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ME470: Mechanics of Soft and Biological Matter
Lecture9: Bilayer Mechanics

Glycoprotein: protein with Glycolipid: lipid with
carbohydrate attached ./ carbohydrate
4 3  attached

Peripheral membrane Phospholipid

protein bilayer
Integral membrane Cholesterol Channel protein
protein

Sangwoo Kim

Red Blood Cells
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cPFL Bilayer
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Membrane as 2D continuum materials

(1) stretch/compression é»
L
@)sh 7
shear 7,
_ 4

(3) bending Q

—> (1) KMt = 2K = 2(k + 1)y~0.1 — 0.2 ] /m?
A

(can be increased by the presence of more than one molecules,

e.g. KFB¢ ~ 0.45] /m?, cholesterol is present)
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cPFL Bilayer

—> (2) In most biological/physiological situations, u, = 0, PL molecules are liquid in plane

—> (3) motivation: analogous to beam, bend a plate in one direction

1
1. l]z, = Ez uln Cﬁz(ilq

1 (/2 ;
2. U, = — U d -
b n f—h/z b(Z) Z .//

1
Up(z) = EKAjgfl dA

Z

€Il = Exx — E
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cPFL Bilayer
h/2

U, = 1Kj j(Z)ZdAd _1(hKs j 244
TR I AV: *To\12))°¢

1
| ke = kK,

Estimate: K, ~0.1] /m? h~4nm

kbNBOkBT

k, = 30kgT, a little larger than measurement, because bilayer is not a continuum sheet. Another
interpretation as two freely gliding monolayer yields, k, = K,h?/48
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cPFL Bilayer

Polymer brush theory, with steric interactions

ky, = 2 — h?K, Close to experiment (kb“~10 — 20kgT)

2

More generally: bending deformation of 3D continuum thin plate with thickness, h

Limit of small deviation from flatness XY plane

Zplate = ¢(x,y)

T

Neutral plane location
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cPFL Bilayer

Thin plate: easy to bend, normal forces are small
@ surfaces, but this stress projection is approximately zero

oixni = 0
ek throughout thickness
n=1z To leading order (small deviation from flatness)
—> Oxz = Oyz = 07z =0
E vV
Use Oik = T35 (Eik L Elz5ik)
ou ou dc
=0 X __7Z_ _
Oxz = 0z d0x d0x
ou ou d¢
=0 _y__7Z__
Ovz = 0z oy oy
0,, =0 —> 0= A+ =2 [(1 —V)e,, + v(exx + eyy)]
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cPFL Bilayer

— Uy = —Z% Uy = _Zg_;
— Exx = ~ZCxx Eyy = TZCyy Exy = ~ZCxy
= &m =3 K =2(Gxx + Syy)
Use energy per volume:
"o %Gikgik - 2(1E:‘I— V) (Eizk * 1 . vglzl)
Vv v(1l — 2v)

® School of
Engineering



cPFL Bilayer

E 1 2
I:> u= 2(1 +v) z* [m (Cxx + ny) + Z(Ca%y - Cxnyy)]

h/2 1 Eh3 2 2
—> Uy = f_h/zudz =3 1201 = v2) [(Cxx + cyy) +2(1 - V)(ny - Cxnyy)]

1 Eh3
I:> Upprate = 2 (12(1 — V2)> JJ ’(Cxx + ny)z +2(1 - V)(C)%y — Cxnyy)] dxdy

Bending modulus, k,
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cPFL Differential Geometry of Membrane

Note: the bending modulus still has the 2D Poisson’s ratio, so it does not directly translate into
2D elasticity
Eh3
12(1 —v?)

Note: two deformation modes can respond differently in 2D mechanics

—> In general (for 2D object), write

1
Upprate = ) Jf (Cxx + ny)sz + k¢ Jf (C)%y — Cxxgyy) dA

Gaussian bending modulus

Two bending moduli for two deformation modes:

1
Mean curvature: H = > (Sxx + Syy)

Gaussian curvature:  Kg = ¢xxSyy — Sxy
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cPFL Differential Geometry of Membrane

These are approximate expressions, for small deviation from flatness

U =% ﬂ(ZH)ZdA + kg ﬂ K¢ dA Helfrich free energy

The expression is universal, while mean and Gaussian curvatures may have different
expressions

e.g.) next order in ¢, ¢, in “Monge patch, ¢(x,y)"

_ (1 + C}ZJ)Cxx +(1+ C%)ny - ZCnyny

H
2(1 + 2 + ¢2)**

2
K, = CxxSyy — Cxy

- (1+¢2 +g32,)2
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cPFL Differential Geometry of Membrane

1 1
Note: Hl = — K.l =—
[H] = — [Kel = —
Note: from elastic plate, would expect, k; = —(1 —v)k, < 0
e.g. saddle point Cxx = —Syy [ U, = k¢ ﬂ(—g%y — g,%x) dA > 0

More general definition of mean and Gaussian curvature:

Principle curvature
/:/_\ Most curved (smallest R = R,) 1

1
:> Cl:R_l Cz

Least curved (largest R = R,) "R,
—>  General definit H=10+c) 1(1+1)
eneral detrinituon: = — - — | — 4 —
251 72T 2\R, T Ry
K. =(C;C, =
" g T Rk




cPFL Differential Geometry of Membrane

e.g.) SPHere

@ — U, = 8mk, + 4tk

= U, = nk, (i)

2
R

CYLInDER

Gauss-Bonnet Theorem: for closed surface

ﬂ K dA = fKGdA = 477(1 — g)

Where g is the topological genus of the surface
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cPFL Differential Geometry of Membrane

g = “Number of holes”

[ K;dA is constant contribution to Uy, as long as g does not change

—> Can be neglected in finding equilibrium unless g changes

—> Butalso: k; is very hard to measure
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cPFL Differential Geometry of Membrane

General differential geometric formalism to compute H and K:

—

First fundamental form:

Second fundamental form:
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2

0°x% (0X y 0x
du? \ou Jv
02X 0x o 0x
Judv \du OJv

923 afxaf ?
Jov? \ou OJv

2 =

x(u, v)
0% 0%
P =5, A= \EG — F?
_eG—2fF + gE
~ 2(EG —F?
i 91"
¢ EG—F?

14



