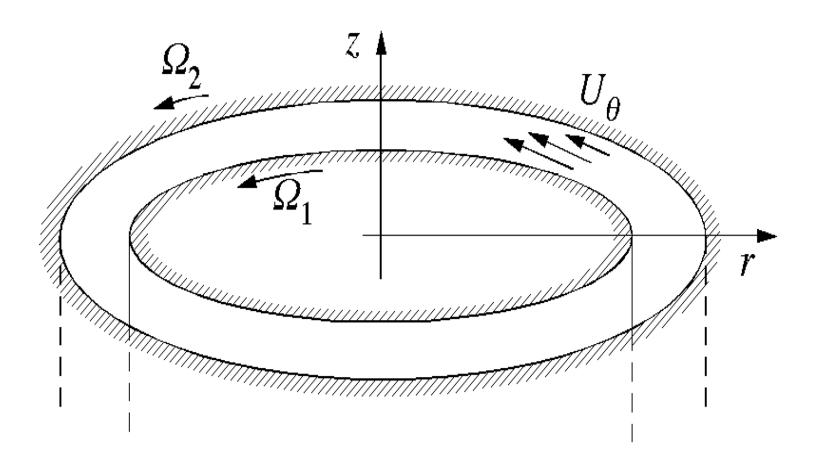
Most flows are unstable...

Vortex shedding Saffman-Taylor Flow separation **Tollmien-Schlichting** Rayleigh-Taylor **Lift-up and Streaks** Traffic waves **Meandering instability Gravito-capillary waves Taylor-Couette** Rayleigh-Plateau **Tearing instability Coiling instability** Rayleigh-Benard

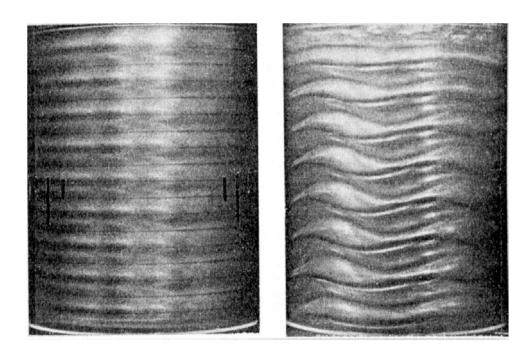
Kelvin-Helmholtz

Benard-Marangoni

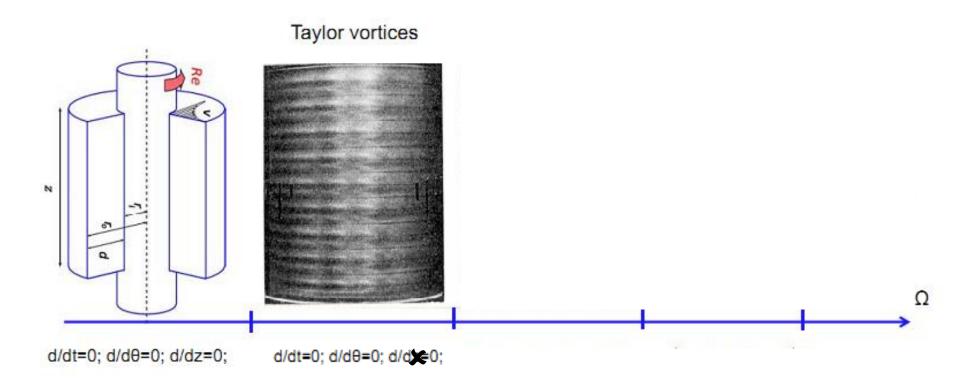


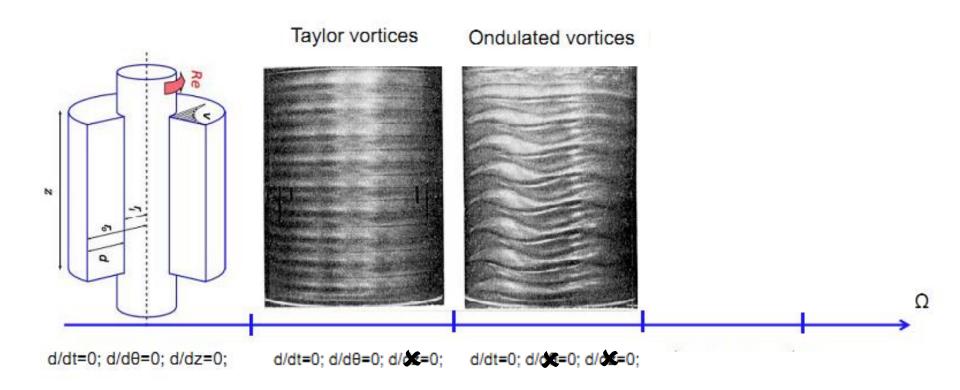
Movie by Garcia, Chomaz, Huerre, LadHyX, France

