
ME470: Mechanics of Soft and Biological Matter
Lecture9: Bilayer Mechanics

Sangwoo Kim
MESOBIO – IGM – STI – EPFLSchool of 

Engineering



Bilayer

School of 
Engineering

2

Membrane as 2D continuum materials

(1) stretch/compression

(2) shear

(3) bending

(1) 𝐾!"# = 2𝐾!$%&% = 2 𝑘 + 1 𝛾~0.1 − 0.2	𝐽/𝑚'

(can be increased by the presence of more than one molecules, 
e.g. 𝐾!()* ≈ 0.45𝐽/𝑚', cholesterol is present)
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(2) In most biological/physiological situations, 𝜇! = 0, PL molecules are liquid in plane

(3) motivation: analogous to beam, bend a plate in one direction

𝑈! =
1
2
𝑘!&𝑐"𝑑𝐴

Bending modulus for 2D membrane

𝑈! =
1
ℎ
&
#$/"

$/"
𝑈! 𝑧 𝑑𝑧

1.

2.

𝑈! 𝑧 =
1
2
𝐾&&𝜀''" 𝑑𝐴

𝜀'' = 𝜀(( =
𝑧
𝑅
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𝑑𝐴𝑑𝑧 =

1
2
ℎ"𝐾&
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&𝑐"𝑑𝐴

𝑘! =
1
12ℎ

"𝐾&

Estimate: 𝐾&~0.1𝐽/𝑚" ℎ~4𝑛𝑚

𝑘!~30𝑘)𝑇

𝑘" = 30𝑘)𝑇, a little larger than measurement, because bilayer is not a continuum sheet. Another 
interpretation as two freely gliding monolayer yields, 𝑘" = ⁄𝐾!ℎ' 48
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𝑘! ≈
1
24
ℎ"𝐾&

Polymer brush theory, with steric interactions

Close to experiment (𝑘"+,~10 − 20𝑘)𝑇)

More generally: bending deformation of 3D continuum thin plate with thickness, h

Limit of small deviation from flatness XY plane

𝑧-#./0 = 𝜍(𝑥, 𝑦)

Neutral plane location
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𝜎*+𝑛+ = 0

Thin plate: easy to bend, normal forces are small

@ surfaces, but this stress projection is approximately zero 
throughout thickness

;𝑛 = 𝑧̂ To leading order (small deviation from flatness)

𝜎(, = 𝜎-, = 𝜎,, = 0

Use 𝜎12 =
𝐸

1 + 𝜈
𝜀12 +

𝜈
1 − 2𝜈

𝜀##𝛿12

𝜎34 = 0 𝜕𝑢3
𝜕𝑧

= −
𝜕𝑢4
𝜕𝑥

= −
𝜕𝜍
𝜕𝑥

𝜎54 = 0
𝜕𝑢5
𝜕𝑧 = −

𝜕𝑢4
𝜕𝑦 = −

𝜕𝜍
𝜕𝑦

𝜎44 = 0 0 =
𝐸

1 + 𝜈 1 − 2𝜈
1 − 𝜈 𝜀44 + 𝜈 𝜀33 + 𝜀55
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𝑢3 = −𝑧
𝜕𝜍
𝜕𝑥

𝑢5 = −𝑧
𝜕𝜍
𝜕𝑦

𝜀33 = −𝑧𝜍33 𝜀55 = −𝑧𝜍55 𝜀35 = −𝑧𝜍35

𝜀44 =
𝜈

1 − 𝜈
𝑧 𝜍33 + 𝜍55

Use energy per volume:

𝑢 =
1
2
𝜎12𝜀12 =

𝐸
2 1 + 𝜈

𝜀12' +
𝜈

1 − 𝜈
𝜀##'

𝜈
1 − 𝜈 𝜀##

' =
𝜈 1 − 2𝜈
1 − 𝜈 ' 𝑧

' 𝜍33 + 𝜍55
'
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𝑢 =
𝐸

2 1 + 𝜈 𝑧'
1

1 − 𝜈 𝜍33 + 𝜍55
'
+ 2 𝜍35' − 𝜍33𝜍55

𝑢! = G
67/'

7/'
𝑢𝑑𝑧 =

1
2

𝐸ℎ9

12 1 − 𝜈'
𝜍33 + 𝜍55

' + 2 1 − 𝜈 𝜍35' − 𝜍33𝜍55

𝑈",-#./0 =
1
2

𝐸ℎ9

12 1 − 𝜈'
J 𝜍33 + 𝜍55

'
+ 2 1 − 𝜈 𝜍35' − 𝜍33𝜍55  𝑑𝑥𝑑𝑦≈

Bending modulus, 𝑘!
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Note: the bending modulus still has the 2D Poisson’s ratio, so it does not directly translate into 
2D elasticity

