
The finite volume method

Edouard Boujo
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Numerical Flow Simulation
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 Unknowns                              functions of 

 Conservation of mass (continuity equation)

 Conservation of momentum

 Conservation of energy 

Governing equations: incompressible flows

dynamic viscosity 
[kg/(m.s)]

body force [m/s2]

thermal conductivity [W/(m.K)]

specific heat capacity [J/(kg.K)]

source [W/m3]
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 Unknowns                                 functions of 

 Conservation of mass (continuity equation)

 Conservation of momentum

 Conservation of energy 

 Equation of state

Governing equations: compressible flows
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 Unknown       function of 

General conservation equation

unsteadiness
(rate of change)

convection
(transport)

diffusion creation/destruction 
(source/sink)
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 General conservation equation:

 Steady/unsteady diffusion (e.g. heat conduction):

 Steady convection-diffusion (transport of a scalar, e.g. dye, salt, chemical species):

Simple “model” equations

unsteadiness convection diffusion source
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 Unknown       function of 

 Integrate over a control volume (CV)

 Use divergence theorem (Gauss’s theorem) 

General conservation equation: integral form

surface

volume

outward normal 
vector

Convective and diffusive terms now 
expressed as fluxes through surface
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 Conservation equation holds for any CV, in particular any 
sub-domain     : 

 If divide the domain into a tiling of small CVs (no gap or 
overlap, each face shared by exactly 2 CVs), local 
conservation in each CV ensures global conservation:

Local/global conservation

Fluxes through inner 
surfaces cancel out
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 Divide the domain into a tiling of CVs
 Assign a computational node to each CV
 Discretize the unknown with nodal values:

 Approximate each term of the governing equation as a function of the 
nodal values (see later)

 (Specify boundary conditions; discretize the time derivative; see later)

 These steps transform the original PDE into a system of algebraic 
equations:

The finite volume method

node
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The finite volume method 

 Notations (structured grids):

• Nodal point P, neighbors W, E…
• Faces: w, e…

• CV dimensions:          
• Node-node distances:  
• Node-face distances: 

• Nodal values (the discretized solution):

• Face values (not known; to be interpolated 
from nodal values):

W         P          E

S

N

w             e
n

s

2D example:

1D example:
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The FVM: volume integrals 

 Local conservation equation:

 Approximation of volume integrals:

Nodal value * volume:

Exact if S constant or linear; 
2nd-order approximation otherwise.

W         P          E

S

N

w             e
n

s



N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

12

The FVM: surface integrals 

 Local conservation equation:

 Approximation of surface integrals:

For instance, flux through face e:

1. Approximate the integral from        
discrete value(s) on the face,

2. Then interpolate face value(s)           
from nodal values.

W         P          E

S

N

w             e
n

s
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The FVM: surface integrals 

1. Approximate the integral from 
discrete value(s) on the face:

• Left or right Riemann sum:                   
only 1st-order accurate

• Midpoint rule (use value at face 
center): 2nd-order accurate

• Trapezoidal rule: 2nd-order too, but 
more complicated

s       e       n

flux

s       e       n
faces

s       e       n

e
n

s
P        

e
n

s
P        

e
n

s
P        
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The FVM: surface integrals 

2. Interpolate face value from nodal values: deduce 
schemes from Taylor expansions such as

• Constant interpolation (UD, “upwind differencing”),            
1st-order accurate

• Linear interpolation (CD, “central differencing”),                 
2nd-order

• Quadratic interpolation (QUICK, “quadratic upwind interp. 
for convective kinematics”), 3rd-order

W        P        E
e

W        P        E
nodes

W        P        E

W        P        E(    on a uniform grid)

and
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 General conservation equation:

 Steady/unsteady diffusion (e.g. heat conduction):

 Steady convection-diffusion (transport of a scalar, e.g. dye, salt, chemical species):

Simple “model” equations

unsteadiness convection diffusion source
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 Problem: 
 Equation:
 Domain:
 Known thermal conductivity and source term:
 Boundary conditions:
 Example: solid or fluid cylinder, constant cross-section area 

 Discretize into n CVs, n nodes:
 Integration over CV + divergence theorem:

Steady diffusion: 1D heat conduction

1     2        …         i … n-1   n

W        P        E

w         e
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 Approximate surface integral (face fluxes) with CD, 
and volume integral (nodal value * volume):

 Linear algebraic equation:

 Boundary conditions:

Steady diffusion: 1D heat conduction

W        P        E

w         e

1     2        …         i … n-1   n
W P    E W P    E
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 Dirichlet: known value of the solution

 Neumann: known derivative

 Robin: relationship between solution and derivative

Other possible boundary conditions

1     2
P    E

, for ex.

