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Numerical Flow Simulation

This week’s lecture

= Brief overview of 2 topics:
1. Discretization/computation methods (other than FVM)

. —

2. Techniques for handling fluid interfaces




Numerical Flow Simulation

Discretization/computation methods (reminder)

Some software
(Commercial — Free/open)

* Finite difference method (FDM) (Mostly academic)

* Finite volume method (FVM) Fluent, Star-CCM+, OpenFOAM...
* Finite element method (FEM) Comsol, FreeFEM++, AVBP...

= Spectral element method (SEM) Nek5000...

= Spectral methods (Mostly academic)

= Particle-based methods SPH-flow, Fluidix...

= | attice Boltzmann methods (LBM) PowerFLOW...



Numerical Flow Simulation

Discretization/computation methods (reminder)

* Finite difference method (FDM)
* Finite volume method (FVM)

* Finite element method (FEM) Applicable to any PDE (electrod.ynamics,
~ thermodynamics, pattern formation, quantum
= Spectral element method (SEM) mechanics, statistical mechanics, economics...)

= Spectral methods

= Particle-based methods Specific to continuum media (solid / fluid)

= | attice Boltzmann methods (LBM) Specific to fluid



Numerical Flow Simulation

Discretization/computation methods

* Finite difference method (FDM)
* Finite volume method (FVM)

* Finite element method (FEM)

= Spectral element method (SEM)

= Spectral methods
= Particle-based methods

= | attice Boltzmann methods (LBM)



Numerical Flow Simulation

Finite volume method (reminder) v

= Conservation equation 8(;@ - div(ppu) = div(T grad(¢)) + S

A
* |ntegral form: 2/ pgde—I—% pou - ndA = 7{ [ grad(¢) - ndA—I—/ SdV
ot Jy A A v
— 71 — N — =+

= Divide the domain into a partition of control volumes B | ’ |
= Discretize the solution as nodal values: ¢ = (¢1,¢2,...,¢:,...¢p) P
= Approximate volume integrals as functions of nodal - ) |

values, and surface integrals as functions of face values boors o
= Algebraic system of equations  A(¢) =0 N b
= Note: solution defined at the nodes. No information .  —

between nodes, only information about averaged . -

value in each CV (integral formulation). ——-




Numerical Flow Simulation

Finite volume method (reminder)

= Example: 1D steady diffusion (e.g. heat conduction)

o0 (. 0T B e L]
o () r5=0  Aigboto et
= Discretize infto n CVs, nnodes: T(x) - T = (T1,1T>...,T;...,Ty)
* |ntegration over CV + divergence theorem:
OT 0T e
— (k== ) — (k==
0= (k5) ~(45) + [ s
. w €
= Approximation as function of nodal values (CD): el
Ty —T Tp — >
0~ b "B 2P g I AW oA, Az
0T PE 0T W P

* Linear algebraic equation:  apTp = awTw + agTe +b =Y  anwTny + b

: - \. nb
* |inear system (sparse matrix): AT =b 7



Numerical Flow Simulation

Finite volume method (reminder)

= Example: 1D steady diffusion (e.g. heat conduction)

4 I

Ta = 300; A1 12 I 'n-1'n
Tb = 320;
k = 400;
Sc = 5000;
n = 9; x = linspace(0,L,n); dx = L/ (n-1); 320
$——— Matrix and boundary conditions
A = zeros(n,n); b = zeros(n,1); 315 |
for 1=2:n-1

A(i,1-1:14+1) = k*[-1 2 -1]1/dx;

b(1) = Sc*dx; 310 |
end v
A(l,1) =1; b(l) = Ta; =
A(n,n) = 1; b(n) = Tb; 305 |-
%——— Numerical solution
T = A\b; 300¢
o _ _ _ O Numerical
3 Plot | ——Theoretical
figure('color','w'), hold on, grid on, box on, 205 . . . i
plOt(X,T,'bO') 0 0.2 04 X[m] 0.6 0.8
%$——— Theoretical solution
T theo = -Sc/(2*k)*x.%2 + ((Tb-Ta)/L+Sc*L/(2*k))*x + Ta;

plot(x,T theo, 'r-")