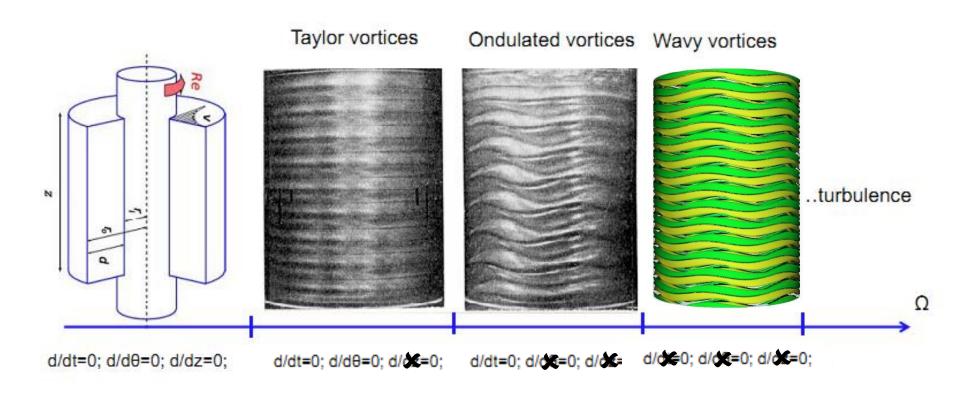
Movie by Garcia, Chomaz, Huerre, LadHyX, France



- Rouleaux annulaires de Taylor. (a) $Ta/Ta_c = 1.1$; (b) $Ta/Ta_c = 6.0$, rouleaux ondulants apparus suite à une instablité secondaire ($\lambda = 2\pi R/4$). (Fenstermacher, Swinney & Gollub 1979).

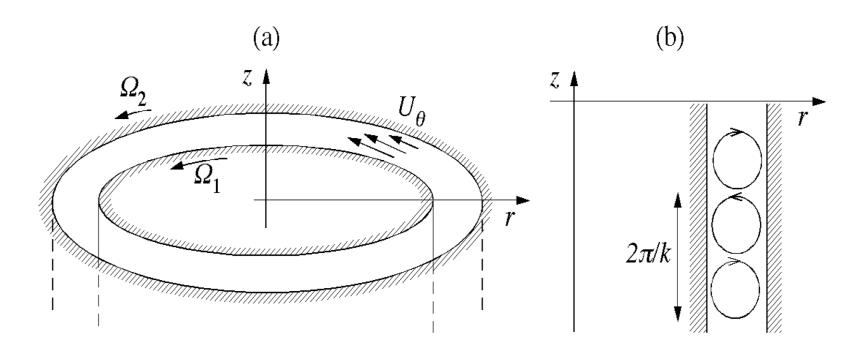






Instability analysis:

- 1. Physical mechanism
- 2. Equations and boundary conditions
- 3. Base state
- 4. Linearized equations
- 5. Normal mode expansion
- 6. Dispersion relation
- 7. Analysis of the dispersion relation



Navier-Stokes

$$\rho\left(\frac{Du_r}{Dt} - \frac{u_\theta^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu\left(\nabla^2 u_r - \frac{2}{r^2}\frac{\partial u_\theta}{\partial \theta} - \frac{u_r}{r^2}\right)$$

$$\rho\left(\frac{Du_\theta}{Dt} - \frac{u_r u_\theta}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left(\nabla^2 u_\theta + \frac{2}{r^2}\frac{\partial u_r}{\partial \theta} - \frac{u_\theta}{r^2}\right)$$

$$\rho\frac{Du_z}{Dt} = -\frac{\partial p}{\partial z} + \mu\nabla^2 u_z$$

$$\frac{D}{Dt} = \left(\frac{\partial}{\partial t} + u_r \frac{\partial}{\partial r} + \frac{u_\theta}{r} \frac{\partial}{\partial \theta} + u_z \frac{\partial}{\partial z}\right) \text{ convective derivative}$$

$$\nabla^2 = \left(\frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}\right) \text{ Laplacian}$$

Navier-Stokes

inertia

pressure stress viscous stress

$$\rho\left(\frac{Du_r}{Dt} - \frac{u_\theta^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu\left(\nabla^2 u_r - \frac{2}{r^2}\frac{\partial u_\theta}{\partial \theta} - \frac{u_r}{r^2}\right)$$

$$\rho\left(\frac{Du_\theta}{Dt} - \frac{u_r u_\theta}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left(\nabla^2 u_\theta + \frac{2}{r^2}\frac{\partial u_r}{\partial \theta} - \frac{u_\theta}{r^2}\right)$$

$$\rho\frac{Du_z}{Dt} = -\frac{\partial p}{\partial z} + \mu\nabla^2 u_z$$

$$\frac{D}{Dt} = \left(\frac{\partial}{\partial t} + u_r \frac{\partial}{\partial r} + \frac{u_\theta}{r} \frac{\partial}{\partial \theta} + u_z \frac{\partial}{\partial z}\right) \text{ convective derivative}$$

$$\nabla^2 = \left(\frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}\right) \text{ Laplacian}$$

Rayleigh criterion

Rayleigh criterion: A necessary and sufficient condition for <u>stability</u> of the $\{O, U_{\theta}(r), 0\}$ basic flow $(r \in]R_1, R_2[)$ to inviscid axisymmetric perturbations, is that $\partial (rU_{\theta})^2 / \partial r > 0$ everywhere in $[R_1, R_2]$.