𝐸ℎ9

12 1 − 𝜈'

Note: two deformation modes can respond differently in 2D mechanics

In general (for 2D object), write

𝑈",-#./0 =
1
2
𝑘"J 𝜍33 + 𝜍55

'𝑑𝐴 + 𝑘;J 𝜍35' − 𝜍33𝜍55 𝑑𝐴≈

Bending modulus Gaussian bending modulus

Two bending moduli for two deformation modes:

Mean curvature:

Gaussian curvature:

𝐻 ≡
1
2
𝜍33 + 𝜍55

𝐾; ≡ 𝜍33𝜍55 − 𝜍35'
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These are approximate expressions, for small deviation from flatness

The expression is universal, while mean and Gaussian curvatures may have different 
expressions

𝑈 =
1
2
𝑘"J 2𝐻 '𝑑𝐴 + 𝑘;J𝐾; 𝑑𝐴≈

e.g.) next order in 𝜍3, 𝜍5 in “Monge patch, 𝜍(𝑥, 𝑦)”  

𝐻 =
1 + 𝜍5' 𝜍33 + 1 + 𝜍3' 𝜍55 − 2𝜍3𝜍5𝜍35

2 1 + 𝜍3' + 𝜍5'
9/'

Helfrich free energy 

𝐾; =
𝜍33𝜍55 − 𝜍35'

1 + 𝜍3' + 𝜍5'
'
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Note: 𝐻 ≡
1
𝑚

𝐾; =
1
𝑚'

Note: from elastic plate, would expect, 𝑘; = − 1 − 𝜈 𝑘" < 0

e.g. saddle point 𝜍33 = −𝜍55 𝑈" = 𝑘;J −𝜍35' − 𝜍33' 𝑑𝐴 > 0

More general definition of mean and Gaussian curvature:

Most curved (smallest 𝑅 = 𝑅<)

Least curved (largest 𝑅 = 𝑅')

Principle curvature

𝐶! =
1
𝑅! 𝐶" =

1
𝑅"

General definition: 𝐻 =
1
2
𝐶< + 𝐶' =

1
2

1
𝑅<
+
1
𝑅'

𝐾; = 𝐶<𝐶' =
1

𝑅<𝑅'

≈
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e.g.)

𝑈! = 8𝜋𝑘! + 4𝜋𝑘2

𝑈! = 𝜋𝑘!
𝑙
𝑅

Gauss-Bonnet Theorem: for closed surface 

A𝐾2𝑑𝐴 = B𝐾2𝑑𝐴 = 4𝜋(1 − 𝑔)

Where 𝑔 is the topological genus of the surface
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𝑔 = “Number of holes”

𝑔 = 0

𝑔 = 1

𝑔 = 2

∬𝐾;𝑑𝐴 is constant contribution to 𝑈", as long as 𝑔 does not change

Can be neglected in finding equilibrium unless 𝑔 changes

But also: 𝑘; is very hard to measure
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General differential geometric formalism to compute 𝐻 and 𝐾;:

𝑥⃗(𝑢, 𝑣)

First fundamental form: 𝐸 ≡
𝜕𝑥⃗
𝜕𝑢

"

𝐹 ≡
𝜕𝑥⃗
𝜕𝑢 =

𝜕𝑥⃗
𝜕𝑣 𝐺 ≡

𝜕𝑥⃗
𝜕𝑣

"

∆≡ 𝐸𝐺 − 𝐹"

Second fundamental form:

𝑒 ≡
1
∆
𝜕"𝑥⃗
𝜕𝑢" =

𝜕𝑥⃗
𝜕𝑢 ×

𝜕𝑥⃗
𝜕𝑣

"

𝑓 ≡
1
∆

𝜕"𝑥⃗
𝜕𝑢𝜕𝑣

=
𝜕𝑥⃗
𝜕𝑢

×
𝜕𝑥⃗
𝜕𝑣

"

𝑔 ≡
1
∆
𝜕"𝑥⃗
𝜕𝑣" =

𝜕𝑥⃗
𝜕𝑢 ×

𝜕𝑥⃗
𝜕𝑣

"

𝐻 =
𝑒𝐺 − 2𝑓𝐹 + 𝑔𝐸
2(𝐸𝐺 − 𝐹')

𝐾; =
𝑒𝑔 − 𝑓'

𝐸𝐺 − 𝐹'

≈


