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Numerical Flow Simulation

Simple “model” equations

= General conservation equation:

unsteadiness convection diffusion source

= Steady convection-diffusion (transport of a scalar, e.g. dye, salt, chemical species):

div(pou)|= div(T" grad(o))




Numerical Flow Simulation

Convection-diffusion

Atmospheric simulation (GEOS-5 simulation, 10-km grid size), NASA Center for Climate
Simulation at Goddard Space Flight Center. Dust (red) is lifted from the surface, sea salt (blue)
swirls inside cyclones, smoke (green) rises from fires, and sulfate particles (white) stream from
volcanoes and fossil fuel emissions.



Numerical Flow Simulation

1D steady convection-diffusion

dlpou) _ 4 I a9 7{ pou - ndA = 7{ ['grad(¢) -ndA
dx dx dx A A
= Assume the density and velocity are known, and satisfy continuity:
d( pu
(dx) =0 = (pu)e — (pu)w =0
F.—F, =0 denoting F' = pu the convective mass flux
= |ntegration over CV-
d¢ d¢
F.o, — —T. 2| —T. =~
e¢e Fw¢w Fe d.CC ) Fw dm N | V.V Ie |
o= 1 o |

» Use CD to discretize the diffusion term, as usual:

Fe¢e_Fw¢w:Fe¢E_¢P Fw¢P_ng
0T PE OTW P

Fe¢e _ ngbw — De(ng o QbP) _ Dw(¢P _ QbW) denoting D,

e L'
Dy

~ bSwwp
= \What about the convection term? How to discretize the face values? 4

5:13131_5;7




Numerical Flow Simulation

1D steady convection-diffusion: central differencing

Fe¢e — Fw¢w — De(¢E — ¢P) _ Dw(¢P — ¢W) - W ie i
I _

e : ol o
= Linear interpolation w ' P " E
¢w + op

¢
On a uniform grid: ¢, & Qe R o + ¢p /
2 2
= Governing equation becomes:

nodes
F. F,, "% P E
?(¢P + ¢R) : (¢pw + ¢p) = De(dp — ¢p) — Dy(dp — ow)
= Algebraic equation: apop = awow + agdE
Fo Fe Fo  Fe
aw = Dy 9 9 A = 6_77 ap = <Dw + De 9 | 9 ) — aW+aE+(Fe_Fw)

= Same form as steady diffusion eq. Note: by continuity, Fo=F,,

(but additional terms for convection).



1D steady convection-diffusion: central differencing

= Example: domain [0,1] m

p=1kg/m? T =0.1 kg/(m.s)

u=0.1m/s, n==~6

L=1m, q‘.‘)0=1, qbl_:D, p=1 kg!m3, ['=0.1 kg/(m.s), u=0.1 m/s
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Influence of the (numerical) Péclet number: Pe =

u=25m/s, n=~06
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L=1 m, qb0=1, qa'aL:O, p=1 kg!ms, ['=0.1 kg/(m.s), u=2.5 m/s

14t
12}
- .\.
1 —
o8} "o
06l case 2: Pe=5
... oscillations
02F
0 - . .
0 02 04 06
X [m]

N
R

u=2.5m/s, n =21

L=1 m, ¢D=1, ¢L=0, p=1 kgims, ['=0.1 kg/(m.s), u=2.5 m/s

1.4+

1.2 1

1

08F

sl case 3: Pe=1.25

0.4} OK

02¢

D 1 | | |
0 0.2 04 06 0.8 1
X [m]
oU F

I'/dx D
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Numerical Flow Simulation

Properties of discretization schemes

= Why do we need to discuss that?
= |[n theory, better accuracy when refining the mesh, for all discretization schemes.
= |n practice, can only use a finite number of CVs.

= On a finite-size mesh, numerical results are physically realistic only when the
scheme has some fundamental properties.

= |[n particular, a discretization scheme must be:

1. Conservative
2. Bounded
3. Transportive



Numerical Flow Simulation

Properties of discretization schemes

1. Conservativeness

= L ocal CV conservation ensures global conservation only if the flux leaving a CV
across a face is equal to the flux entering the neighboring CV across the same
face. (Relevant to both convective and diffusive terms.)

