
ME-474 Numerical Flow Simulation

Exercise: 1D steady incompressible flow; pressure-velocity coupling

Fall 2022

This is a “pen-and-paper” exercise that will help you understand how to solve a fluid flow, with one
specific method (here, the SIMPLE algorithm on a staggered grid). It is also a preparation for assessment
#1, which will focus on the numerical implementation with Matlab.

We consider the steady incompressible flow through a 2D planar, converging nozzle. We assume that the
flow is frictionless, i.e. we neglect viscosity. We will therefore solve the inviscid Navier-Stokes equations (also
called Euler equations). This assumption allows us to neglect the boundary layers that would develop along
the walls if the flow was viscous. If we further assume that the flow is unidirectional along the x direction,
and that all flow variables are uniform (i.e. constant) throughout every cross-section perpendicular to the
flow direction, we can reduce the problem from 2D to 1D, and develop a set of 1D governing equations.

Data and guidelines:

� Constant density ρ.

� Inlet cross-section area Ain. Outlet cross-section area Aout. The area A(x) varies linearly with distance
from the nozzle inlet (see sketch below).

� Inlet boundary condition: assume that the flow entering the nozzle is drawn from a very large chamber.
Far away upstream from the nozzle inlet, the fluid has zero momentum (i.e. the fluid is at rest). The
stagnation pressure is denoted p0.

� Outlet boundary condition: static pressure pout = 0 Pa.

� Assume the domain x ∈ [0, L] is discretized with N equidistant pressure nodes (original grid, N
control volumes) and n = N − 1 equidistant velocity nodes (staggered grid, n = N − 1 inner faces).

� Discretize the convective term of the momentum equation with the upwind differencing scheme (UD).

� The goal of this exercise is to derive explicitly the equations to be solved at the different steps of the
SIMPLE algorithm. This will make the numerical implementation easier.

In the SIMPLE algorithm, the velocity and pressure are decomposed into a guess and a correction,
u = u∗+u′, p = p∗+p′. The steps of the algorithm are summarized below (see also the lecture slides):

1. Solve the momentum equation for the guess velocity u∗, using a guess pressure p∗.

2. Solve the pressure correction equation for p′. This equation comes from the continuity equation,
where velocity is replaced by a simplified expression

ue = u∗e + u′e = u∗e + (p′P − p′E)de.

3. Correct pressure and velocity:
p = p∗ + p′,

ue = u∗e + u′e = u∗e + (p′P − p′E)de.

4. Iterate until convergence.
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Questions

1. Discretize the momentum equation on the velocity grid (staggered grid). Deduce the algebraic equa-
tion for the guess velocity u∗. For the nonlinear convective term, use Picard’s method with the
previous velocity uold. For the pressure term, use a guess pressure p∗.

2. Express the inlet pressure pin as a function of the upstream chamber stagnation pressure p0.

3. Derive the equation to be implemented for u∗1 in the first velocity CV.

4. The equation you just found is nonlinear in u∗1. Linearize the nonlinear term using Picard’s method
with the previous velocity. Next, use the deferred correction approach if needed.

5. Derive the equation to be implemented for u∗n in the last velocity CV.

6. Discretize the continuity equation on the pressure grid (original grid). Deduce the algebraic equation
for the pressure correction p′.

7. What is the equation to be implemented for p′A in the first pressure CV?

8. What is the equation to be implemented for p′N in the last pressure CV?

9. It is actually possible to find an analytical solution to this problem, which will be useful to assess the
accuracy of the numerical solution. Find the analytical expressions of u(x) and p(x).
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