Inviscid flow
steady flow
axisymmetric flow
parallel flow
unidirectional flow

Rayleigh criterion

Rayleigh criterion: A necessary and sufficient condition for <u>stability</u> of the $\{O, U_{\theta}(r), 0\}$ basic flow $(r \in]R_1, R_2[)$ to inviscid axisymmetric perturbations, is that $\partial (rU_{\theta})^2 / \partial r > 0$ everywhere in $[R_1, R_2]$.

Inviscid flow	$\mu = 0$
steady flow	$\partial/\partial t = 0$
axisymmetric flow	$\partial/\partial\theta=0$
parallel flow	$\partial/\partial z = 0$

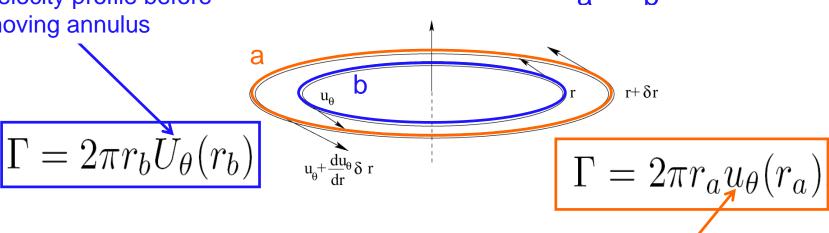
unidirectional flow $\{0, U_{\theta}(r), 0\}$

$$\rho U_{\theta}^2/r = \partial P/\partial r$$



Aspirateurs à force centrifuge, Dyson

Mechanism for Rayleigh Criterion Let us move an annulus of flow at rb to another location r_a >r_b

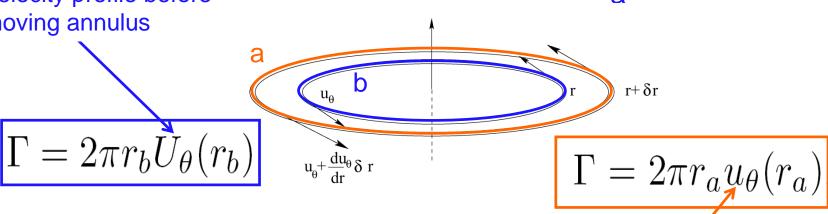


Kelvin's theorem:

$$u_{\theta}(r_a) = (r_b/r_a)U_{\theta}(r_b)$$

Velocity after moving annulus

Mechanism for Rayleigh Criterion Let us move an annulus of flow at r_h to another location r_a



Kelvin's theorem:

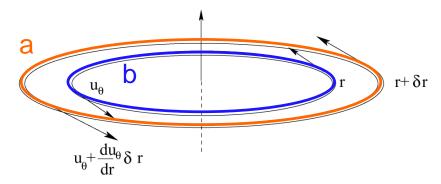
$$u_{\theta}(r_a) = (r_b/r_a)U_{\theta}(r_b)$$

Centrifugal force/ Pressure balance

 $r + \delta r$

$$\rho U_{\theta}^2/r = \partial P/\partial r$$

Mechanism and Rayleigh criterion 1916



new velocity

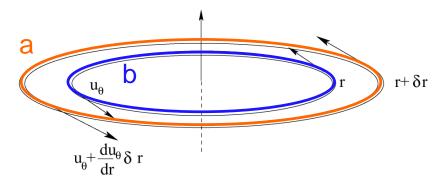
if
$$\rho u_{\theta}^2(r_a)/r_a > (dP/dr)(r_a) = \rho U_{\theta}^2(r_a)/r_a$$

centrifugal force >

pressure gradient

⇒ The annulus further escapes towards high r
⇒ UNSTABLE

Mechanism and Rayleigh criterion 1916



new velocity

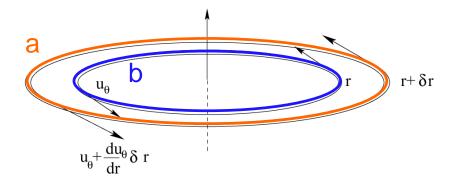
if
$$\rho u_{\theta}^2(r_a)/r_a < (dP/dr)(r_a) = \rho U_{\theta}^2(r_a)/r_a$$

