
Solving the                         
Navier-Stokes equations

Edouard Boujo

Fall 2023

Numerical Flow Simulation
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 General conservation equation:

 So far, solved for     assuming known density and velocity.
 In general, velocity field not known and must be computed too. 
 The Navier-Stokes eq. themselves have the same general form (week 2):

 All the methods seen so far should apply?…

Reminder: the NS equations
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 Some elements that make the Navier-Stokes equations difficult to solve:

Reminder: notoriously difficult equations

Unsteadiness
Nonlinearity

Differential operators

Coupled 
equations

Pressure
Turbulence(week 6)

✓ (weeks 2 & 4)

✓
(week 3)

(week 9)

Focus of this week
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 The variable solved for in each eq.                                                              
appears in the other equations.                                                                         

For ex. steady incompressible 2D:

 Coupled method: 
 In principle, can solve all equations simultaneously.                                             

Define                                              and solve a single system. 
 Works best for linear, strongly coupled equations. Better convergence, but more 

memory requirement. Sometimes not possible with large meshes.

 Segregated method: 
 Solve each equation one by one, iteratively.
 Works best for nonlinear equations. Slower convergence, but less memory 

requirement.

Issue 1: coupled equations
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 Example: steady 1D momentum equation

 Discretization of the pressure gradient with central differencing:

 Involves nodes W and E that are 2 CVs apart. The central node P does not 
appear. Risk of “checkerboard pressure mode”: not physical, but 
numerically possible because does not contribute to the momentum eq. 
(zero pressure gradient, just like a uniform pressure field).

Issue 2: pressure checkerboard 
W        P        E

w         e

1D 2D

W         P         E
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 Remedy to checkerboard pressure: staggered grid
 Evaluate pressure (and other scalars   ) at the nodes of the original mesh
 Evaluate velocities at the nodes of a staggered mesh
 CV centers of the staggered mesh correspond to face centers of the original mesh

Staggered grid

W        P        E

w         e

1D 2D

Original mesh

Staggered mesh

Original mesh Mesh staggered in x Mesh staggered in y

w             e
W         P          E

S

N

n

s

CV for u

W         P          E

S

N

w             e
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CV for v

W         P          E

S
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w             e
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CV for  CV for  

W        P        E

w         e

CV for u
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 1D discretization for u on the staggered mesh:

 Now, no risk of checkerboard pressure, because would give a non-zero 
contribution.
 Physically consistent: pressure difference between CVs drives the flow 

across the face.

Staggered grid W        P        E
w         e        ee

(Assume constant 
cross-section area A)
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Coefficients of face values depend on D and F
at the nodes (CV centers):

 1D discretization for u on the staggered mesh:

Staggered grid

Notations (week 4): 

For instance with CD for the diffusion term:

Algebraic equation:

W        P        E
w         e        ee

Need for Cf and fC interpolation:

Compare with discretization on original mesh 
(previous weeks)… and don’t get lost!

Coefficients of nodal values depend on 
D and F at the faces:
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 1D discretization of the continuity eq. on the original mesh:

Staggered grid W        P        E
w         e        ee

Velocities at faces available (no interpolation required).
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 Momentum equations in 2D (staggered mesh):

 Continuity eq. in 2D (original mesh):
 Other scalar unknowns (original mesh):

Staggered grid
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 Compressible flows: continuity eq. = eq. for density. Can deduce pressure 
with an equation of state such as             . (Pressure = “thermodynamic” variable.)

 Incompressible flows: constant density, no eq. for pressure. The role of 
pressure is to enforce a constraint: continuity. (Pressure = “mathematical” variable.)

No problem if use a coupled method. However, if use a segregated method, 
need to find a way to compute pressure.

Issue 3: no equation for pressure?
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 Key idea: obtain a scalar eq. for pressure (Poisson eq.) by taking the 
divergence of the momentum eq.

 If the velocity field satisfies continuity (divergence free):

 Need a boundary condition: project the momentum eq. on the boundary normal

Poisson eq. for pressure 

Can solve for p       
if u is known.
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 Assume an explicit temporal scheme (week 6) for velocity:

Unsteady incompressible NS

1. Solve Poisson eq. for new pn+1 (linear system).

Require divergence-free 
velocity at new time step

2. Compute new velocity:

Not applicable to implicit temporal schemes (because un+1 would appear in eq. for pn+1).

Take the divergence:

Divergence-free velocity 
from previous time step
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 Helmholtz-Hodge decomposition: any vector field is the sum of a solenoidal 
(divergence-free) part and an irrotational part:

 Geometric interpretation: projection onto the space of divergence-free fields.

 The incompressible NS eq. can be seen as such a projection onto 
divergence-free velocity fields. This projection is done via the pressure p.

HH decomposition / Pressure projection

 can extract the divergence-free part of any field:
solenoidal irrotational

is solution of a Poisson eq.:

Divergence-free fields

Irrotational fields
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 Idea: 
1. Compute tentative velocity from momentum eq., ignoring pressure,
2. Compute the divergence-free component part of u*.

 Assuming again an explicit temporal scheme:

Unsteady incompressible NS: fractional step method

Take divergence of 2nd eq.:
(require div.-

free un+1)

2.b. Compute new velocity:

2.a. Solve Poisson eq. for new pn+1 (linear system)

It’s indeed a HH decomposition:

Split                          into

1. Compute tentative velocity u* with 1st eq.
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 Can also keep pressure term, solve with pn as a guess, and solve for a 
pressure correction (instead of pressure). Example with implicit scheme:

Unsteady incompressible NS: fractional step method

Actually, the sum of the 2 eq. is 
not exactly the intended scheme:

But the error is of 2nd order in time, consistent with other errors of 2nd-order temporal schemes.

