ME470: Problem sheet 3 - 2D network structure

Solutions will be discussed in the exercise session on Thursday, November 14

- (1) A first look at rubber A sample of soft rubber has a shear modulus 10,000 times smaller than its bulk modulus.
- (a) Calculate the Poisson ratio ν . What does this value means?
- (b) Calculate the ratio of Young's modulus to bulk modulus. What is the physical meaning of this ratio?
- (2) Pre-stressed triangular network Here, we will derive two-dimensional area stretch modulus, K_A and two-dimensional shear modulus μ_A for pre-stressed regular triangular lattice from considering an individual plaquette.
- (a) Compute bulk modulus around the equilibrium point using an expansion of enthalpy functional. (Hint: consider a single plaquette that undergoes uniform extension)

$$K_A = \frac{\sqrt{3}k_{sp}}{2} \left(1 - \frac{\tau}{\sqrt{3}k_{sp}} \right) \tag{1}$$

(b) Compute shear modulus around the equilibrium point using an expansion of enthalpy functional. (Hint: consider a single plaquette under a simple shear)

$$\mu_A(\tau) = \frac{\sqrt{3}}{4} k_{sp} \left(1 + \frac{\sqrt{3}\tau}{k_{sp}} \right) \tag{2}$$

- (3) Poisson ratio of triangular lattice Consider a triangular lattice under constant two-dimensional isotropic stress τ .
- (a) Utilizing the relation between two-dimensional Poisson ratio ν_A , two-dimensional stretch modulus, K_A , and two-dimensional shear modulus, μ_A , derive an expression of ν_A in terms of τ and k_{sp} .
- (b) Find the range of isotropic stress τ where $\nu_A < 0$
- (c) Consider cytoskeleton of human blood cell, where the two dimensional shear modulus at zero isotropic stress is approximately equal to $\mu_A=5\times 10^{-6}J/m^2$. Calculate the minimum isotropic stress needed for $\nu_A<0$.