centrifugal force

pressure gradient

⇒ The annulus is brought back to its initial position⇒ STABLE

Mechanism and Rayleigh criterion 1916

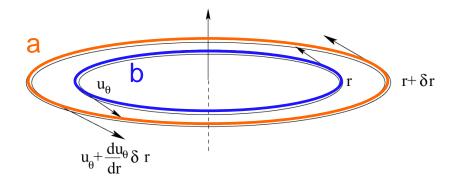


Condition for stability

$$U_{\theta}^{2}(r_{b})r_{b}^{2} < U_{\theta}^{2}(r_{a})r_{a}^{2}$$

$$d\left(rU_{\theta}\right)^{2}/dr > 0$$

Mechanism and Rayleigh criterion 1916



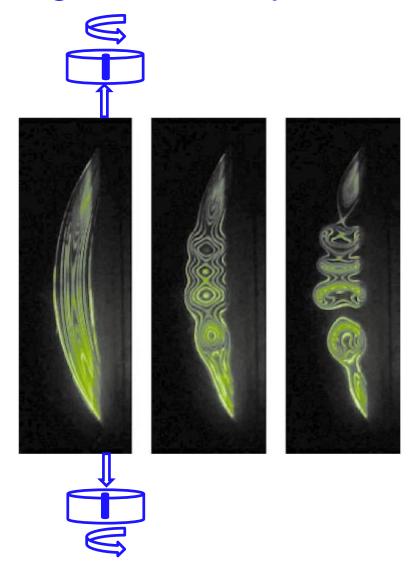
Condition for stability

$$U_{\theta}^{2}(r_{b})r_{b}^{2} < U_{\theta}^{2}(r_{a})r_{a}^{2}$$

$$d\left(rU_{\theta}\right)^{2}/dr > 0$$

axial vorticity $\varsigma=1/r d(ru_{\theta})/dr$

Centrifugal instability of a vortex



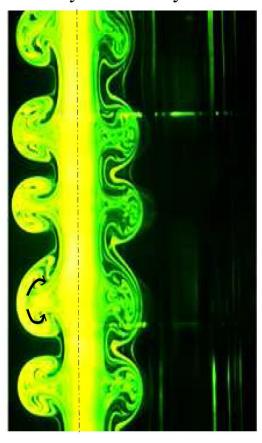
Bottausci & Petitjean 2002

Anticyclone/Cyclone

Condition for instability in presence of background rotation Ω

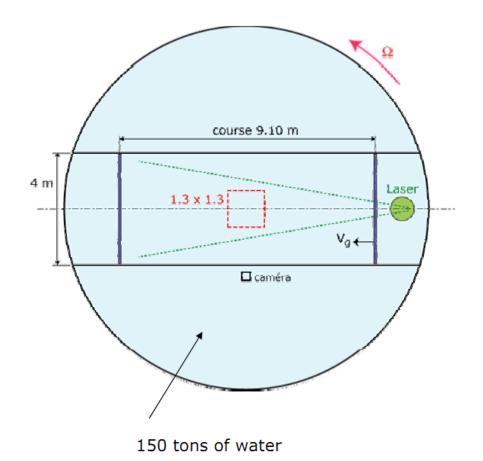
Anticyclone/Cyclone

Anticyclone Cyclone



Fontane et al. (2002)

Experimental setup: 'Coriolis' Rotating Plateform (LEGI, Grenoble)



9 m x 4 m x 1 m channel

Grid (of square mesh M=15 cm), translated at $V_q=0.3$ m s⁻¹

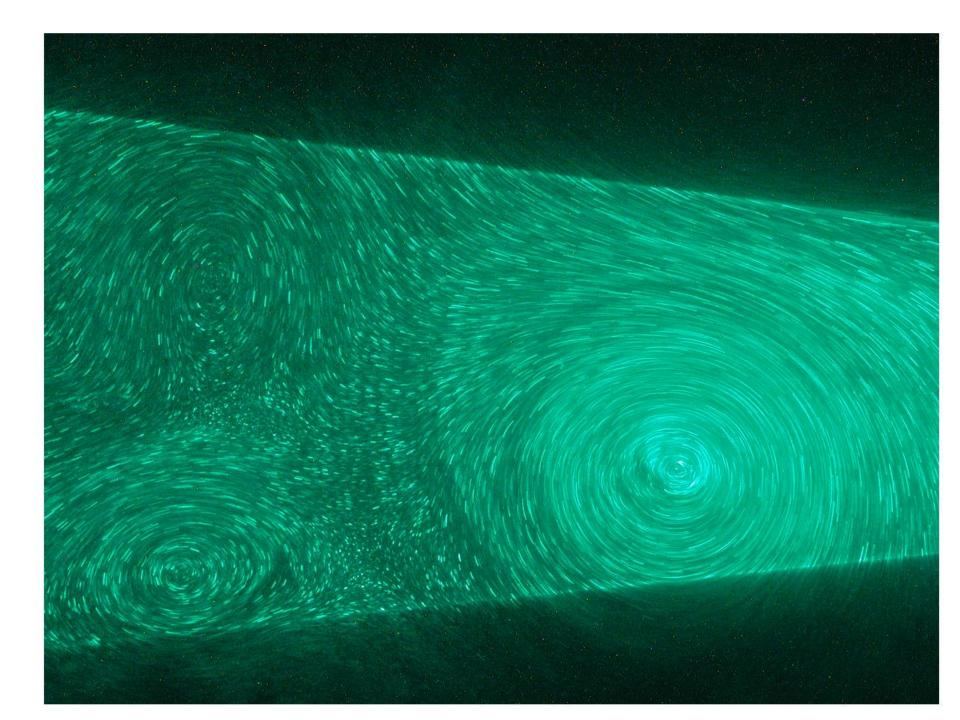
mounted on the **13 m** diameter 'Coriolis' rotating plateform