2.b. Compute new velocity:

2.a. Solve Poisson eq. for correction p’ (linear system)

1. Compute tentative velocity u* with 1st eq.

Take divergence of 2nd eq. (require divergence-free un+1):
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 For steady equations, can’t split the time derivative into 2 parts. Use instead 
other types of “predictor-corrector” approaches.
 Idea: 

1. Solve the momentum eq., using a guess velocity to linearize the nonlinear 
convective term (Picard) + a guess pressure,

2. Use the continuity eq. to deduce an eq. for pressure or pressure correction,
3. Update velocity and pressure; iterate.

Steady incompressible NS

Schematically: Momentum eq.

New velocity as fct
of guess pressure

Divergence of continuity eq.      
=  eq. for pressure correction p’

Pressure correction Express velocity correction 
as fct of pressure correction

Compute vel. correction

Update velocity and pressure
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“Semi-Implicit Method for Pressure-Linked Equations” (originally developed 
for unsteady flows).
1. Solve momentum eq. with guess velocity (for nonlinear term) and guess 

pressure p*  new (tentative) velocity u*. For ex. (2D, staggered grid):

At this stage, u* has no reason to satisfy continuity  introduce velocity 
correction u’ and pressure correction p’, aimed at enforcing continuity:

Steady incompressible NS: the SIMPLE algorithm
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2. Derive an equation for the pressure correction as follows: 
 Subtract momentum eq. for u* from those for u

Steady incompressible NS: the SIMPLE algorithm

 Main approximation of the SIMPLE algorithm: neglect neighbor contributions in 
the eq. for velocity corrections

 Substitute u in continuity equation:

where

Equation for p’:
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2. Pressure correction equation:

 Coefficients:

 Source term:

 Balance of convective fluxes, based on guess velocities (discrete version of div(u*)).
 Before convergence, continuity not satisfied, therefore   b≠0   ⇒ p’≠0   ⇒ u’≠0.
 Convergence when continuity satisfied:   b=0   ⇒ p’=0, u’=0   ⇒ p=p*, u=u*.
 b is an indicator of convergence (in addition to the residuals)
 The omission of neighbor contributions doesn’t affect the final converged solution.

Steady incompressible NS: the SIMPLE algorithm
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3. Update and iterate:
 New value = old guess + correction:

 Generally need under-relaxation to stabilize the procedure:

 With this type of velocity under-relaxation, the discretized momentum eq. become

Analogous to pseudo-transient simulation, i.e. unsteady simulation with space-
dependent time step (week 6).

Steady incompressible NS: the SIMPLE algorithm
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 SIMPLE
 Routinely implemented in CFD codes. 
 The pressure correction is satisfactory for correcting velocities, but not so good for correcting 

pressure itself. A correct velocity field does not yield a correct pressure.
 Rather slow convergence due to crude approximation.

 SIMPLER
 Velocity: same method as SIMPLE (velocity correction from pressure correction).
 Pressure: not corrected, directly calculated from discretized continuity equation.

 SIMPLEC
 Less crude approximation in the velocity correction eq. (omit less terms).

 PISO (“Pressure Implicit with Splitting of Operators”)
 One additional correction step. 
 More expensive per iteration, but converges faster.

The SIMPLE algorithm, and improved variants
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SIMPLE PISO

Versteeg & Malalasakera (2007)
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 Staggered grid: popular until a few decades ago. But several drawbacks: must store 
more geometric information; difficulties at boundaries.

 Alternative: stick to collocated grid (same grid for velocity and pressure);                          
add higher-order pressure term to avoid checkerboard mode. 

Staggered grid vs. collocated grid

 Example of alternative discretization: Rhie-Chow interpolation (expression on 1D uniform grid)

Discretize momentum eq. and continuity eq. on same grid: W        P        E

w         e

If interpolate face velocities as usual,                            doesn’t contain the physically expected 
pressure difference pE-pP across face e pressure correction can be oscillatory (checkerboard).

Usual term Higher-order pressure term, with desired pressure difference (if all d values equal)

Additional term is small  doesn’t compromise solution accuracy.
Damping of spurious pressure oscillations  also called “pressure dissipation”.
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 Momentum and continuity eq. are coupled. Usually solved with segregated 
(sequential) method. Coupled (simultaneous) method can be used too; 
better convergence rate but requires more memory.

Summary and guidelines

 Fluent: 1 coupled solver + 4 segregated solvers: SIMPLE, SIMPLEC, PISO, 
Fractional Step Method. Collocated grid.

 Risk of checkerboard pressure mode on collocated grid. Remedies: 
staggered grids for velocities, or higher-order pressure term (Rhie-Chow).

 Incompressible flows: no eq. for pressure. Most methods derive a Poisson 
eq. for pressure (taking the divergence of the momentum eq., and enforcing continuity).
 Fractional step method: non-iterative, 2-step method (unsteady)
 SIMPLE algorithm: iterative, 2-step method (steady or unsteady)
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 Rigorous demonstration for the Stokes equations (Re=0):

 The solution of the Stokes equations satisfies a minimum dissipation problem MP:

 Transform this constrained optimization problem into an unconstrained one by introducing 
the Lagrangian

where λ is a (yet unknown) Lagrange multiplier enforcing the incompressibility constraint.

 A solution of the optimization problem corresponds to a stationary point of the Lagrangian, 
i.e.            , or:

Appendix: pressure as a Lagrange multiplier

such that

and
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 Variation with respect to λ:

 Variation with respect to u:

Therefore, the velocity field and the Lagrange multiplier that are solution of the 
minimization problem MP are also solution of the Stokes equations.

Additionally, one recognizes that the pressure p is the Lagrange multiplier λ enforcing                         
the incompressibility constraint.

Appendix: pressure as a Lagrange multiplier

By construction, obtain the constraint.
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