1     2
P    E

1     2
P    E

, for ex.

for ex. Heat transfer coeff.

(in red below: known quantities)



N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

19

 1st CV:
 ith CV:
 nth CV:

Assembling the algebraic system
1     2    …    i-1     i i+1… n-1   n

: ith equation (conservation in ith CV), contribution from jth CV

: n x n matrix (here tri-diagonal),  ,   : n x 1 vectors
Linear system:
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Demo: 1D diffusion with Matlab

1     2        …         i … n-1   n
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 If rectangular grid: direct integration also possible

2D steady diffusion

W         P          E

S

N

w             e
n

s

 Integration over CV + divergence theorem
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 Approximation as function of nodal values (CD):

 Linear algebraic equation:

2D steady diffusion

W         P          E

S

N

w             e
n

s



N
um

er
ic

al
Fl

ow
 S

im
ul

at
io

n

23

 On a structured quadrilateral mesh of n=nx x ny
CVs and nodes: neighbor connectivity is known                       
(no need to store info in memory) 
 in the ith CV,

becomes
 Linear system:            ,        sparse with 5 non-zero diagonals

2D steady diffusion
1            2            3                   nx

n-nx+1    n-nx+2   n-nx+3                   n

nx+1       nx+2       nx+3                  2nx

W=i-1 P=i E=i+1

S      
=i+nx

N          
=i-nx

i,i+1

i,i-1

i,i

i,i+nx

i,i-nx

0

0

0

0
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 On a structured quadrilateral mesh of n=nx x ny x nz CVs and nodes: 
neighbor connectivity is known
 in the ith CV,

 Linear system:            ,        sparse with 7 non-zero diagonals

3D steady diffusion

i,i+1

i,i-1

i,i

i,i+nx

i,i-nx

0

0

i,i+nxny

i,i-nxny

 Advantages of structured 
meshes:
 Don’t store neighbor 

connectivity  less 
memory + faster access 
to matrix elements

 Efficient solvers available 
for this type of matrices 

0

0
0

0
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 Cavity filled of a constant-property 
(independent of T) fluid. 

 size: L=0.1 m
 boundary conditions: T1=20 °C, T2=120 °C
 fluid: air, thermal conductivity k=0.024 W/(m.K)

Demo: 2D steady diffusion 

x = 0 x = L

y = L

y = 0 T1

T1 T1

T2

 Can also use Fluent to solve the heat 
equation (and the NS equations, although 
we already know that u=0 and p=cst).

 Can extend the previous 1D Matlab code 
to 2D, and solve the heat equation.
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 Integration over CV + divergence theorem

2D/3D steady diffusion: unstructured mesh

P

nb

f

0

0

 Need neighbor connectivity + geometric info
 Same type of final algebraic equation…

 … but irregular            
matrix structure 00

0

0
0
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 Surface integrals: same idea, more complicated expressions.

1. Midpoint rule:                                       (approximate integral with face value at face center)      

2. Interpolate face value        from nodal values. For example:

 How does the discretization of the conservation eq. 
translate from structured to unstructured mesh? 

Spatial discretization on unstructured meshes

 Volume integrals: same expression
P

N
f

Upwind differencing:                      ?

Central differencing:                      ?                                      ?
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 Surface integrals:

2. Interpolate face value        from nodal values. 
For example, from Taylor expansions:

Spatial discretization on unstructured meshes 

(depending on sign of normal face velocity                       ) 

P

N
f

Upwind differencing:

Central differencing:

(where the gradients require further reconstruction from nodal values)

and:                                                         (assuming P, f and N are aligned)
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 In the 1D diffusion example, we chose to put the 
first and last nodes exactly on the boundary.                         
This is very convenient when imposing Dirichlet 
boundary conditions, as one can simply write: 

 In general, it is more common to put all nodes 
inside their respective CV, even for CVs 
touching a boundary.

In this case, one can show (try it as an exercise) that the 
Dirichlet boundary condition on the left is 
implemented as:

Appendix: a note about boundaries  

1     2        …         i … n-1   n

1      2      …       i … n-1     n

w      e

which is more complicated, but very similar to the general expression in 
inner CVs (CVs not touching the boundaries).
You can try to modify the Matlab code and check that the solution is correct. (Note that the 
coordinates of the nodes are not the same as in the original example.)
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