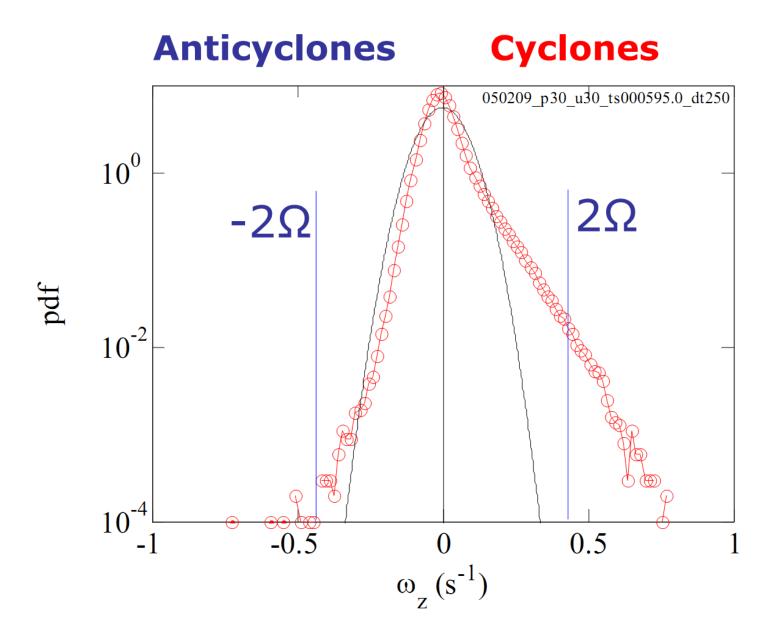
Rotation periods: T = 30, 60, 120 s 1 decay \sim 1 hour \sim 10⁴ M/V_g

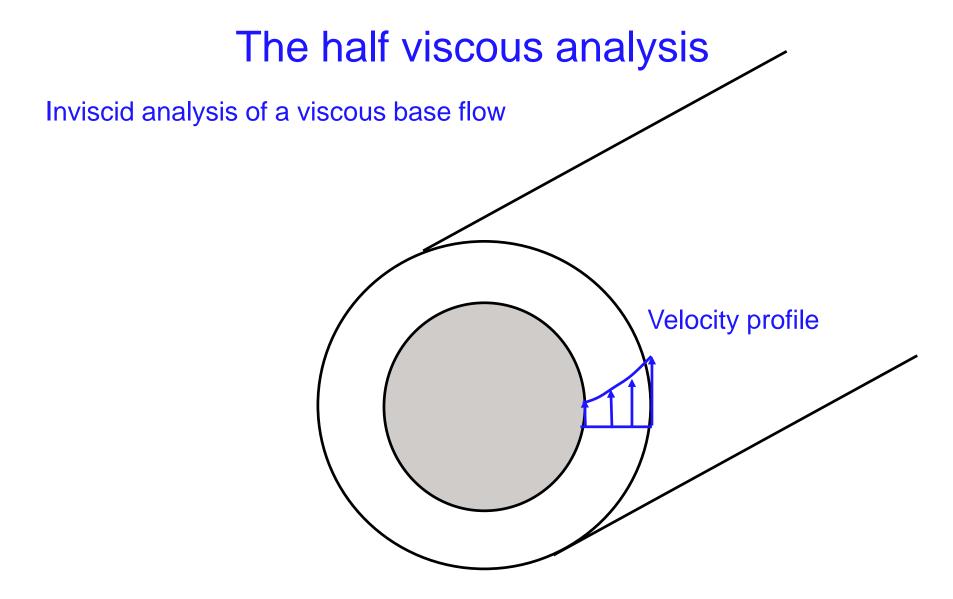
PIV measurements in horizontal and vertical planes 2000x2000 HR camera

Experimental setup: 'Coriolis' Rotating Plateform (LEGI, Grenoble)

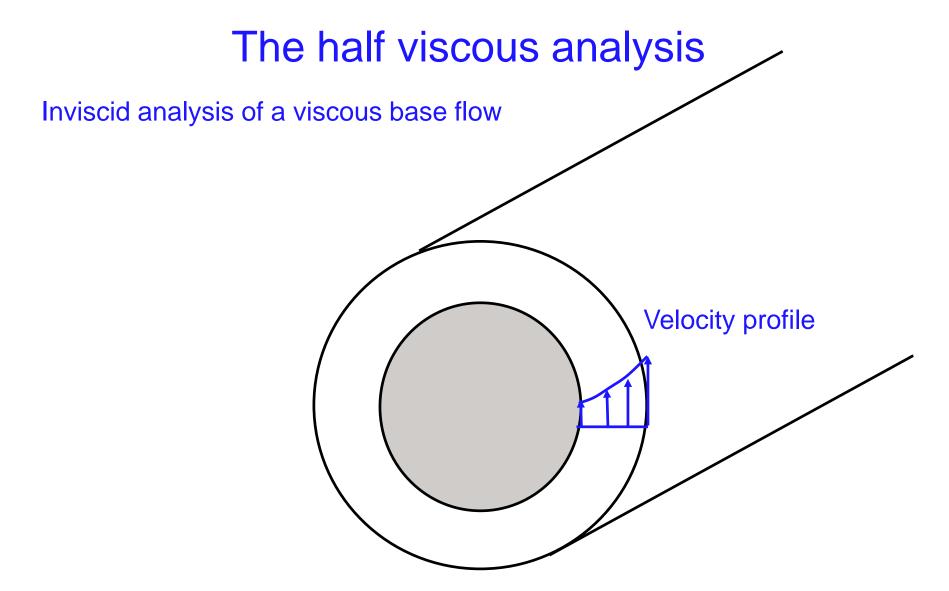
H. Didelle, S. Viboud







The base flow velocity profile is only selected by viscosity!