Numerical Flow Simulation

L
Finlte VOIume methOd Example on a periodic domain:

u(z) = S u' (x) = cos(x)u(x)
= Focus on differentiation: 1st derivative 15
1
nvec = 2.7(3:12); % Number of grid points
figure, hold on, box on, grid on 0.5
for n = nvec
dx = 2*pi/n; x = —-pl + dx*(1l:n)"'; % Grid generation é 0
©
%———- Differentiation matrix 05
D = zeros(n,n);
for 1=2:n-1 1
D(i, i-1:i+1) = [-1/2 0 1/2]/dx;
end 15
D(1,1:2) = [0 1/2]/dx; D(l,end) = -1/2/dx;
D(end,end-1l:end) = [-1/2 0]/dx; D(end,l) = 1/2/dx;
D = sparse (D) ;
. . 10°
u = exp(sin(x)); % Function
uprime = cos(x).*u; % Analytical derivative
uprime num = D*u; % Numerical derivative
-5
$——— Error E-m
err = norm(uprime-uprime num, 1inf); 2
plot (n,err, 'b."', 'markersize',15), E
end 107101 |
set (gca, "xscale', 'log'), set(gca, 'yscale',b '"log')
xlabel n, ylabel('max error'),
plot (nvec, 100./nvec.”2, 'b')
1071°

10° 10! 10° 108 10* S)



Numerical Flow Simulation

Discretization/computation methods

* Finite difference method (FDM)
= Finite volume method (FVM)

* Finite element method (FEM)

= Spectral element method (SEM)

= Spectral methods
= Particle-based methods

= | attice Boltzmann methods (LBM)

10



Numerical Flow Simulation

Finite difference method e

= Solution discretized at grid points /oo ‘(A . .
= Derivatives expressed by combining Taylor j+1 o . . . .
expansions:
. of | Az? O°f Ax® O f A
Jiz1 = i A oz Z. 2l Ox? 7; 3! Ox3 i+O(A$ )
Jixo = fi ...
Jies = fi T ...
» For example, 2"d-order approximations of 1st and 2" derivatives:
P S of 3 of | _ fix1 — fie1 )
fiv1 — fio1 = 2Ax 9 @-+O(Ax ) = oz~ 2As FO(Ax”)
0 f O*f|  fix1 —2fi + fi
_ 2 | 4 _Ji+1 () i—1
Jiv1+fic1 = 2fi+Ax 922 | FO(Az™) = py) | — N -FO(Az?)

11



Numerical Flow Simulation

Finite difference method Y

= Can increase the order of accuracy by widening the stencil (i.e. using more
neighbors). For example (on a uniform grid):

Derivative Accuracy -5 — 4 -3 -2 -1 0 1 2 3 4 5

2 ‘ —1/2 0 1/2 \
4 ‘ 1/12 ~2/3 0 2/3 | -1/12 ‘

1 6 ~1/60 | 3/20 -3/4 0 3/4 | -3/20 | 1/60
8 1/280 | -4/105  1/5 —4/5 0 4/5 —1/5 | 4/105 -1/280
2 1 -2 1
4 ‘ ~1/12 4/3 _5/2 43 | -1/12 ‘

° 6 1/90 = -3/20 3/2 | -49M18 | 3/2 | -3/20 | 1/90
8 ~1/560 8/315 | -1/5 8/5 | -205/72 | 8/5 ~1/5 | 8/315 -1/560
2 ~1/2 1 0 1 1/2

3 4 1/8 -1 13/8 0 -13/8 1 ~1/8
6 —7/240 3/10 | -169/120 61/30 0 —61/30 | 169/120 | -3/10 | 7/240
2 1 -4 6 -4 1

4 4 ~1/6 2 —13/2 | 28/3 | -13/2 2 ~1/6
6 7/240 | -2/5 = 169/60 -122/15| 91/8 | -122/15 169/60 | —2/5 @ 7/240

