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Numerical Flow Simulation

Reminder: the NS equations

= General conservation equation:

= S0 far, solved for ¢ assuming known density and velocity.

* |n general, velocity field not known and must be computed too.
= The Navier-Stokes eq. themselves have the same general form (week 2):

'M
9(pu) div(puu)|=|div | —
ot i

= All the methods seen so far should apply?...




Numerical Flow Simulation

Reminder: notoriously difficult equations

= Some elements that make the Navier-Stokes equations difficult to solve:

Differential operators ' (weeks 2 & 4)

.
V-u=J(
Coupled S |
equations il (u-V)u=—Vp V24

ot Re

Unsteadiness Pressure

(week 6) Nonlinearity

Turbulence

(week 9)
(week 3)

—— Focus of this week —



Numerical Flow Simulation

Issue 1: coupled equations

/‘

d(pu) | O(pv)

= The variable solved for in each eq. =0

. . or Oy
appears in the other equations. douw) Opuw)  p 8 [ du\ O [ du
For ex. steady incompressible 2D: < 9z 38y 0Oz O« (N&E> Oy <M8_y>

o

I(puv) d(pvv)  dp O ov 0 ov
or | oy oy  ox (“%)*@(“a@)
= Coupled method:

= In principle, can solve all equations simultaneously.
Define ¢ = (u,v,w, p) or (u,v,w,p) and solve a single system.

= \Works best for linear, strongly coupled equations. Better convergence, but more
memory requirement. Sometimes not possible with large meshes.

= Segregated method:
= Solve each equation one by one, iteratively.

= \WWorks best for nonlinear equations. Slower convergence, but less memory
requirement. 4



Numerical Flow Simulation

Issue 2: pressure checkerboard

@
W

= Example: steady 1D momentum equation Olpuw) _ 0 Ho )

QJ
@

ox 0x 0x

= Discretization of the pressure gradient with central differencing:

pp +pPpw PE TDPP |PW — PE
_dx_p’w—p 2 2 | 2

" [nvolves nodes W and E that are 2 CVs apart. The central node P does not
appear. Risk of “checkerboard pressure mode”: not physical, but
numerically possible because does not contribute to the momentum eq.
(zero pressure gradient, just like a uniform pressure field).
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Numerical Flow Simulation

Staggered grid

= Remedy to checkerboard pressure: staggered grid
= Evaluate pressure (and other scalars ¢) at the nodes of the original mesh
= Evaluate velocities at the nodes of a staggered mesh
= CV centers of the staggered mesh correspond to face centers of the original mesh

1D 2D
Original mesh Original mesh Mesh staggered in x Mesh staggered in y
CVfor p, p, 1., CV for p, p, T... CV for u CV for v
V.V / .e ! | N | | N ! | N !
P R ‘ ° N
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W e ® ® ® ® o —> O ® @ ®
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CV for u S S S
Staggered mesh




Numerical Flow Simulation

Staggered grid

= 1D discretization for u on the staggered mesh:

dpuu)  dp D ( au)

Oor  Ox Oz ,u%

E E E
O(puu) op / 9, ou
dr — — | Z£4 R
/P ox v P Ox v p ox 'uax
(Assume constant B N duy) [ Ou
cross-section area A) (pun)p = (puu)p _+ (,u 8x> i (“ 8:13) .

= Now, no risk of checkerboard pressure, because would give a non-zero
contribution.

» Physically consistent: pressure difference between CVs drives the flow
across the face.



Numerical Flow Simulation

Staggered grid

= 1D discretization for u on the staggered mesh:
N I C
PUU) E puu)p = Pp — PE “833 . M@az .

For instance with CD for the diffusion term:
FEUJE — FPUP — PP — PE + DE(uee — ue) — DP(ue — uw)

Notations (week 4): F =pu* D= Ll
Az Compare with discretization on original mesh

Algebraic equation: (previous weeks)... and don't get lost!