— - O O
o e = (F%L: (F%L

= To achieve this, the flux must be represented in a consistent way in both CVs,
l.e. with the same expression.

| = i o | I — ; | o | ; | | : | o i o T o |

T 5 | o0 | o 1 g | o0 o 1 3 |
¢ —r" !
Linear across the face: Quadratic defined with respect Quadratic defined with

conservative to CV: NOT conservative respect to face: conservative

8



Numerical Flow Simulation

Properties of discretization schemes

-

2. Boundedness

= |n the absence of sources, internal values of ¢ must be
bounded by the boundary values (no local min. or max.).

DANN

= One way of achieving boundedness: if all coefficients of the algebraic equation
appp = awdw + agPE + ...
have the same sign. Physical interpretation: all else being equal, an increase in ¢
at one node should yield an increase of ¢ at neighboring nodes. With different
signs, the solution may not converge or may contain unphysical oscillations.

-

= One desirable feature for satisfying boundedness: a; ;| > Z a; ;| forall rows
if the matrix A of the linear system is v
strictly diagonal dominant: ) ] > Z ;5| for at least
1,17 ()
i ] one row /.

Strict diagonal dominance is a sufficient condition -
for the convergence of iterative methods
(Scarborough criterion). 9



Properties of discretization schemes

3. Transportiveness

= With convection, the influence of neighboring P

nodes is not symmetric.
(a) Pure diffusion Pe = 0

= Characterized by the Péclet number: Direction of
flow ==
Pe convective flux _ U _ pu & 2 %
diffusive flux I'grad(¢p) T'/L Pure

(b) Cc():Ip]c\f/eqtion convection
. . . + dIffusion
= In the limit of pure convection: ¢p = ow . Pe = 0 Pe — o0

Upstream influence (W) only, no downstream influence (E).

= Numerical schemes should account for the asymmetry, the flow direction, and the
relative strengths of convection/diffusion (Pe).

Numerical Flow Simulation

10



Numerical Flow Simulation

Steady convection-diffusion: central differencing CD

= Bounded?
= Satisfies the Scarborough criterion...
. . Fe .
= ... but coefficients can become negative: ag = D, 5 < 0 if Pe>?2

* Transportive?
= Not transportive: symmetric, too much weight on E.

= Conservative?
= Yes

= Accuracy: 2"9-order

11



Numerical Flow Simulation

Steady convection-diffusion: upwind differencing UD

e¢e — fw¢w =D (¢E _ ¢P) (¢P _ ¢W) . w

!.!.i.i

—

= Constant interpolation, taking into account 4
the flow direction (use upstream node):

iwaaFe>O:§bw%¢W7§be%¢P |

. |
if Fop, Fe <0: @y = Op, O = OF nodes
W P E

= Governing equation becomes:
if Fy, F, >0: (Dy+ Do+ Fo)op = (Dy + Fu)ow + Dedg

L=1 m, ¢0=1, @L=0, =1 kgImS, ['=0.1 kg/(m.s), u=2.5 m/s

1.4} e

iwa7F€<O: (Dw+D€_Fw)¢P:Dw¢W+(De_Fe)¢E e ,’1! “1
P
= General expression: apop = awPw + apdE _os| i
case 2: OK
aw = Dy +max(0, F,) 067
Coefficients 0.4}
Aap — De _I_maX(O, _Fe) alwayS pOSitive. 15l :Eéad
CLP:CLW+CLE+(F€_Fw) 0 ¢ D | |
0 0.2 04 0.6

X [m]



Steady convection-diffusion: upwind differencing UD

= Drawback: numerical diffusion (“false diffusion”) when flow not aligned
= Example: 2D pure convection (I" = 0), prescribed velocity field

OK when flow

aligned with mesh

S =100
|

u=2 v=20

Can be understood: 0= F.¢. — Fyyd + Fr, 00

-

=3

™

|
-

100

Fe=F,>0,F,=F,=0

— Op = 0w

Numerical diffusion Better when refining
\\ if not aligned \\ the mesh

6 = 100 ' ¢ =100
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o

Fe=F,=1F,=F,

— 100

_Fs¢s%F6¢P_Fw¢W+Fn¢P_Fs¢S

——UD 10x10| A
——UD 20x20
——UD 50x50
——Exact

100

80

60 -

40 |

20 +

0oL
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Distance along diagonal

* Need higher-order scheme

— ¢p = (dw + ¢s5)/2 and/or finer mesh. 13



Numerical Flow Simulation

Steady convection-diffusion: upwind differencing UD

= Bounded?