Wikipedia 12



Numerical Flow Simulation

Finite difference method

» Focus on differentiation: 1st derivative

nvec = 2.7(3:12); % Number of grid points
figure, hold on, box on, grid on
for n = nvec
dx = 2*pi/n; x = —-pl + dx*(1l:n)"'; % Grid generation

%——- Differentiation matrix

e = ones(n,1);

D = sparse(l:n,[2:n 1],2*%e/3,n,n) ...
-sparse(l:n, [3:n 1 2],e/12,n,n);

D = (D-D'") /dx;
u = exp(sin(x)); % Function
uprime = cos(x).*u; % Analytical derivative
uprime num = D*u; % Numerical derivative
$———- Error
err = norm(uprime-uprime num, 1inf);
plot (n,err,’'r."', 'markersize',15),
end

set (gca, "xscale', '"log'), set(gca, 'yscale','log')
xlabel n, ylabel ('max error’),
plot (nvec, 500./nvec.”4, 'r')

1 Example code: 4"-order FD.
(In 1D, 2"d-order FD similar to 2"9-order FV.)

Example on a periodic domain:

sin(x)

u(x) =e

1.5

du/dx
o

—h
S
[6)]

max error

—

o
4
o

10° 10! 10° 108 10*

u' () = cos(z)u(x)

13



Numerical Flow Simulation

Finite difference method Y

= \Wide stencils are not ideal. In practice, accuracy not better if solution not
smooth enough at the scale of the grid.

= Alternatively, can increase the order of accuracy with “compact FD":
introduce additional degrees of freedom by combining Taylor expansions
that involve the unknown derivative at other grid points.

* For example, for a 4th-order approximation of the 1t derivative, instead of
looking for the standard expression

= afi—2+0fi—1 +cfi +dfiz1 +efito
" Ax

look for a compact expression of the form

afi—1+bfi +cfit1
Az

afi_1+Bf +vfii =

and find in this case:
3fic1 — 3fi+1

fi1+4f + fii1 = ~ 14




Numerical Flow Simulation

Finite difference method o

3fi—1 — 3fit1

= Example: flo +Afl+ fl, = —

* Denoting the discretized solution f = (fi, f2,..., fi,... fn), this can be written
as a linear system, to be solved for the derivative:

Af’ = Bf
* When solving a PDE, e.qg. of | cg =0,
ot ox
. of
standard FD vyields 57 cDf =0
while compact FD yields gi Fef =0 = Agi - cBf = 0

to be solved for f, and where A, B have a narrower stencil than D.

[+2

15



Numerical Flow Simulation

Discretization/computation methods

* Finite difference method (FDM)
= Finite volume method (FVM)

* Finite element method (FEM)
= Spectral element method (SEM)

= Spectral methods
= Particle-based methods

= | attice Boltzmann methods (LBM)

16



Numerical Flow Simulation

Finite element method

= Transform the problem into its variational formulation (“weak form?).
For example, to the steady diffusion problem written in "strong form™ as

Find usuchthat V’u+s=0 inV and wu=0 ondV

11 b av
corresponds the "weak form

Find u such that /V2uwdv+/sde:O Yw
0 Q

or —/Vu-deV—l—/sde:() Yw
Q Q

ldea: instead of solving the PDE directly, ask for its projection on any function to be satisfied. P

* Divide the domain into a partition of elements and nodes.

» |ntroduce basis functions (usually low-order polynomials) such that
?ﬁ@(aﬁz) =3 at nOde i, 1

v;(z;) =0 at other nodes j of the element.