AelUe = AUy T Geelee T+ (pP — pE) aPQbP — CLW¢W + CLE¢E + b
Coefficients of face values depend on D and F Coefficients of nodal values depend on
at the nodes (CV centers): D and F at the faces:

ay = af(Dc, Fo) ac = ac(Dy, Fy)

Need for C—>fand - C interpolation:

Fo = (pu”)c = 5 ((pu™) g, + (pu™) ) Pf — 9 (pcy + pes) 8



Numerical Flow Simulation

Staggered grid

= 1D discretization of the continuity eq. on the original mesh:

d(pu)
dx

=0 = (pu)e — (PU)w

0
e —F,=0

Velocities at faces available (no interpolation required).




Numerical Flow Simulation

Staggered grid

/aeue — Zafuf -+ (pP _pE)Ae

f =w, ee, ne, se

ApUn — Zafvf +- (pP _pN)An

F F
a’f:a’f (DC: (%)C7FC: fl; f2> \_ f:nw, ne, nn, S

= Momentum equations in 2D (staggered mesh): <

= Continuity eq. in 2D (original mesh): Fe.—Fy, +F, —F; =0
= Other scalar unknowns (original mesh): ap¢p = ) acpc +b

ac = ac (Df — (%)f, Ff>




Numerical Flow Simulation

Issue 3: no equation for pressure?

= Compressible flows: continuity eq. = eq. for density. Can deduce pressure
with an equation of state such as p = p(p). (Pressure = “thermodynamic” variable.)

op | .. B 0(pu)
a7 div(pu) = 0 >

i , i
- div(puu) = div (—p — g div(u)> I+ 2ud

* Incompressible flows: constant density, no eq. for pressure. The role of
pressure is to enforce a constraint. continuity. (Pressure = “mathematical” variable.)

0(pu)

div(u) =0 5

- div(puu) = —grad(p) + div(p grad(u))

No problem if use a coupled method. However, if use a segregated method,
need to find a way to compute pressure.

11



Numerical Flow Simulation

V-u=0

Poisson eq. for pressure

1
%—1; +(u-V)u= —;Vp+ vViu

= Key idea: obtain a scalar eq. for pressure (Poisson €q.) by taking the
divergence of the momentum eq.

Ou 1 -
V- 5t .(u-V)u——;quLuV u_
O(V - 1
(V(% u) -V - [(u-V)u] = —;V2p—|—uv2 (V- u)

= |[f the velocity field satisfies continuity (divergence free):

1 Can solve for p
V-l(u-V)u] = —;Vzp — > ifuis known.

= Need a boundary condition: project the momentum eq. on the boundary normal

0 1 0
a—ltl—l—(u-V)u:—;Vp—l—VVQu ‘N — Vp-n=p —a—ltl—(u-V)u—l—VVQu ' n

12



V-u=0

Unsteady incompressible NS o

1
En +(u-V)u= —;Vp+ vViu

= Assume an explicit temporal scheme (week 6) for velocity:
n+1  in 1
u - V)ut = — -Vt 4 VRn

0

At |
. 1,
: . | n n| n—l—]_ 2
Take the divergence: / N -V - [(u” - V)u”] —;V p +VV/(%{)

Require divergence-free \Va [(un . V)un] _ _1v2pn—|—1
velocity at new time step 0
C
= Divergence-free velocity
E from previous time step
E
3 . .
™ 1. Solve Poisson eq. for new p™1 (linear system).
8 B 1 -
5 2. Compute new velocity: u"tt =u" + At [—=Vp"T + V" — (U V)u”
> %
E I i

Not applicable to implicit temporal schemes (because u”' would appear in eq. for p*").
13



Numerical Flow Simulation

HH decomposition / Pressure projection

» Helmholtz-Hodge decomposition: any vector field is the sum of a solenoidal
(divergence-free) part and an irrotational part:

w =V + V¢
/ \
solenoidal irrotational
V-v=0 V x (Vi) =0

) is solution of a Poisson eq.: V -w =M~V + Vi) = V2

- can extract the divergence-free part of any field: v =w — V¢

= Geometric interpretation: projection onto the space of divergence-free fields.