= Satisfies the Scarborough criterion
= Coefficients always positive

= Transportive?
= Yes by construction

= Conservative?
= Yes

= Accuracy: 18t-order, numerical diffusion

14



Numerical Flow Simulation

Steady convection-diffusion: LUD (SOU)

(¢ . " . ) b ] - ) ¢
= “Linear upwind differencing” (or “second-order upwind®) ' w

= 2nd_order extension of UD: linear interpolation, taking
into account the flow direction (use 2 upstream nodes)

if Fyy Fo >0 gom dp+ 22| Sopemgp+ 22OV
0z | p OTW P

5£Upe

W P E nodes
30w — dww 5 _3¢p — ow
2 y 2

On a uniform grid: @y,

= Governing equation becomes: apdp = awwoww + awdw + apdg

_ Fw
T B sE,
aw = Dy - 5 | 9 One negative coefficient.
OF — De
ap:aww+&w+aE‘|‘(Fe_Fw) 15



Numerical Flow Simulation

Steady convection-diffusion: LUD (SOU)

= LUD (2"9-order) more accurate but less stable.

——UD 10x10 | |
——UD 20x20
——UD 50x50
——LUD 20x20|
——Exact

N UD 20x20 N LUD 20x20 e
~ ¢ =100 N

N\

100

80

_70 60 B

50 40 +

30 20 L

OL
0 0.2 0.4 0.6 0.8 1 1.2 1.4
\ \ Distance along diagonal
v =2

_ _ In this example, LUD 20x20
= Note: for nonlinear problems, 1%t-order schemes (like UD) are better than UD 50x50

useful to get a first solution, that can then be used as initial guess
for a second calculation with a higher-order scheme (like LUD).
This two-step procedure is generally faster than starting directly
with a higher-order calculation from a poor initial guess.
16



Numerical Flow Simulation

Steady convection-diffusion: LUD (SOU)

= Bounded?

= Satisfies the Scarborough criterion
= One negative coefficient

= Transportive?
= Yes by construction

= Conservative?
= Yes

= Accuracy: 2"9-order

17



Numerical Flow Simulation

Steady convection-diffusion: QUICK

7 ! . . . . . ” | ®
= “Quadratic upstream interpolation for convective kinetics®™ ' w

= Quadratic interpolation, taking into account the flow
direction (use 2 upstream / 1 downstream nodes): /(b\
On a uniform grid:

_ —oww + 60w +30p —¢w + 6¢p + 3¢ w P
if Fy, F, >0: by = Z 3 b, = 68P 81035
2 ow + 60p — OF 3op + 060 — @
iwaa e<0: ¢w_3 68 ¢e_— - 8E =

= Governing equation becomes for F,, F. >0 :

ge( ow+60p+39k) Zw( dww +6ow +3¢p) = De(dp—¢p)—Duw(¢p—dw)

18



Numerical Flow Simulation

Steady convection-diffusion: QUICK

= Governing equation becomes for F,, F. >0

};e( ow+6¢p+30E) Pg;w( dww 60w +3¢p) = De(dp—odp)—Duw(dp—dw)

= General expression: ap¢p = awwoww + awdw + apdE + aEEPEE

(05)
aww — — Illax O,?

aw = D,, + max <O, ?> + max (O, §> — max (O, 2 >

SF, O6F, Fy
ap = D, — max (O, 2 ) + max <O, ) + max (O, >

8 8
(0-%)
app = —max | 0, -y

Coefficients can

ap =aww +aw + a + AgE + (Fe o Fw) be negative

19



Steady convection-diffusion: QUICK

LUD 20x20
6 = 100

QUICK 20x20

Numerical Flow Simulation

= QUICK is more accurate and has less numerical diffusion, but may produce
minor under/overshoots.

100

80

60 -

40 |

20+

0oL

——UD 20x20
——LUD 20x20
——QUICK 20x20
——Exact

Distance along diagonal



Numerical Flow Simulation

Steady convection-diffusion: QUICK

= Bounded?