(Piecewise def.. ¢; =0 on elements not containing node /) 0 o—e




Numerical Flow Simulation

Finite element method

1 b;
= Discretize the solution u and test function w as . : e

combinations of basis functions: T1... I

u(z) = Z u; i () w(x) = sz%(m)

= Note: because of the properties of the ¢, the unknowns u = (u1,us,...,u;,...

are nodal values: u; = u(x;)
* |nsert into the weak form to obtain the discretized equation:

—/Vu-deV+/sde:O Yw

2 (2

= Algebraic system, of matrix form: Au = Mb

with (sparse) matrices: A; :/Vwi-vzpj dV M, :/zp@-zpj dV
Q2 (2

18



Finite element method

Numerical Flow Simulation

Common
. . 1D 2D
basis functions
1
Linear P1 elements 1 P2
(1 node at each vertex)
0
L1 L2
Ny, oy
Quadratic P2 elements
(1 node at each vertex
and each edge midpoint)
0
L1 X3 L9




Numerical Flow Simulation

Discretization/computation methods

* Finite difference method (FDM)
= Finite volume method (FVM)

* Finite element method (FEM)

= Spectral element method (SEM)

= Spectral methods
= Particle-based methods

= | attice Boltzmann methods (LBM)

20



Spectral methods

= Expansion on basis functions that are defined globally (over the whole domain)

= On periodic domains:
Example: n=10 nodes

. . _ . k . . .
= Basis functions: i (z) = e'** (trigonometric polynomials) ——— e T
A : : T~ e -
Expansion: Fourier series -
n/2—1 n/2—1 N \\\//\\// °
wz) = > ptp(z) = Y dge™ X X X 3
- B N YN
=—n/2 k=—n/2
>\ v /:){\\.‘ /:X\\“ /:\ - /, 4
= The unknowns u = (t_y/2,...,uk,...) are the \\’;‘\ \/_/\ /\‘\//‘\\//'
expansion coefficients (and are not nodal values). BAVERVESVES VLRVl

= Differentiation becomes very easy: ' = ik, and thus
o ()= Y ikiwtk(a)

= Can solve any PDE in Fourier space, and then come back to physical space.

= Can also derive (dense) differentiation matrices (e.g. u’ = Du) and solve directly
In physical space. 21

Numerical Flow Simulation



spectral methOds Example on a periodic domain:

sin(x)

u(x) = e u' () = cos(z)u(x)

» Focus on differentiation: 1st derivative s

nvec = 2:2:100; % Number of grid points

figure, hold on, box on, grid on 0.5
for n = nvec;
h = 2*%pi/n; x = -pl1 + h*(l:n)"'; % Grid generation é 0
©
$——— Differentiation matrix 05
column = [0 .5%(-1)."(1l:n-1).*cot((l:n-1)*h/2)1;
D = toeplitz(column,column ([l n:-1:2])); 1
u = exp(sin(x)); % Function 15
uprime = cos(x).*u; % Analytical derivative '
g uprime num = D*u; % Numerical derivative
."c_?s . Convergence of spectral differentiation
= %—--- Error - ;"'”§;~""““' BEHHIEREEI
g err = norm(uprime num-uprime, 1inf); . . \\\\:*-n_ For smooth
(g ] plot (n,err, 'k.', 'markersize',15), J \\\\\ ~~~:g% functions:
5 = 0 1ot b sk reach spectral
™ set (gca, 'xscale', 'log’), / g COL 5 \ 105l . SR S |
(—B set (gca, 'yscale', 'log") _1eopdb 1 oot 20 2 BTl | Securacy
CC) xlabel n, vylabel ('max error'), 2 2 2 2 ;‘: \\ 3 (more accurate
1 21 1 3/ N .
e | 2% Tpeoty £ BN than any
3 | =Leot 3 1071%¢ *~ 1 polynomial-
L : " 6 order method)
; 5 cot 5 '_q?ﬁ No
1 1h e T y
\ 3C0t % 0 BPROOT:Y NN 1 O 1 W M A A 11 N
10° 10’ 10° 10° 10* 22

From “Spectral Methods in Matlab”, L. Trefethen



Numerical Flow Simulation

Spectral methods

= Expansion on basis functions that are defined globally (over the whole domain)

= On non-periodic domains:
= Basis functions: for ex. Ty (z) = cos (kcos™ " (z))
(Chebyshev polynomials). Expansion:

n

u(r) = Z ar Ty (x)

k=0

= The unknowns a = (ag,a;...,a,...,a,) are the
expansion coefficients (and are not nodal values).

