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Most flows are unstable... 

Saffman-Taylor 

Rayleigh-Taylor 

Taylor-Couette 

Kelvin-Helmholtz 

Lift-up and Streaks 

Tollmien-Schlichting 

Gravito-capillary waves 

Rayleigh-Plateau 

Rayleigh-Benard 

Tearing instability 

Meandering instability 

Traffic waves 

Benard-Marangoni 

Coiling instability 

Vortex shedding 
Flow separation 
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Taylor Couette 
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Taylor Couette 

Movie by Garcia, Chomaz, Huerre, LadHyX, France 
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Movie by Garcia, Chomaz, Huerre, LadHyX, France 
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Movie by Garcia, Chomaz, Huerre, LadHyX, France 

      



9 

Instability analysis: 

1. Physical mechanism 

2. Equations and boundary conditions 

3. Base state 

4. Linearized equations 

5. Normal mode expansion 

6. Dispersion relation 

7. Analysis of the dispersion relation 
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Taylor Couette 
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Navier-Stokes 

  convective derivative 

Laplacian 
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Navier-Stokes 

  convective derivative 

Laplacian 

inertia pressure stress viscous stress 
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Rayleigh criterion 

  

Inviscid flow 

steady flow 

axisymmetric flow 

parallel flow 

unidirectional flow 
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Rayleigh criterion 

  

Inviscid flow 

steady flow 

axisymmetric flow 

parallel flow 

unidirectional flow 
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Aspirateurs à force centrifuge, Dyson 
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Mechanism for Rayleigh Criterion 

Let us move an annulus of flow at rb to 

another location ra >rb 

b 
a 

Kelvin’s theorem: 

Velocity profile before  

moving annulus 

Velocity after  

moving annulus 
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Mechanism for Rayleigh Criterion 

Let us move an annulus of flow at rb to 

another location ra 

b 
a 

Kelvin’s theorem: 

Velocity profile before  

moving annulus 

Velocity after  

moving annulus 

Centrifugal force/ Pressure balance 
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new velocity 

b 
a 

if 

centrifugal force        >               pressure gradient  

 The annulus further escapes towards high r 

 UNSTABLE  

  

Centrifugal instabilities 

Mechanism and Rayleigh criterion 1916 
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new velocity 

b 
a 

if 

centrifugal force        <               pressure gradient  

 The annulus is brought back to its initial position  

 STABLE  

Centrifugal instabilities 

Mechanism and Rayleigh criterion 1916 

< 
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b 
a 

Condition for stability  

Centrifugal instabilities 

Mechanism and Rayleigh criterion 1916 
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b 
a 

Condition for stability  

Centrifugal instabilities 

Mechanism and Rayleigh criterion 1916 

axial vorticity 

ς=1/r d(ruθ)/dr 
Uθς>0 
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Bottausci & Petitjean 2002 

Centrifugal instability of a vortex 
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Anticyclone/Cyclone 

>0 

axial vorticity 

ς=1/r d(ruθ)/dr 

Condition for instability in presence of background rotation Ω 
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Anticyclone/Cyclone 

Fontane et al. (2002) 
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The half viscous analysis 

Inviscid analysis of a viscous base flow 

Velocity profile 

The base flow velocity profile is only selected by viscosity! 
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The half viscous analysis 

Inviscid analysis of a viscous base flow 

Velocity profile 

if stable, viscosity is expected  to be further stabilizing 

if unstable, we expect a critical reynolds number 
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Base flow 

Boundary conditions 

1 1 1 
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The half viscous analysis 

Inviscid analysis of a viscous base flow? 

viscous time? 

convective time? 



36 

The half viscous analysis 

Inviscid analysis of a viscous base flow 

viscous time 

convective time 

Reynolds number 
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General solution 

Boundary conditions 
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Rayleigh criterion 

<0 

Unstable if 
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Comparison Theory/Experiment 

Ω1 

Ω2 

UNSTABLE STABLE 
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Comparison Theory/Experiment 

Ω2 

Ω1 

UNSTABLE 

UNSTABLE 
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Comparison Theory/Experiment 
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Wall bounded flows 
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Gortler instability 
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Gortler instability 



45 

Backward facing step 

Re3D
 c 

Re2D
 c 

Re=400 

Beaudoin et al.  

(Eur. J. Mech. 2004). 

DNS by Kaiktsis et al. (JFM 93,96) and linear analysis by Barkley et al. (JFM 2002), 
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Global dispersion relation 

A single stationnary unstable global mode 

β=0.25 

Confirms Barkley et al. (JFM 2002) on backward facing step 
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Global dispersion relation 

A single stationnary unstable global mode 

Confirms Barkley et al. (JFM 2002) on backward facing step 
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Global dispersion relation 
A single stationnary unstable global mode 

β=0.1 

pressure induced separation (Alizard & Robinet 2007) 

σ 
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Global dispersion relation 
A single stationnary unstable global mode 

β=2 

rounded facing step (Marquet, Chomaz, Sipp & Jacquin 2007) 

β 

Re σ 


