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 Brief overview of 2 topics:
1. Discretization/computation methods (other than FVM)

2. Techniques for handling fluid interfaces

This week’s lecture
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods (reminder)

Fluent, Star-CCM+, OpenFOAM…

Comsol, FreeFEM++, AVBP…

SPH-flow, Fluidix…

Nek5000…

Some software
(Commercial – Free/open)

(Mostly academic)

(Mostly academic)

PowerFLOW…
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods (reminder)

Applicable to any PDE (electrodynamics, 
thermodynamics, pattern formation, quantum 
mechanics, statistical mechanics, economics…)

Specific to continuum media (solid / fluid)

Specific to fluid
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods
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 Conservation equation

 Integral form:

 Divide the domain into a partition of control volumes
 Discretize the solution as nodal values:  
 Approximate volume integrals as functions of nodal 

values, and surface integrals as functions of face values
 Algebraic system of equations

Finite volume method (reminder)

W        P         E

S

N

 Note: solution defined at the nodes. No information 
between nodes, only information about averaged 
value in each CV (integral formulation).
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 Example: 1D steady diffusion (e.g. heat conduction)

 Discretize into n CVs, n nodes:
 Integration over CV + divergence theorem:

 Approximation as function of nodal values (CD):

 Linear algebraic equation:
 Linear system (sparse matrix): 

Finite volume method (reminder)

1     2        …         i … n-1   n

W        P        E

w         e
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Finite volume method (reminder)

L  = 1;
Ta = 300;
Tb = 320;
k  = 400;
Sc = 5000;   
n  = 9;   x = linspace(0,L,n);   dx = L/(n-1);

%--- Matrix and boundary conditions
A = zeros(n,n);   b = zeros(n,1);
for i=2:n-1 

A(i,i-1:i+1) = k*[-1 2 -1]/dx;
b(i)         = Sc*dx;

end
A(1,1) = 1;   b(1) = Ta;
A(n,n) = 1;   b(n) = Tb;

%--- Numerical solution  
T = A\b;

%--- Plot
figure('color','w'), hold on, grid on, box on,
plot(x,T,'bo')

%--- Theoretical solution
T_theo = -Sc/(2*k)*x.^2 + ((Tb-Ta)/L+Sc*L/(2*k))*x + Ta;
plot(x,T_theo,'r-')

1     2        …         i … n-1   n

 Example: 1D steady diffusion (e.g. heat conduction)
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Finite volume method

 Focus on differentiation: 1st derivative 
nvec = 2.^(3:12);   % Number of grid points
figure, hold on, box on, grid on
for n = nvec

dx = 2*pi/n;   x = -pi + dx*(1:n)';   % Grid generation 

%--- Differentiation matrix 
D = zeros(n,n);
for i=2:n-1

D(i, i-1:i+1) = [-1/2 0 1/2]/dx;
end
D(1,1:2)         =  [0 1/2]/dx;   D(1,end) = -1/2/dx;
D(end,end-1:end) = [-1/2 0]/dx;   D(end,1) =  1/2/dx;
D = sparse(D);

u = exp(sin(x));    % Function
uprime = cos(x).*u; % Analytical derivative
uprime_num = D*u;   % Numerical derivative

%--- Error
err = norm(uprime-uprime_num, inf);
plot(n,err,'b.','markersize',15), 

end
set(gca,'xscale','log'), set(gca,'yscale','log')
xlabel n, ylabel('max error'), 
plot(nvec, 100./nvec.^2, 'b')

Example on a periodic domain: 

slope -2
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods
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 Solution discretized at grid points
 Derivatives expressed by combining Taylor 

expansions:

Finite difference method i-2        i-1         i i+1      i+2
j-1         

j

j+1

 For example, 2nd-order approximations of 1st and 2nd derivatives:
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 Can increase the order of accuracy by widening the stencil (i.e. using more 
neighbors). For example (on a uniform grid):

Finite difference method 

Wikipedia

i-2        i-1         i i+1      i+2
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Finite difference method

 Focus on differentiation: 1st derivative 

Example on a periodic domain: 

slope -2

slope -4

nvec = 2.^(3:12);   % Number of grid points
figure, hold on, box on, grid on
for n = nvec

dx = 2*pi/n;   x = -pi + dx*(1:n)';   % Grid generation 

%--- Differentiation matrix 
e = ones(n,1);
D = sparse(1:n,[2:n 1],2*e/3,n,n)...