= Collocation method: enforce the governing equations
on n+1 points. For ex.: Gauss-Chebyshev-Lobatto points:

()
Lgj = CO5 | —
n

—> obtain an algebraic system for the a, (dense matrix).

—
~

-

\ /

/ T~
\

VAN N

N ~——
[N N

A

[ N ~__~

N
1

23
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Numerical Flow Simulation

Discretization/computation methods

* Finite difference method (FDM)

= Finite volume method (FVM)

* Finite element method (FEM)

= Spectral element method (SEM)

= Spectral methods
= Particle-based methods

= | attice Boltzmann methods (LBM)

24



Numerical Flow Simulation

Spectral element methods

* One specific type of FEM, with high-order polynomials on each element:

= Domain divided into a partition of elements and nodes. B S S
= Within each element, nodes are clustered nearthe | | | | [y
boundaries (e.g. Gauss-Lobatto-Legendre points). N
: : : : : \ L
= Piecewise basis functions: Lagrange polynomials RN T S S A
such that ;(z;) =1 atnode |, \
vi(z;) =0 at other nodes j of the element. Niedocheofecdoocheofe ol
L1 Example: n=11 nodes
= Discretize the solution u as combination of basis functions: e
n {: §‘I=2 P ° o 0 *——o0—0-0
=D withi(@) N
=1 =4
" I m/\;oao S *—o-o
= |n 2D/3D, basis functions are often a tensor product
(separation of variables, unlike FEM); = -
Zuz,]w@ '-.Iz—Goa..c./f\woa.—ﬂ

= Combines flexibility of FEM (complex geometries) and spectral accuracy of SM. 25



Numerical Flow Simulation

Discretization/computation methods

* Finite difference method (FDM)
= Finite volume method (FVM)

* Finite element method (FEM)

= Spectral element method (SEM)

= Spectral methods
= Particle-based methods

= | attice Boltzmann methods (LBM)

26



Numerical Flow Simulation

Particle methods (here: smoothed-particle hydrodynamics, SPH)

= Mesh-free methods
= L agrangian description: track a discrete set of fluid “particles”

= Mass conservation is automatically satisfied

= Any field f(x) is represented as a spatial average:

100 = [ FOOW e = hdx % 37 ()W (x = x5, 1)V,

V;: volume
of particle j

W: weighting function
(“kernel”) of characteristic
size h (“smoothing length”)

= Solve NS eqgs (in Lagrangian form) and track particles by solving
dI’i
dt

= No special treatment required for interfaces (free-surface flow, multiphase flows)
= High computational cost, but well suited to parallel computing
= Some boundary conditions difficult to define 57



Numerical Flow Simulation

Discretization/computation methods

* Finite difference method (FDM)
= Finite volume method (FVM)

* Finite element method (FEM)

= Spectral element method (SEM)

= Spectral methods
= Particle-based methods

= [ attice Boltzmann methods (LBM)

28



Numerical Flow Simulation

Lattice Boltzmann methods

= Do not solve the Navier-Stokes equations. Model the fluid as discrete fictive
particles, that perform propagation and collision/relaxation steps.

= Fictive particles move in discrete directions (lattice). 96'___'___'95
They transport density over space and time. \T/

= | BM can also be understood as a discrete version of I;j:(i o
the Boltzmann equation (statistical/molecular description of ‘“.‘“.68

a probability density function for the velocity and momentum). Example of attice:

= Under some assumptions, can re-derive the NS D2Q9 (2D, 9 directions)
equations from the discrete LB equations.

