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Goal: How can we describe mechanics of one-dimensional filaments?

Genetic materials

(https://byjus.com/biology/genetic-material-dna-rna/)

Cytoskeleton

(https://medicine.nus.edu.sg/phys/lab/TsaiSY_Lab/LSM4232-L1.html)
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Biopolymer is one of the most important structural elements for cells
• DNA, RNA: Nucleotides
• Microfilament (actin filament): actin
• Microtubule: tubulin dimers
• Intermediate filament: diverse composition (keratins, vimentins)

1D elements (filaments, fibers, springs) can contribute to soft behaviors by
• Elastic response (bending dominant)
• Entropic response
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If relevant length scale of beam is ~𝑑 in 𝑦 and 𝑧, 𝐼~𝑑) 
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(e.g. circular cross section with diameter, 𝑑, )

For large bending deformation, 𝑅~𝐿

(𝐴~𝑑!)

Compare with strong stretching (𝜀~1)

Inextensible assumption is good for 1D element! (e.g. fixed contour length)
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Q: what determines equilibrium configuration of 1D element?
 A: competition between energetic influence (bending) and entropic influence (thermal fluctuations) 

Measure flexibility of 1D element
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𝜃&(𝑠) exhibit distinct distributions

Define 𝑓 𝑠 = cos 𝜃&(𝑠)  : orientation correlation function ( ?  means average over multiple configurations)

𝑑𝑓
𝑑𝑠

≈
𝑓 𝑠 + ∆𝑠 − 𝑓 𝑠

∆𝑠
=

cos 𝜃,(𝑠 + ∆𝑠) − cos 𝜃,(𝑠)
∆𝑠
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Here

Solution: 

𝜃, 𝑠 + ∆𝑠 ≈ 𝜃, 𝑠 +
𝑑𝜃, 𝑠
𝑑𝑠

∆𝑠 = 𝜃, 𝑠 + ∆𝜃, 𝑠

𝑑𝑓(𝑠)
𝑑𝑠 ≈

cos 𝜃, 𝑠 + ∆𝜃, 𝑠  − cos 𝜃, 𝑠
∆𝑠 =

cos 𝜃, 𝑠 cos ∆𝜃, 𝑠  − cos 𝜃, 𝑠
∆𝑠

𝑑𝑓(𝑠)
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≈
cos ∆𝜃, 𝑠  − 1
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Independent of s, constant

𝑓 𝑠 = 𝑒-%! = 𝑒
- !𝒍𝒑 Persistence length

Persistence length gives a characteristic length scale over which the orientation of a thermally undulating 
polymer become mostly uncorrelated 
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Consider 3D elastic beam with bending stiffness (flexural rigidity), 𝐸𝐼

𝜃 =
𝑠
𝑅

Use canonical ensemble (constant 𝑇, Boltzmann distribution)
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 sin 𝜃 𝑑𝜃𝑑𝜙 (Use spherical coordinate, consider 
all possible angle in 3D)
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We also know that for small 𝜃,(𝑠), 

cos 𝜃, 𝑠 ≈ 1 −
𝜃,( 𝑠
2

= 1 −
𝜃,( 𝑠
2

= 1 −
𝑘1𝑇
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𝑠

Also,

cos 𝜃, 𝑠 = 𝑒-!/3# ≈ 1 −
𝑠
𝑙4

𝒍𝒑 =
𝑬𝑰
𝒌𝑩𝑻
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F-actin Microtubule Intermediate 
filament DNA

𝑙4 10𝜇𝑚 6𝜇𝑚 1𝜇𝑚 53𝑛𝑚

𝐿 1 − 20𝜇𝑚 1 − 20𝜇𝑚 1 − 20𝜇𝑚 0.34𝑁*4𝑛𝑚

Semi-flexible Stiff Usually flexible Flexible for large 
enough 𝑁*4