-sparse(1:n,[3:n 1 2],e/12,n,n);
D = (D-D')/dx;    

u = exp(sin(x));    % Function
uprime = cos(x).*u; % Analytical derivative
uprime_num = D*u;   % Numerical derivative

%--- Error
err = norm(uprime-uprime_num, inf);
plot(n,err,’r.','markersize',15), 

end
set(gca,'xscale','log'), set(gca,'yscale','log')
xlabel n, ylabel('max error’), 
plot(nvec, 500./nvec.^4, 'r')

↑ Example code: 4th-order FD.
(In 1D, 2nd-order FD similar to 2nd-order FV.) 
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 Wide stencils are not ideal. In practice, accuracy not better if solution not 
smooth enough at the scale of the grid. 
 Alternatively, can increase the order of accuracy with “compact FD”: 

introduce additional degrees of freedom by combining Taylor expansions 
that involve the unknown derivative at other grid points.
 For example, for a 4th-order approximation of the 1st derivative, instead of 

looking for the standard expression

look for a compact expression of the form

and find in this case:

Finite difference method i-2        i-1         i i+1      i+2
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 Example:

 Denoting the discretized solution                                   , this can be written 
as a linear system, to be solved for the derivative:

 When solving a PDE, e.g.                     , 

standard FD yields                        

while compact FD yields

to be solved for f, and where A, B have a narrower stencil than D. 

Finite difference method i-2        i-1         i i+1      i+2
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods
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 Transform the problem into its variational formulation (“weak form”).                  
For example, to the steady diffusion problem written in ”strong form” as

corresponds the “weak form”

Finite element method

Find u such that                                          and 

Idea: instead of solving the PDE directly, ask for its projection on any function to be satisfied.

 Divide the domain into a partition of elements and nodes.
 Introduce basis functions (usually low-order polynomials) such that                                       

at node i,
at other nodes j of the element.

or

Find u such that  

0

1

(Piecewise def.:             on elements not containing node i) 
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 Discretize the solution u and test function w as                                           
combinations of basis functions:

 Note: because of the properties of the     , the unknowns                                            
are nodal values: 
 Insert into the weak form to obtain the discretized equation:

 Algebraic system, of matrix form: 

Finite element method

0

1

with (sparse) matrices:
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Finite element method

1D 2D

Linear P1 elements 
(1 node at each vertex)

Quadratic P2 elements                     
(1 node at each vertex                 

and each edge midpoint)

0

1

0

1

Common           
basis functions
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods
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 Expansion on basis functions that are defined globally (over the whole domain)

 On periodic domains:
 Basis functions:                      (trigonometric polynomials) 

Expansion: Fourier series

 The unknowns                                      are the                                             
expansion coefficients (and are not nodal values).

 Differentiation becomes very easy:                , and thus 

 Can solve any PDE in Fourier space, and then come back to physical space.
 Can also derive (dense) differentiation matrices (e.g.              ) and solve directly 

in physical space.

Spectral methods

|k|=1

2

3

4

Example: n=10 nodes 

5
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Spectral methods

 Focus on differentiation: 1st derivative 

Example on a periodic domain: 

-2

-4

-6

nvec = 2:2:100;   % Number of grid points
figure, hold on, box on, grid on
for n = nvec;

h = 2*pi/n;   x = -pi + h*(1:n)';   % Grid generation 

%--- Differentiation matrix
column = [0 .5*(-1).^(1:n-1).*cot((1:n-1)*h/2)];
D = toeplitz(column,column([1 n:-1:2]));

u = exp(sin(x));    % Function
uprime = cos(x).*u; % Analytical derivative
uprime_num = D*u;   % Numerical derivative

%--- Error
err = norm(uprime_num-uprime, inf);
plot(n,err,'k.','markersize',15),

end
set(gca,'xscale','log’), 
set(gca,'yscale','log')
xlabel n, ylabel('max error'),

From “Spectral Methods in Matlab”, L. Trefethen

For smooth 
functions:  
reach spectral 
accuracy
(more accurate 
than any 
polynomial-
order method)
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 Expansion on basis functions that are defined globally (over the whole domain)

 On non-periodic domains:
 Basis functions: for ex.                                      

(Chebyshev polynomials). Expansion:

 The unknowns                                          are the                                             
expansion coefficients (and are not nodal values).

 Collocation method: enforce the governing equations                                                         
on n+1 points. For ex.: Gauss-Chebyshev-Lobatto points:

 obtain an algebraic system for the ak (dense matrix). 

Spectral methods

6

7

k=1

2

3

4

5

… …-1                                                       1
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods
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 One specific type of FEM, with high-order polynomials on each element:
 Domain divided into a partition of elements and nodes.
 Within each element, nodes are clustered near the                                                     

boundaries (e.g. Gauss-Lobatto-Legendre points).
 Piecewise basis functions: Lagrange polynomials                                                                 

such that                      at node i,

 Discretize the solution u as combination of basis functions:

 In 2D/3D, basis functions are often a tensor product                                                    
(separation of variables, unlike FEM):

 Combines flexibility of FEM (complex geometries) and spectral accuracy of SM.