if stable, viscosity is expected to be further stabilizing if unstable, we expect a critical reynolds number

Base flow

$$\rho \frac{U_{\theta}^{2}}{r} = \frac{\partial P}{\partial r}$$

$$\frac{\partial^{2} U_{\theta}}{\partial r^{2}} + \frac{1}{r} \frac{\partial U_{\theta}}{\partial r} - \frac{U_{\theta}}{r^{2}} = 0$$

Boundary conditions

$$U_{\theta}(R_1) = R_1 \Omega_1$$

$$U_{\theta}(R_2) = R_2 \Omega_2$$

The half viscous analysis

Inviscid analysis of a viscous base flow?

viscous time?

convective time?

The half viscous analysis

Inviscid analysis of a viscous base flow

$$\tau_{\nu} = (R_2 - R_1)^2 / \nu$$

viscous time

$$\tau_{U_2} = (R_2 - R_1) / (\Omega_2 R_2)$$

convective time

$$\tau_{\nu}/\tau_{U_2} = (R_2 - R_1)\Omega_2 R_2/\nu = \text{Re}_2$$

Reynolds number

General solution

$$U_{\theta}(r) = Ar + B/r$$

Boundary conditions

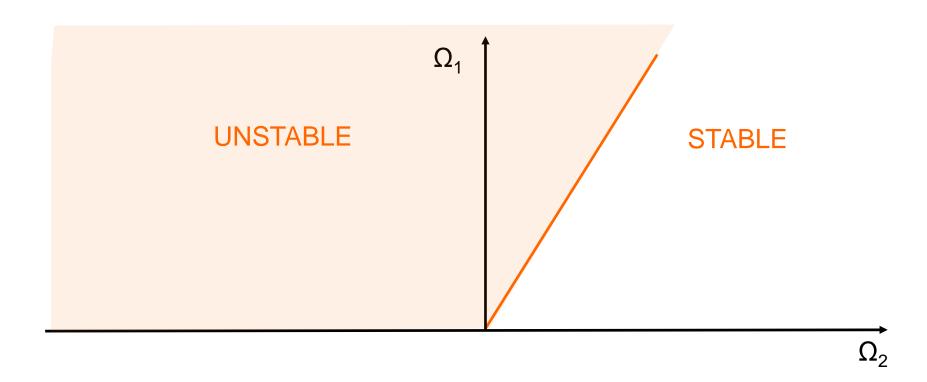
$$A = \frac{\Omega_2 R_2^2 - \Omega_1 R_1^2}{R_2^2 - R_1^2} \quad ; \quad B = \frac{(\Omega_1 - \Omega_2) R_1^2 R_2^2}{R_2^2 - R_1^2}$$

Rayleigh criterion

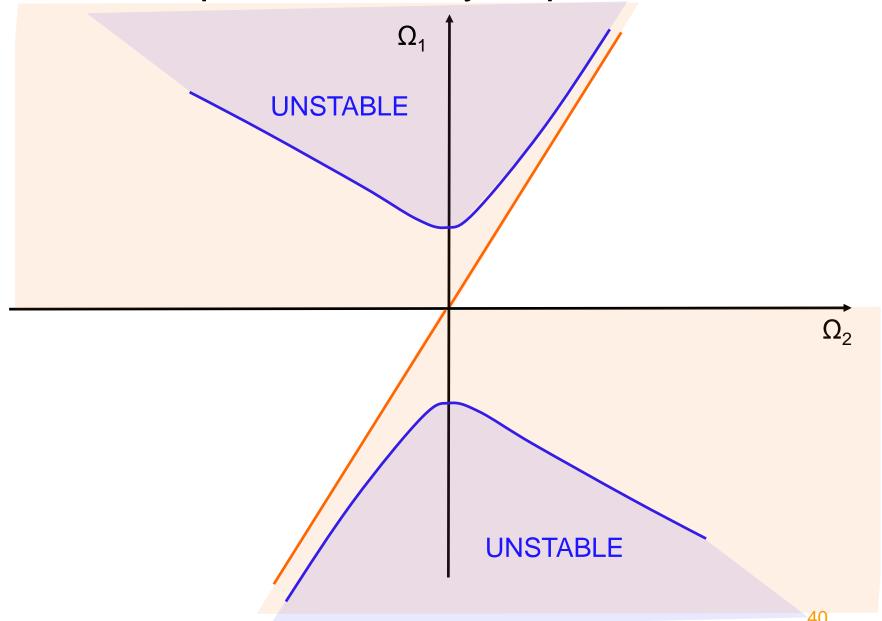
$$d(rU_{\theta})^2/dr = 4Ar(Ar^2 + B) < 0$$

Unstable if
$$\Omega_2 r_2^2 < \Omega_1 r_1^2$$
.