——
p—
—_——

_—
—_——
p—

Irrotational fields

—_—

Divergence-free fields

vV /

= The incompressible NS eq. can be seen as such a projection onto

divergence-free velocity fields. This projection is done via the pressure p

14



Numerical Flow Simulation

Unsteady incompressible NS: fractional step method

= |dea:

1. Compute tentative velocity from momentum eq., ignoring pressure,
2. Compute the divergence-free component part of u”.

= Assuming again an explicit temporal scheme: [ u* — u”

n n 2..1n
u*t1l — y» 1 At | (11 V)U. = —rvV-°u
Split - (U - V)u" = —=Vp"tt £ uVE" into -~
At P un—l—l —ut
— __vpn—l—l
1. Compute tentative velocity u* with 1st eq. - At P
V-u"tt —-V.ut 1
Take divergence of 2" eq.: = — V4t — ﬂv ut = Vit
At P (require div.- At

2.a. Solve Poisson eq. for new p™' (linear system) free u™)

At
2.b. Compute new velocity: u™! = u* Vptl It's indeed a HH decomposition: v =w — V)

0

Also applicable to implicit temporal schemes (u"*' doesn’t appear in eq. for p™*). 15



Unsteady incompressible NS: fractional step method

= Can also keep pressure term, solve with p" as a guess, and solve for a
pressure correction (instead of pressure). Example with implicit scheme:

cut —u” * * 1 n 2k
Cndl . I (u* - V)u :—;Vp + vV*u
| (un—l—l . v)un—l—l _ __vpn—I—l i Vv2un—|—1 < 1
At p u"t —u’ 1V( ntl _pny 1Vp,
— — — D — P e
. At P %

1. Compute tentative velocity u* with 1st eq.

S Take divergence of 29 eq. (require divergence-free u™"): Aitv u = Vzp’

E

Cg 2.a. Solve Poisson eq. for correction p’ (linear system)

S At

= 2b. Compute new velocity: u™t! = u* Vp'

.% P

E

z Actually, the sum of the 2 eq. is u"tt —u" R 2
not exactly the intended scheme: At - (ut - Vju' = pr +vViu

But the error is of 2"d order in time, consistent with other errors of 2"9-order temporal schemes. 16



Numerical Flow Simulation

V-u=0

Steady incompressible NS

1
(u-V)u= —;Vp +vViu

* For steady equations, can't split the time derivative into 2 parts. Use instead
other types of “predictor-corrector” approaches.

= |dea:

1. Solve the momentum eq., using a guess velocity to linearize the nonlinear
convective term (Picard) + a guess pressure,

2. Use the continuity eq. to deduce an eq. for pressure or pressure correction,
3. Update velocity and pressure; iterate.

Schematically: Momentum eq.
1 * 2
Update velocity and pressure [ (- Vju = —;Vp trViu - u(p*) New velocity as fct

o of guess pressure
Compute vel. correction u'(p’)

Pressure correction 7’ u’ (v’ EXpress velocity correction
b V-u'(p') =0 = (#) as fct of pressure correction
Divergence of continuity eq. 17

= eq. for pressure correction p’



Numerical Flow Simulation

Steady incompressible NS: the SIMPLE algorithm

“Semi-Implicit Method for Pressure-Linked Equations” (originally developed
for unsteady flows).

1. Solve momentum eq. with guess velocity (for nonlinear term) and guess
pressure p* = new (tentative) velocity u*. For ex. (2D, staggered grid):

(ely = Z aruy + (pp — Pp)Ae — U,
f

(pV,, = Zafvj;‘ +(@p —PN)An — vy
f

At this stage, u™ has no reason to satisfy continuity = introduce velocity
correction u’ and pressure correction p’, aimed at enforcing continuity:

u=u"+u, p=p"+p

18



Steady incompressible NS: the SIMPLE algorithm

2. Derive an equation for the pressure correction as follows:
= Subtract momentum eq. for u* from those for u

(e(Ue — Ug) = Zaf(uf - u}k‘) +[(pp —pE) — (Pp —PE)| Ae  — acu, :M+ (Pp — P)Ae
an(VUn — Vy,) = Zaf(vf - Uj;’) +[(pp —pN) — (PP — PN A = anvy :M'I' (Pp — Pv)An

= Main approximation of the SIMPLE algorithm: neglect neighbor contributions in
the eq. for velocity corrections