= Satisfies the Scarborough criterion
= Coefficients can be negative

= Transportive?
= Yes by construction

= Conservative?
= Yes

= Accuracy: 3"9-order, but may give rise to slight under/overshoots

21



Deferred comrection

* Procedure to facilitate convergence despite negative coefficients: “deferred

correction”.
* Place troublesome coefficients in the source term, to retain positivity:
Example for F,,, F. > 0 : rewrite = ¢, = —oww + ?fw +3¢p as | Gy = O —Oww — ?;b;v + 30%
b, = —¢W+6§p+3ng b = bp _gb;v_gs}ngg@j

Numerical Flow Simulation

= Governing equation becomes:

F, (pr | O — 20p 3¢>‘:E> <¢W | —Pvw ~ ng% il qu}kj) = D.(¢p—90p)—Dw(op—ow)

3
Only positive (Fe + De + Dy, )¢P—E+ Dy, + Fy) ¢W+ dc

coefficients: @¢P _E —I—I@@v —I—m

Deferred correction
2 —(—dWww — 26% + 3¢p)

source term: Sde = ( dw — 2¢0p + 30E) -
= Use guess values for starred quantities, and iterate until convergence. 22
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Deferred comrection

* Procedure to facilitate convergence despite negative coefficients: “deferred

correction”.

* Place troublesome coefficients in the source term, to retain positivity:

Example for F,,, F. > 0 : rewrite = @y,

e

o
_ — 9w +60p + 308

 —Oww — 20y + 39p

_ —Oww + 60w + 3¢p b = oy

3

but other choices are possible.

Numerical Flow Simulation

| 8

- —Ow — 20p + 3¢

3

= There is flexibility in how much is put in the source term. Will affect the
convergence rate, but not the converged result. The above choice is simple,

23



Numerical Flow Simulation

Summary of discretization schemes (convective term)

= UD: bounded, transportive, but 18--order (numerical diffusion)
= CD: 2"d-order, but not transportive and can be unbounded (oscillations)
= LUD, QUICK: 2n9/3rd-order, transportive, but can be unbounded (oscillations)

= Would like higher order without oscillations.

= Observation: higher-order schemes can be written as an extension of UD:

P oD Pe =12r | o lmmg ; . Y(r) =0

= CD: ¢e=¢P;¢E=¢p+2 'w ' P E o)

- LUD: ¢e=¢P+%(¢p—¢w)= + b(r) =1

* QUICK: 6. =6+ (~éw — 20p +305) = op]+ PR LY.
= General form: ¢, =Jor[2 (65 - op) where » — y

2



Numerical Flow Simulation

Summary of discretization schemes (convective term)

w=0.25r+0.75

0 2 4 o s
= UD: e = 0P r () =0
" Ob ¢62¢P;¢E:¢P+2 W(r) =1
= LUD: Pe :¢P+%(¢P—¢W) =l ¢op |+ b(r) = r
= QUICK: ¢e:¢p+%(—¢w—2¢p+3¢E):¢P+ () = 317«
. General form: ¢, =[ér|+|2 (bg — ¢p) e

2



Numerical Flow Simulation

W © .
TVD schemes . e o |
w P p 1 O
e . : - 0 Op — ¢p
eneral form: + correction flux (related to gradient —-| ~ = —)
e = QP r = be]; __ZZ ratio of upstream to downstream gradients

= Can also be seen as a linear combination of and CD:

e = (1= ()oY b 0o |= (1= w(r)for]+ v(r) (¢P g ¢E>

= |dea of “total-variation diminishing” (TVD) schemes: evaluate the convective
flux with the above form, choosing a suitable (r) to achieve higher-order
accuracy without introducing new extrema.

26



Numerical Flow Simulation

TVD schemes

= Criteria for boundedness:
Y(r) <2rfor0<r<1
Y(r)<2forl1<r

Y(r) is called “flux limiter” since it limits
the higher-order correction flux:

e = Pp (¢E — ¢p)

= Criteria for 2"9-order accuracy:
(1) =1
r<y(r)<lforO0<r<]1
1<yY(r)<rforl<r

3 N /JJ LUD
¥

;'7-‘::‘2

0
0 1.0 2 4 6 8
0.0325 0.5 r

Check: CD, LUD and QUICK are not
bounded for some values of r.

