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Soft and Biological Matter
• Polymer melts/solutions
• Foams, emulsions, suspensions
• Granular materials
• Rubber
• Cells
• Tissues, Organs
• Membrane, vesicles

Many, but not all, soft and biological matter
• Are viscoelastic/viscoplastic
• Are self-organized
• Show “slow” relaxation of strain
• Show entropic effects (thermal fluctuations)

Mechanics
Biology

Material
science
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Objective: a comprehensive understanding of theoretical (and computational) modeling of soft and 
biological matter, emphasis on biological system

Part 1 Part 2 Part 3 Part 4

Mechanics of 
1D elements

Mechanics of 
2D network

Mechanics of 
membranes

Mechanics of 
cells and tissues
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Relation between external load and deformation

3D homogeneous isotropic linear elastic materials

Shear modulus

𝜎!" = 2𝜇 𝜀!" −
1
3
𝜀##𝛿!" + 𝐾𝜀##𝛿!"

Bulk modulus

2D homogeneous isotropic linear elastic materials

𝜏!$ = 2𝜇% 𝜀!$ −
1
2 𝜀##𝛿!$ + 𝐾%𝜀##𝛿!$

Area shear modulus Area stretch modulus

We mainly used strain energy formalism 𝑢 =
1
2
𝜎!"𝜀!"
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Use different energy functionals

𝑢 is minimal for 𝑑𝑠 = 0, 𝑑𝜀!" = 0

Statistical Mechanics

ℎ is minimal for 𝑑𝑠 = 0, 𝑑𝜎!" = 0

𝑓 is minimal for 𝑑𝑇 = 0, 𝑑𝜀!" = 0

𝑔 is minimal for 𝑑𝑇 = 0, 𝑑𝜎!" = 0

ℎ = 𝑢 − 𝜎!"𝜀!"

𝑔 = 𝑢 − 𝑇𝑠 − 𝜎!"𝜀!"

𝑓 = 𝑢 − 𝑇𝑠

Entropy: 𝑆 = 𝑘# ln Ω

Canonical ensemble:	𝑃𝑟𝑜𝑏(𝐸$) =
%
&
𝑒'()! 𝑍 =?

)!

𝑒'()!
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• Stretching vs bending à Inextensible assumption
• Persistence length: 𝑙# = ⁄𝐸𝐼 𝑘$𝑇

• competition between energetic influence and entropic influence
• Stiff rod vs flexible filament

Ideal chain: polymer model in the flexible limit

𝑅 = 0 𝑅@ = 𝑅 0 𝑅 = 𝑛𝑏@

• n inextensible segments are joined by frictionless 
hinge

• Same as random walk à Gaussian distribution

𝑘!": spring constant

𝐹 =
3𝑘A𝑇
𝑛𝑏@

𝑅



Part 1: 1D elements
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Freely jointed chain: realistic description at 𝑅~𝐿

• n inextensible segments are joined by frictionless 
hinge with weight attached at the end

• Use canonical ensemble 
• IC recovered for small 𝐹%

𝑅B = 𝑛𝑏 coth
𝑏𝐹B
𝑘A𝑇

−
𝑘A𝑇
𝑏𝐹B

Worm-like chain: continuous elastic curve in 3D

𝐹% =
𝑘$𝑇
𝑙#

1
4
1 −

𝑅%
𝐿

&'

−
1
4
+

𝑅%
𝐿

𝑏 = 2𝑙*



Part 1: 1D elements
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Bulk entropic materials: entangled entropic springs (disordered)

• Use affine deformation assumption
• microscopic deformation=macroscopic deformation

• Consider free energy change for stretching

∆Ψ =
𝑘A𝑇
2

𝜆@ +
2
𝜆@
− 3

𝜎++ =
𝐹+
𝐴
=

𝑁
𝐴𝐿,,+

𝑘.𝑇 𝜆 −
2
𝜆/

= 𝜌0𝑘.𝑇 𝜆 −
2
𝜆/

Chain volume density

(uniaxial stretching)

𝐸 = 3𝜌K𝑘A𝑇



Part 2: 2D network
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Constitutive relation (2D linear elastic): 𝜏!( = 𝐶!(")𝜀") 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑥, 𝑦

Symmetry and thermodynamics reduces coefficients from 16 to 6

6-fold symmetry only leaves 2 independent coefficients

Regular triangular spring network as 2D isotropic homogeneous elastic materials!