'*c"% ule — (p/P - p%)de — Ue = Uy + (p/P — p%})de A, A
E / / / * / / where de = — dn = —
'(% Uy = (pP_pN)dn — Un :Un—l-(pp—pN)dn Qe A,
=

= = Substitute u in continuity equation: (pud). — (pud), + (pvA), — (prA)s =0

g Pe Z T (ij T p%])de] Ae — Pw [u;ku T (p%/ N ij) ]

- T Pn ;kz Ll (ij o p?\f)dn] An — Ps [U: + (p/s _ p/P)ds] A = O

Equation for p’:  appp = appy + awpy + anpy + asps + b 19



Steady incompressible NS: the SIMPLE algorithm

2. Pressure correction equation:  appp = appy + awpyy + andy + asps + b

- COeffICIentS U = pedeA67 aw — pwdewa AN — pndnAna as = psdsAs

ap =0 +aw +anN + as

= Source term: b= (pu"A)y — (pu™A)e + (pv*A)s — (pv™A),,

= Balance of convective fluxes, based on guess velocities (discrete version of div(u®)).
= Before convergence, continuity not satisfied, therefore b#0 = p#0 = u#0.
= Convergence when continuity satisfied: b=0 = p'=0,u=0 = p=p*, u=u’.

= b is an indicator of convergence (in addition to the residuals)

= The omission of neighbor contributions doesn’t affect the final converged solution.

Numerical Flow Simulation

20



Numerical Flow Simulation

Steady incompressible NS: the SIMPLE algorithm

3. Update and iterate:
» New value = old guess + correction: u=u*+u', p=p +7p

= Generally need under-relaxation to stabilize the procedure:

Upew = Oyl + (1 — O‘u)uold

Pnew — QppP + (1 — ap)p* — p* =+ O‘pp/

Qe 1 —ay
<> ul T =3 "apd " + (pp — p)Ae + ( > acul™

o7y Xy,
an, 1 — «a,
(22) o4 = a4 o =)o + (2522 ol

21



Numerical Flow Simulation

The SIMPLE algorithm, and improved variants

= SIMPLE

= Routinely implemented in CFD codes.

= The pressure correction is satisfactory for correcting velocities, but not so good for correcting
pressure itself. A correct velocity field does not yield a correct pressure.

= Rather slow convergence due to crude approximation.

= SIMPLER

= Velocity: same method as SIMPLE (velocity correction from pressure correction).
= Pressure: not corrected, directly calculated from discretized continuity equation.

= SIMPLEC

= |ess crude approximation in the velocity correction eq. (omit less terms).

= PISO (“Pressure Implicit with Splitting of Operators™)
= One additional correction step.
= More expensive per iteration, but converges faster.

22



SIMPLE

> Initial guess p*, u*, v¥*, ¢*

Set
p*=p, u*=u
vVi=v, 9% =¢
A

Numerical Flow Simulation

Versteeg & Malalasakera (2007)

Y

STEP 1: Solve discretised momentum equations

ai,J U?ﬂ = ZappUp,+ (pT—l,J - F)T;) A+ biy

a,vi = TanV (p:i;,.-’—i_ pT,J) A+ by

u*, v¥

STEP 2: Solve pressure correction equation

8,y Py= 8,y Piea,y + sy Pryay + 8yma Pl + 8141 Pls + by

P

STEP 3: Correct pressure and velocities

Py = DTJ + Py
uj, = UTJ + diy (Pls— P

*
Vij = Vi+ dij (Pl — P

p, u, v, o*

( START )

> * Initial guess p*, u*, v*, ¢*

Perform STEPS 1-3 of SIMPLE algorithm
— Solve discretised momentum equations
— Solve pressure correction equation

— Correct pressure and velocities

p*, u*, v¥, p'

STEP 4: Solve second pressure correction equation

’ ol L ’ rr L
a, P)= a1y Piay+ ana, s Plias+ @ Pla+ @ P+ b

STEP 5: Correct pressure and velocities
P =P+ P+ Pl

Eanb(‘fknék - Lf:b}

xkk _ ok
u, =u;,+ diy (Plry— P)) + a

r

+diy (P, — p’:,’J)

, , Zan(Vay' = Vi)
‘ﬁ:;k* = ‘ffj + dy; (Pl — Pl + = =

+ diy (Piea =PI

STEP 4: Solve all other discretised transport equations

a, 0= 81,011+ @1 0n1 0+ 811 Ora + 811 Orssr + Dy

Convergence?