(1, 1)

| |
0 1.0 i 7T © 8
r

Check: UD is not 2"¥-order accurate.
27



TVD schemes

= Some examples:

Vs

3

0

Numerical Flow Simulation

SUPERBEE

/< UMIST Van Leer |
SUPEHBEE ________ Sweby f=1.5
llllllllllllllllllllllllllllllllll -u-u-t:‘r—an Albada

2

Fe <¢P | w(;e) (Pr — be))

= \With deferred correction approach:
(D6+Dw+Fe)¢P —

Name

Van Leer

Van Albada
Min-Mod

SUPERBEE
Sweby
QUICK
UMIST

= Governing equation becomes for F,,, F. > 0:

D6¢E+(Dw+Fw)¢W+ Fw

apdp = agdg + aw dw + Sqc

Limaiter function y(r)

r+|r|

1+ 7

r + r?

1 + 72

_ |min(r, 1) ifr>0

Wir) = { 0  ifr<0
max[0, min(2r, 1), min(r, 2)]
max|(, min(Br, 1), min(r, B)]
max[(, min(2r, (3 + r)/4, 2)]
max|[(0, min(2r, (1 + 3r)/4,

S )

"w)
2

(3+r)/4,2)]

Source

Van Leer (1974)

Van Albada er al. (1982)

Roe (1985)

Roe (1985)

Sweby (1984)
Leonard (1988)
Lien and Leschziner

(1993)

S op —Pw . _ dw — Oww
" ¢p—odp op — dw
= D.(¢p—¢p)—Dy(dp—dw)
(65 — o) — B2 (63, — 03

28



Numerical Flow Simulation

TVD schemes

¢ =1
= 1D example: domain [0,1] m =0
p=1kg/m® T'=0.1kg/(ms)  p—t—s—]

u =10 m/s, n = 21

L=1m, @0=1, @L=0, p=1 kglm3, ['=0.1 kg/(m.s), u=10 m/s

14+ ®
12+ -
®
1 _
v
08¢ "X Al
0.6}
04+ — Exact solution
® CD
¢ UD
0.2 B QUICK
v TVD (Van Leer)
D | | | |
0 0.2 04 0.6 0.8

X [m]




Numerical Flow Simulation

Summary and guidelines

= CD can be used for the diffusion term, but rarely for the convection term.

= For the convection term, UD most stable, but large numerical diffusion.
Can be used to get an initial solution, before switching to a higher-order
scheme.

= LUD (SOU) and QUICK more accurate.

= TVD schemes avoid oscillations.

30



Numerical Flow Simulation

Appendix: Fluent specifics - Discretization schemes

= Discretization schemes available: UD, LUD (SOU), QUICK and MUSCL.

® @ @ =& 4 N T E
User-Defined Solution I
Controls Reports
S Jx Equations... |i'_?- Residuals... A% Convergence...
’ R oL Limits... Definitions , [ File... | Plot...
Methods... Controls... A advanced...
Outline View < Task Page |
F
Filter Text Solution Methods | @ |
+_Setur Pressure-Velocity Coupling
= Solution Scheme
2. Methods
. Controls Coupled -

+ = Report Definitions
+ @ Monitors

@ cell Registers

=% Initialization
+) # Calculation Activities

(=) Run Calculation
+ Results
+ Parameters & Customization

Spatial Discretization

Gradient

Least Squares Cell Based v
Pressure

Second Order v

Momentum

Second Order Upwind

Momentum

[EEEDﬂd Order Upwind v

First Order Upwind
Second Order Upwind
QUICK

Third-Order MUSCL

31



Numerical Flow Simulation

Appendix: Steady convection-diffusion: MUSCL

= Fluent has a 3"-order, “QUICK-like” scheme for unstructured meshes
(where it may not always be possible to uniquely identify “upstream” and
“downstream” nodes): MUSCL (“monotone upstream-centered scheme for
conservation laws”).

» Blends the two 2"¥-order schemes CD and
bp = 065" + (1 - 0)¢""

»[ Cb%UD = ¢p + V@p - Tp (i Pupstream)

677 = 2 (6p + V6P - £p) + (dus + Voun - Tus)

32



Numerical Flow Simulation

Appendix: Steady convection-diffusion: MUSCL

= Fluent has a 3-order, “QUICK-like” scheme for unstructured meshes
(where it may not always be possible to uniquely identify “upstream™ and
“downstream” nodes): MUSCL (“monotone upstream-centered scheme for
conservation laws”).

» Blends the two 2"¥-order schemes CD and

dr = 005" + (1 —0)p7"" flux
j gb%UD — ng T *I'p (if P upstream)

pf " = % (op +° rp) + (Pnp + " Tpp)|

= Note: on unstructured meshes, all schemes except UD require evaluating

the|gradient in the CV{from neighboring nodal values (- additional cost).