Part 2: 2D network
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Bulk modulus Shear modulus

𝐾% =
3
2
𝑘LM 𝜇% =

3
4
𝑘LM



Part 2: 2D network
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Network under external stress
ex

te
ns

io
n

𝑙 =
𝑙,

1 − ⁄𝜏 𝜏#
𝜏# = 3𝑘1*

C
om

pr
es

si
on Mode1: uniform contraction 

Mode2: collapse

𝜏* =
1
8
𝜏+

𝜏* < 𝜏 < 0 Uniform contraction

𝜏 < 𝜏* Collapse



Part 2: 2D network
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Prestressed network

𝐾, =
3
2
𝑘-# 1 −

𝜏
3𝑘-#

𝜇, =
3
4
𝑘-# 1 +

3𝜏
𝑘-#

Numerical simulation of 2D network
• Rigidity percolation transition
• Entropic effects (finite temperature)
• Disordered network structure (diluted triangular lattice, Mikado network, packing 

inspired network)



Part 3: Membrane
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Simple interface: surface tension

Surfactants: makes interface become elastic

Young-Laplace law

∆𝑃 = 𝑃. − 𝑃) = 𝛾
𝑑𝐴
𝑑𝑉

Phospholipids (e.g. DOPC)

Hydrophilic head

Hydrophobic tail

• Critical concentration 𝑛233 , where interface 
gets preferentially populated!

• Monolayer: 𝐾$ = 𝑘 + 1  



Part 3: Membrane
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Membrane as 2D continuum materials

(1) stretch/compression: 𝐾,+) = 2 𝑘 + 1 𝛾~0.1 − 0.2	𝐽/𝑚'

(2) shear: liquid in plane

(3) bending

• Plate bending in one direction: 𝑘# =
%
%/
ℎ/𝐾$

• 3D thin plate:  𝑈#,*4256 =
%
/

)7"

%/ %'8# ∬ 𝜍++ + 𝜍99
/ + 2 1 − 𝜈 𝜍+9/ − 𝜍++𝜍99  𝑑𝑥𝑑𝑦

𝑈 =
1
2𝑘+

R 2𝐻 '𝑑𝐴 + 𝑘/R𝐾/ 𝑑𝐴 Helfrich free energy 

Bilayer



Part 3: Membrane
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Differential geometry

More general definition of mean and Gaussian curvature:

𝐻 =
1
2
𝐶0 + 𝐶' =

1
2

1
𝑅0
+
1
𝑅'

𝐾/ = 𝐶0𝐶' =
1

𝑅0𝑅'

≈

Gauss-Bonnet Theorem: for closed surface 

@𝐾\𝑑𝐴 = C𝐾\𝑑𝐴 = 4𝜋(1 − 𝑔)

General differential geometric formalism 
to compute 𝐻 and 𝐾/:

𝐻 =
𝑒𝐺 − 2𝑓𝐹 + 𝑔𝐸
2(𝐸𝐺 − 𝐹')

𝐾/ =
𝑒𝑔 − 𝑓'

𝐸𝐺 − 𝐹'

≈



Part 3: Membrane
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Vesicle formation: competition between line 
tension and bending energy

Bending

𝑈 =
1
2
𝑘]@ 2𝐻 @𝑑𝐴 + 𝑘\@𝐾\ 𝑑𝐴 +J

^%
𝜆 𝑑𝑠 +

1
2
𝐾%@𝜀##@ 𝑑𝐴

Bending stretchingLine 
tension

Rupture: competition between line tension and 
stretching energy

≈

Refined membrane bending model
• Spontaneous curvature
• Area – difference elasticity model (ADE model)



Part 4: Cell & Tissues
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Vesicle shapes using the minimal model:

(1) Mode analysis

(2) Numerical computation: discretizing vesicle shape into triangulation

(3) Variational calculus: analytic approach to minimize a functional

𝑘]∇_𝜍 − 𝜎 = 0 Plate equation!



Part 4: Cell & Tissues
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Cell-substrate adhesion

Cell-substrate adhesion

Competition between adhesion & bending

Competition between adhesion & stretching



19

School of 
Engineering

Part 4: Cell & Tissues

Degrees of 
freedom 

1D

Spatial dimension

2D

3D

Particle model Voronoi model Cellular Potts model Vertex model
Phase field model

Computational efficiency
Complex cell shape

Cell-based discrete model
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Final exam

• 2:15pm – 5:15pm (3hours), December 19th, 2024, CE15

• You must bring your STUDENT ID and CALCULATOR 

• A formula sheet and scratch papers will be provided.

• Format

• 10 short questions

• 3 quantitative analysis questions 