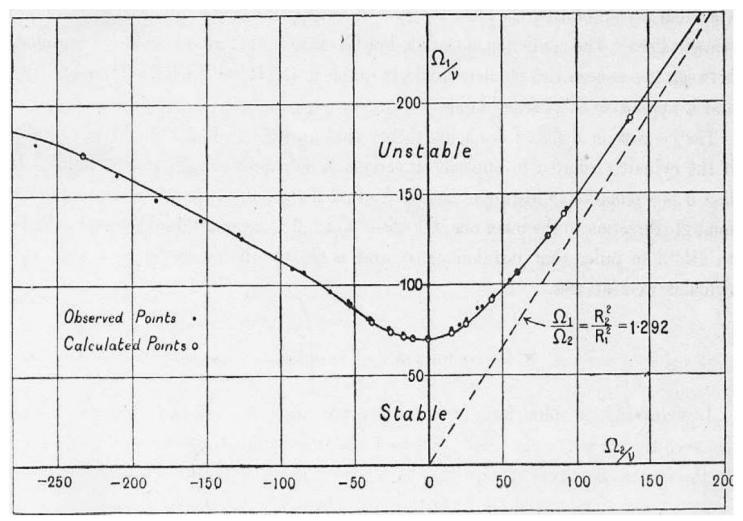
Comparison Theory/Experiment



Comparison Theory/Experiment

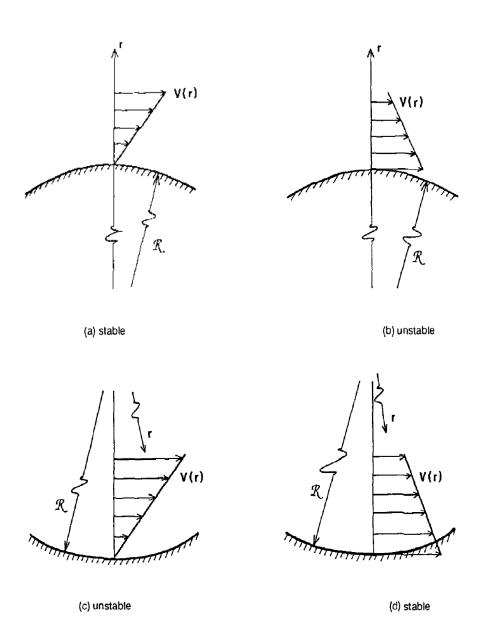


Comparison Theory/Experiment

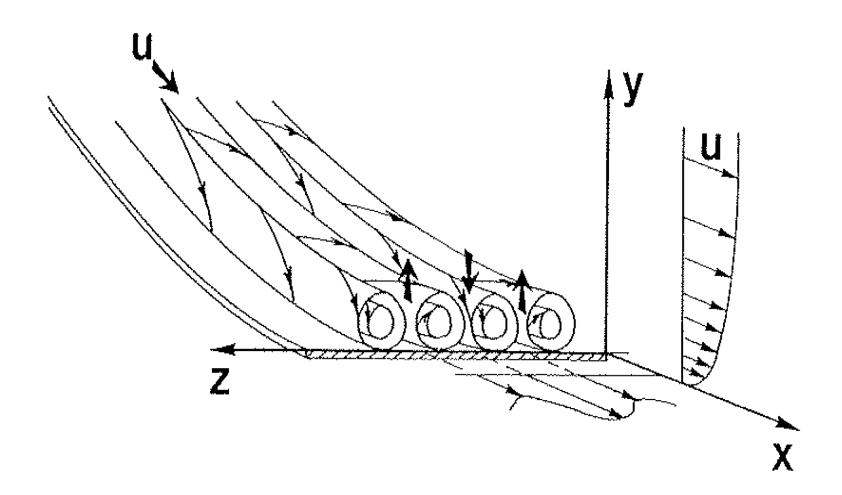


Comparison between observed and calculated speeds at which instability first appears in the case when $R_1 = 3.55$ cm, $R_2 = 4.035$ cm (from Taylor, 1923).