33



Appendix: Fluent specifics - Gradient reconstruction

= Nodal gradient reconstruction:
= We saw (week 2) that for the diffusive term we need to evaluate the gradient

f :
on 1aces /de'v(F grad(¢)) dV = 7{% F. nda

= For the convective term, it seems we just need the solution on faces, but if we
want better accuracy than 1st-order UD, we actually need to evaluate the gradient
at nodes (slide 24):

/dz’v(p¢u) dV:% pou-ndA
1% A

Forex. (LUD): @7~ "~ = ¢p + - rp

= Two methods to compute the nodal gradient:
1. "Green-Gauss”
2. Least squares

Numerical Flow Simulation

34



Numerical Flow Simulation

Appendix: Fluent specifics - Gradient reconstruction

1. From the divergence theorem.: /qudV =/ div(¢l) dV = ?{ én dA
: |4 V A
S0, since / VedV ~VepV, the nodal
|4
gradient can be approximated as: Vop ~ %qufanf
f

Here, each face value ¢; can be evaluated as:

= the mean of the 2 neighboring cell values
("Green-Gauss, cell based”),

= or the mean of the N, face vertex values
("Green-Gauss, node based”), each of
them evaluated as a weighted average

of all surrounding cell values.
More accurate, but more expensive.




Numerical Flow Simulation

Appendix: Fluent specifics - Gradient reconstruction

2. Least squares: in each neighboring node nb,, write the solution as a

Taylor expansion about P: )
Gnb, = ¢p +Vop - 11

) Onby = Op + Vop - r2

N~

This is a small (N, x 3) overdetermined linear system
to be solved for the gradient:

JVop = pnp — ¢p

iz Tiy Tl Véps Onb, — PP
rax T2y T2z| [ Vop, | = | Pnb. — 0P
N Vop, E

As accurate as the "Green-Gauss node based” reconstruction, but faster.
Default setting in Fluent. 36



Numerical Flow Simulation

= Nodal gradient reconstruction:

User-Defined Solution

Controls Reports
S Jx Equations... |i'_?- Residuals... A% Convergence...
’ R oL Limits... Definitions , [ File... | Plot...
Methods... Controls... A advanced...
Outline View < Task Page
Filter Text Solution Methods |®|
+ Setur Pressure-Velocity Coupling
- Solution h
% Methods =cheme
. Controls Coupled -

+ = Report Definitions
+ @ Monitors

@ cell Registers

=% Initialization
+) # Calculation Activities

(=) Run Calculation
+ Results
+ Parameters & Customization

Spatial Discretization
Gradient

Least Squares Cell Based

Pressure

Second Order v
Momentum

Second Order Upwind v

Appendix: Fluent specifics - Gradient reconstruction

» Green-Gauss, cell based,
» Green-Gauss, node based,
= |_east squares (default)

Gradient

[LE!-EIS’I: Squares Cell Based

Green-Gauss Cell Based
Green-Gauss Node Based

| east Squares Cell Based

37



Numerical Flow Simulation

Appendix: Fluent specifics - TVD

= TVD: can choose among

= standard Min-Mod (default; limits gradient
in all directions),

= multi-dimensional Min-Mod (limits normal
gradient only - less dissipative),

= differentiable limiter (helps to avoid
residual convergence “stall”).

n Advanced Solution Controls

Multigrid Multi-Stage

Spatial Discretization Limiter
Limiter Type
[ Standard i

Multidimensional
Differentiable

= ... but you don't really need to modify that.

User-Defined Solution I
Solution Controls Reports
& Jx Equations... |i_’:'r Residuals... 3K Convergence...
iy’ —
L) D4 Limits... Definitions . [ File... |/ Plot...
Methods... -1 A Advanced...
Outline View < Task Page <
Filter Text Solution Controls @]
Pseudo Transient Explicit Relaxation Factors
- Solution |
- Fressure
B WL L]
0.5
+/ % Report Definitions Momentum
+ € Monitors 0.5
= C:?I_I Ii_egl_atera Density
=% Initialization .
+ # Calculation Activities
(=) Run Calculation Body Forces
+ Results 1
+ Parameters & Customization
Energy
0.75

Expert

|Defaultl|
[Equatinns...] |Limits..._|

|hdvanced....|
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