= Pros: = Cons:
= Runs efficiently in parallel = High-Mach number flows
= Suitable for multi-phase flows = Multi-phase limited to small density ratios
= Handles well complex geometries

29



Summary: overview of some characteristics

Main advantage

Meshing capability

* Finite difference (FDM)
= Finite volume (FVM)

* Finite element (FEM)

= Spectral element (SEM)

= Spectral methods

= Particle-based methods

Numerical Flow Simulation

= | attice Boltzmann (LBM)

Very easy to implement
Conservation is enforced
Strong mathematical foundation
Combines flexibility of FEM with

accuracy of spectral methods

High accuracy (for smooth
solutions)

Suitable for multi-phase.
Easily parallelizable

Suitable for multi-phase.
Easily parallelizable

Simple geometries
Complex geometries
Complex geometries

Rather complex geometries

Simple geometries

Complex geometries

Complex geometries

30



Numerical Flow Simulation

Techniques for fluid interfaces

= Relevant to two-phase flows: immiscible liquids, liquid-gas free surface,
bubbles, eftc.

* |n particle methods (mesh-free, Lagrangian): no additional treatment needed

* |n other methods (mesh-based, Eulerian), several options:

1. Volume of fluid (VOF)
2. Level-set
3. Deforming mesh

31



Techniques for fluid interfaces

(Yo —
] 0| 0] O fluid 1
1. Volume of fluid (VOF)
« Each phase i characterized by its volume fraction «; (] o6pes )02 1~
- «; = 0: the mesh cell is empty of fluid i, 1 | 4 | 4| fluid2
= o; = 1:the mesh cell is full of fluid
» 0 < o; < 1:the mesh cell contains the interface between fluid 1 and one or more fluids.

» Ineachcell: ) .a; =1 (the volume is constant)

= Appropriate properties and variables (e.g. density) are assigned to each cell
(local weighted average): = Z o f

= Additional transport equations for volume fractions: (915. F(u-V)a; =0

= |[nterface not solved for, but approximately reconstructed.

Numerical Flow Simulation

= Pros: conserves volume; easy to implement.

= Cons: smears the surface; spatial derivatives (e.g. needed to compute the curvature for
surface tension effects) difficult to compute («; discontinuous across the interface) 35



Numerical Flow Simulation

Techniques for fluid interfaces

1. Volume of fluid (VOF)

= VVolume fraction is a convenient quantity for dynamic mesh adaption:
refine near the interface, coarsen far from it, update over time
—> accurate solution, efficient usage of resources.
(In Fluent: pre-defined adaption setting for VOF.)

= Example: “flow-focusing” microfluidic device for
droplet production. Re << 1.

| o2




Numerical Flow Simulation

Techniques for fluid interfaces

2. Level-set
= |nterface = a certain iso-contour of a globally defined level-set function .
= For ex., ¢ = signed distance to the interface; interface: iso-contour ¢ = 0.

© >0
| . p=0 \/N
= Interface location explicitly solved for W
with a transport equation: O © <0

(In practice, additional source term for numerical stability.)

= Pros: smooth and continuous, spatial derivatives can be calculated accurately.

= Cons: does not conserve volume; numerically challenging (e.g. highly distorted
interfaces).

34



Techniques for fluid interfaces

Ing mesh

3. Deform

= Solve flow in each phase with appropriate BC (involving stresses + surface tension).

= Move the interface with the fluid velocity

» Deform the mesh

the interface pos

, move Interior mesh points

Ion

given

according to a smoothing method (e.g. Poisson equation, or “material” behavior inspired

by solid mechanics).

Example: liquid jet in air, pre-wetted nozzle walls, small Weber number (surface tension >> inertia)
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Numerical Flow Simulation

(Comsol)

Techniques for fluid interfaces

3. Deforming mesh

= Useful to reduce the computational cost when the flow is of interest in one phase
only (if can neglect the flow in other phases, and its effect on the interface): mesh
and solve for the flow in that phase only. .

= Example: gravity-driven coating of the outer surface of a solid

axisymmetric ellipsoid rotating around its vertical axis. Re << 1. thin liquid

w

\1/ air

solid

|
|
|
|
|
! film
|
|
|
|
|
|
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Thank you for your attention!
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