( stop )

Set
p* =p, u*=u
vF=v, 9% =¢
A

a”'
Set
p= p***
u= u***
v = yEE*
p, u, v, ¢*

STEP 6: Solve all other discretised transport equations

81501y = A1 91+ Ay, P+ @y G + 8t Braia + Dy

No

Convergence?

( STOP )

23



Numerical Flow Simulation

Staggered grid vs. collocated grid

= Staggered grid: popular until a few decades ago. But several drawbacks: must store
more geometric information; difficulties at boundaries.

= Alternative: stick to collocated grid (same grid for velocity and pressure);

add higher-order pressure term to avoid checkerboard mode. | w e |

| | | |

Discretize momentum eq. and continuity eq. on same grid: | |Z/ | ;—; | ,:: |
apup:ZacuC | pWQ_pEAp aEuE:ZacuC | pP_pEEAE Z(pu-nA)f:O

7 /
If interpolate face velocities as usual, u. = doesn’t contain the physically expected
pressure difference p--pp across face e - pressure correction can be oscillatory (checkerboard).

= Example of alternative discretization: Rhie-Chow interpolation (expression on 1D uniform grid)

Usual term Higher-order pressure term, with desired pressure difference (if all d values equal)

Uup + UE | d 83}9
2 4 O3

2

(Az)*

Additional term is small - doesn’t compromise solution accuracy.

Damping of spurious pressure oscillations - also called “pressure dissipation”. 24



Numerical Flow Simulation

Summary and guidelines

= Momentum and continuity eq. are coupled. Usually solved with segregated
(sequential) method. Coupled (simultaneous) method can be used too;
better convergence rate but requires more memory.

= Risk of checkerboard pressure mode on collocated grid. Remedies:
staggered grids for velocities, or higher-order pressure term (Rhie-Chow).

* |[ncompressible flows: no eq. for pressure. Most methods derive a Poisson
eq. for pressure (taking the divergence of the momentum eq., and enforcing continuity).

= Fractional step method: non-iterative, 2-step method (unsteady)
= SIMPLE algorithm: iterative, 2-step method (steady or unsteady)

* Fluent: 1 coupled solver + 4 segregated solvers: SIMPLE, SIMPLEC, PISO,
Fractional Step Method. Collocated grid.

25



Numerical Flow Simulation

Appendix: pressure as a Lagrange multiplier

= Rigorous demonstration for the Stokes equations (Re=0): V-u=0, —-Vp+uVu+f=0

* The solution of the Stokes equations satisfies a minimum dissipation problem MP:

u

1
min/ (Eu(Vu)Q —f.u) dV suchthat V-u=0
|4

* Transform this constrained optimization problem into an unconstrained one by introducing
the Lagrangian

L(u,\) = fv (%u (Vu)? —f-u— V- u)) dV

where A is a (yet unknown) Lagrange multiplier enforcing the incompressibility constraint.

= A solution of the optimization problem corresponds to a stationary point of the Lagrangian,
l.e. L =0, or:

oL

ou

oL

0 d —=0
an o

26



Numerical Flow Simulation

Appendix: pressure as a Lagrange multiplier

= Variation with respect to A: f —OMNV -u)dV =0 Vo = -
p -5 Va0

By construction, obtain the constraint.

= Variation with respect to u: / (uVu: Vou—f-du—A(V-0u)) dV=0 Vdou

= ,LLVQu ou—f-ou+VA- 5u) dV =0 Vou
V

= (—pV*u— £+ V) - dudV =0 Vdu

V
= | pVu+f—-VA=0

Therefore, the velocity field and the Lagrange multiplier that are solution of the
minimization problem MP are also solution of the Stokes equations.

Additionally, one recognizes that the pressure p is the Lagrange multiplier A enforcing
the incompressibility constraint.

27
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