Spectral element methods

at other nodes j of the element.

i=1

i=2

i=     3

i=4

i=5

i=6

i=…                   …

Example: n=11 nodes 
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods



N
um

er
ic

al
 F

lo
w

 S
im

ul
at

io
n

27

 Mesh-free methods
 Lagrangian description: track a discrete set of fluid “particles”
 Mass conservation is automatically satisfied
 Any field f(x) is represented as a spatial average:

 Solve NS eqs (in Lagrangian form) and track particles by solving

Particle methods (here: smoothed-particle hydrodynamics, SPH)

ih

Vj: volume 
of particle j

W: weighting function 
(“kernel”) of characteristic 
size h (“smoothing length”)

 No special treatment required for interfaces (free-surface flow, multiphase flows) 

 High computational cost, but well suited to parallel computing
 Some boundary conditions difficult to define
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 Finite difference method (FDM)
 Finite volume method (FVM)
 Finite element method (FEM)
 Spectral element method (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann methods (LBM)

Discretization/computation methods



N
um

er
ic

al
 F

lo
w

 S
im

ul
at

io
n

29

 Do not solve the Navier-Stokes equations. Model the fluid as discrete fictive 
particles, that perform propagation and collision/relaxation steps.
 Fictive particles move in discrete directions (lattice).                                                    

They transport density over space and time.
 LBM can also be understood as a discrete version of                                  

the Boltzmann equation (statistical/molecular description of                                          
a probability density function for the velocity and momentum).

 Under some assumptions, can re-derive the NS                                               
equations from the discrete LB equations. 

Lattice Boltzmann methods

Example of lattice: 
D2Q9 (2D, 9 directions)

e1

e2

e3

e4

e5e6

e7 e8

e0

 Pros:
 Runs efficiently in parallel
 Suitable for multi-phase flows
 Handles well complex geometries

 Cons:
 High-Mach number flows
 Multi-phase limited to small density ratios
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 Finite difference (FDM)
 Finite volume (FVM)
 Finite element (FEM)
 Spectral element (SEM)

 Spectral methods

 Particle-based methods 

 Lattice Boltzmann (LBM)

Summary: overview of some characteristics

Very easy to implement 

Conservation is enforced

Strong mathematical foundation

Combines flexibility of FEM with 
accuracy of spectral methods

High accuracy (for smooth 
solutions)

Suitable for multi-phase.
Easily parallelizable

Suitable for multi-phase.
Easily parallelizable

Main advantage

Complex geometries

Simple geometries

Simple geometries

Complex geometries

Rather complex geometries

Complex geometries

Complex geometries

Meshing capability
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 Relevant to two-phase flows: immiscible liquids, liquid-gas free surface, 
bubbles, etc.

 In particle methods (mesh-free, Lagrangian): no additional treatment needed
 In other methods (mesh-based, Eulerian), several options:

1. Volume of fluid (VOF)
2. Level-set
3. Deforming mesh

Techniques for fluid interfaces
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1. Volume of fluid (VOF)
 Each phase i characterized by its volume fraction

 : the mesh cell is empty of fluid i,
 : the mesh cell is full of fluid i,
 : the mesh cell contains the interface between fluid i and one or more fluids.
 In each cell:                     (the volume is constant)

 Appropriate properties and variables (e.g. density) are assigned to each cell 
(local weighted average):

 Additional transport equations for volume fractions:

 Interface not solved for, but approximately reconstructed.

 Pros: conserves volume; easy to implement.
 Cons: smears the surface; spatial derivatives (e.g. needed to compute the curvature for 

surface tension effects) difficult to compute (    discontinuous across the interface)

Techniques for fluid interfaces
0        0        0

0.6     0.4    0.2

1        1        1

fluid 1

fluid 2
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1. Volume of fluid (VOF)
 Volume fraction is a convenient quantity for dynamic mesh adaption:               

refine near the interface, coarsen far from it, update over time                       
 accurate solution, efficient usage of resources.                                                                             
(In Fluent: pre-defined adaption setting for VOF.)

 Example: “flow-focusing” microfluidic device for                                                                                
droplet production. Re << 1.

Techniques for fluid interfaces

Q2/2

Q1
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2. Level-set
 Interface = a certain iso-contour of a globally defined level-set function  . 
 For ex.,    = signed distance to the interface; interface: iso-contour          .

 Interface location explicitly solved for
with a transport equation:

(In practice, additional source term for numerical stability.)

 Pros: smooth and continuous, spatial derivatives can be calculated accurately.
 Cons: does not conserve volume; numerically challenging (e.g. highly distorted 

interfaces).

Techniques for fluid interfaces
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3. Deforming mesh
 Solve flow in each phase with appropriate BC (involving stresses + surface tension).
 Move the interface with the fluid velocity.
 Deform the mesh: given the interface position, move interior mesh points           

according to a smoothing method (e.g. Poisson equation, or “material” behavior inspired            
by solid mechanics).

 Example: liquid jet in air, pre-wetted nozzle walls, small Weber number (surface tension >> inertia)

Techniques for fluid interfaces

(Comsol, courtesy 
of S. Eghbali)
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Techniques for fluid interfaces

g

3. Deforming mesh
 Useful to reduce the computational cost when the flow is of interest in one phase 

only (if can neglect the flow in other phases, and its effect on the interface): mesh 
and solve for the flow in that phase only. 

 Example: gravity-driven coating of the outer surface of a solid                                                                 
axisymmetric ellipsoid rotating around its vertical axis. Re << 1.

(Comsol)

thin liquid 
film

solid

airω
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Thank you for your attention!
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