summary and guidelines
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 Discretization schemes available: UD, LUD (SOU), QUICK and MUSCL.

Appendix: Fluent specifics – Discretization schemes
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 Fluent has a 3rd-order, “QUICK-like” scheme for unstructured meshes 
(where it may not always be possible to uniquely identify “upstream” and 
“downstream” nodes): MUSCL (“monotone upstream-centered scheme for 
conservation laws”).

 Blends the two 2nd-order schemes CD and LUD:

Appendix: Steady convection-diffusion: MUSCL

(if P upstream)

P
nb

f
flux

rnb

rP
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 Fluent has a 3rd-order, “QUICK-like” scheme for unstructured meshes 
(where it may not always be possible to uniquely identify “upstream” and 
“downstream” nodes): MUSCL (“monotone upstream-centered scheme for 
conservation laws”).

 Blends the two 2nd-order schemes CD and LUD:

Appendix: Steady convection-diffusion: MUSCL

(if P upstream)

P
nb

f
flux

rnb

rP

 Note: on unstructured meshes, all schemes except UD require evaluating                                              
the gradient in the CV from neighboring nodal values ( additional cost).
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 Nodal gradient reconstruction: 
 We saw (week 2) that for the diffusive term we need to evaluate the gradient     

on faces:

 For the convective term, it seems we just need the solution on faces, but if we 
want better accuracy than 1st-order UD, we actually need to evaluate the gradient
at nodes (slide 24):

Appendix: Fluent specifics – Gradient reconstruction

For ex. (LUD):

 Two methods to compute the nodal gradient:
1. “Green-Gauss”
2. Least squares

P

f
flux rP
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1. From the divergence theorem:                                
So, since                          , the nodal                             
gradient can be approximated as:

Here, each face value can be evaluated as:
 the mean of the 2 neighboring cell values 

(“Green-Gauss, cell based”), 

 or the mean of the Nv face vertex values 
(“Green-Gauss, node based”), each of                         
them evaluated as a weighted average                           
of all surrounding cell values.
More accurate, but more expensive.

Appendix: Fluent specifics – Gradient reconstruction

P
N

f

P
N

f
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2. Least squares: in each neighboring node nbi, write the solution as a 
Taylor expansion about P:

Appendix: Fluent specifics – Gradient reconstruction

This is a small (Nnb x 3) overdetermined linear system 
to be solved for the gradient:

…

As accurate as the “Green-Gauss node based” reconstruction, but faster. 
Default setting in Fluent.

P nb1

r1

nb3

nb2

r3

r2
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 Nodal gradient reconstruction:   

Appendix: Fluent specifics – Gradient reconstruction

 Green-Gauss, cell based,
 Green-Gauss, node based,
 Least squares (default)
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 TVD: can choose among
 standard Min-Mod (default; limits gradient 

in all directions),
 multi-dimensional Min-Mod (limits normal 

gradient only  less dissipative),
 differentiable limiter (helps to avoid 

residual convergence “stall”).

Appendix: Fluent specifics – TVD

 … but you don’t really need to modify that.
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