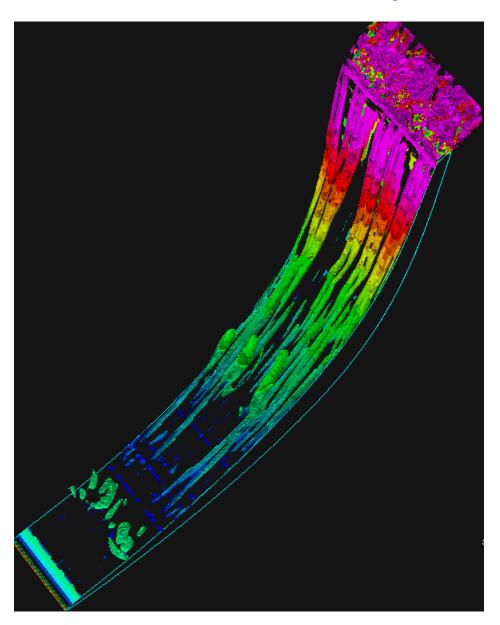
Wall bounded flows



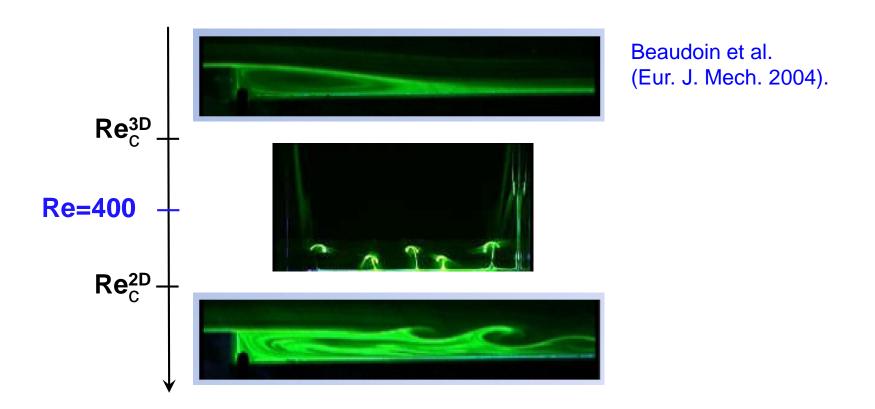
Gortler instability



Gortler instability



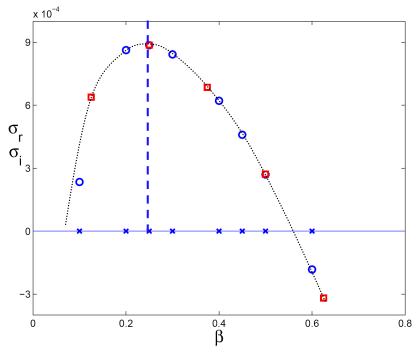
Backward facing step



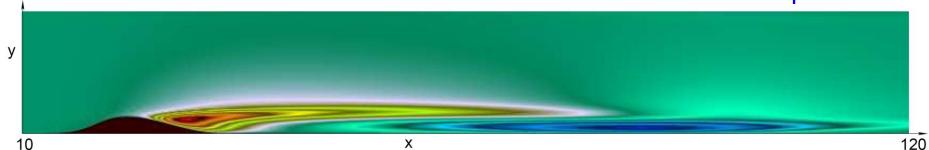
DNS by Kaiktsis et al. (JFM 93,96) and linear analysis by Barkley et al. (JFM 2002),

Global dispersion relation

A single stationnary unstable global mode



 β =0.25



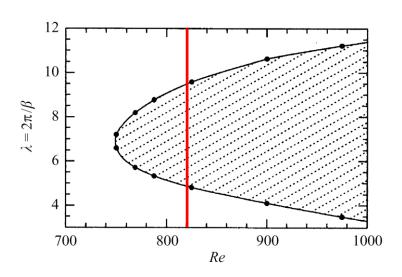
Confirms Barkley et al. (JFM 2002) on backward facing step

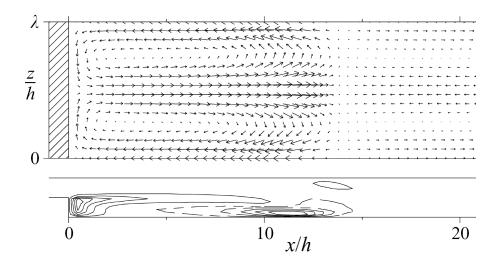
6

Global dispersion relation

A single stationnary unstable global mode

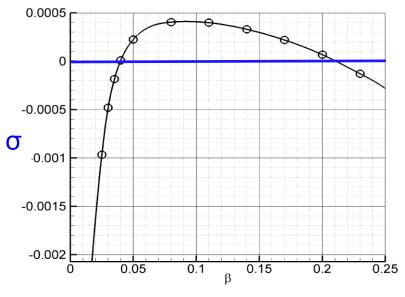
Confirms Barkley et al. (JFM 2002) on backward facing step

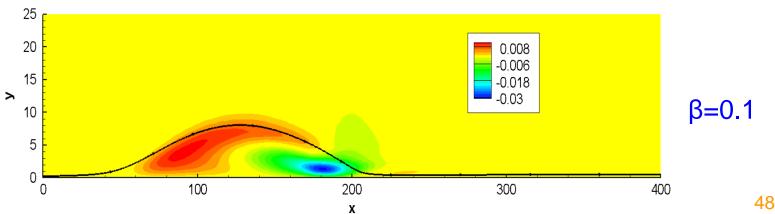




Global dispersion relation A single stationnary unstable global mode

pressure induced separation (Alizard & Robinet 2007)





Global dispersion relation A single stationnary unstable global mode

rounded facing step (Marquet, Chomaz, Sipp & Jacquin 2007)

