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Most flows are unstable...

Saffman-Taylor

Rayleigh-Taylor

Taylor-Couette

Kelvin-Helmholtz

Lift-up and Streaks

Tollmien-Schlichting

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Tearing instability

Meandering instability

Traffic waves

Benard-Marangoni

Coiling instability

Vortex shedding
Flow separation
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Taylor Couette
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Taylor Couette

Movie by Garcia, Chomaz, Huerre, LadHyX, France
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Taylor Couette
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Movie by Garcia, Chomaz, Huerre, LadHyX, France
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Movie by Garcia, Chomaz, Huerre, LadHyX, France
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Movie by Garcia, Chomaz, Huerre, LadHyX, France
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9

Instability analysis:

1. Physical mechanism

2. Equations and boundary conditions

3. Base state

4. Linearized equations

5. Normal mode expansion

6. Dispersion relation

7. Analysis of the dispersion relation
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Taylor Couette
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Navier-Stokes

convective derivative

Laplacian
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Navier-Stokes

convective derivative

Laplacian

inertia pressure stress viscous stress
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Rayleigh criterion

Inviscid flow

steady flow

axisymmetric flow

parallel flow

unidirectional flow
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Rayleigh criterion

Inviscid flow

steady flow

axisymmetric flow

parallel flow

unidirectional flow
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Aspirateurs à force centrifuge, Dyson
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Mechanism for Rayleigh Criterion

Let us move an annulus of flow at rb to

another location ra >rb

b
a

Kelvin’s theorem:

Velocity profile before 

moving annulus

Velocity after 

moving annulus
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Mechanism for Rayleigh Criterion

Let us move an annulus of flow at rb to

another location ra

b
a

Kelvin’s theorem:

Velocity profile before 

moving annulus

Velocity after 

moving annulus

Centrifugal force/ Pressure balance
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new velocity

b
a

if

centrifugal force        > pressure gradient

 The annulus further escapes towards high r

 UNSTABLE

Centrifugal instabilities

Mechanism and Rayleigh criterion 1916



22

new velocity

b
a

if

centrifugal force        < pressure gradient

 The annulus is brought back to its initial position 

 STABLE

Centrifugal instabilities

Mechanism and Rayleigh criterion 1916

<
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b
a

Condition for stability

Centrifugal instabilities

Mechanism and Rayleigh criterion 1916
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b
a

Condition for stability

Centrifugal instabilities

Mechanism and Rayleigh criterion 1916

axial vorticity

ς=1/r d(ruθ)/dr
Uθς>0
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Bottausci & Petitjean 2002

Centrifugal instability of a vortex



26

Anticyclone/Cyclone

>0

axial vorticity

ς=1/r d(ruθ)/dr

Condition for instability in presence of background rotation Ω
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Anticyclone/Cyclone

Fontane et al. (2002)
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The half viscous analysis

Inviscid analysis of a viscous base flow

Velocity profile

The base flow velocity profile is only selected by viscosity!
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The half viscous analysis

Inviscid analysis of a viscous base flow

Velocity profile

if stable, viscosity is expected  to be further stabilizing

if unstable, we expect a critical reynolds number
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Base flow

Boundary conditions

1 1 1
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The half viscous analysis

Inviscid analysis of a viscous base flow?

viscous time?

convective time?
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The half viscous analysis

Inviscid analysis of a viscous base flow

viscous time

convective time

Reynolds number
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General solution

Boundary conditions
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Rayleigh criterion

<0

Unstable if
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Comparison Theory/Experiment

Ω1

Ω2

UNSTABLE STABLE
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Comparison Theory/Experiment

Ω2

Ω1

UNSTABLE

UNSTABLE
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Comparison Theory/Experiment
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Wall bounded flows
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Gortler instability
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Gortler instability
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Backward facing step

Re3D
c

Re2D
c

Re=400

Beaudoin et al. 

(Eur. J. Mech. 2004).

DNS by Kaiktsis et al. (JFM 93,96) and linear analysis by Barkley et al. (JFM 2002),
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Global dispersion relation

A single stationnary unstable global mode

β=0.25

Confirms Barkley et al. (JFM 2002) on backward facing step
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Global dispersion relation

A single stationnary unstable global mode

Confirms Barkley et al. (JFM 2002) on backward facing step
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Global dispersion relation
A single stationnary unstable global mode

β=0.1

pressure induced separation (Alizard & Robinet 2007)

σ
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Global dispersion relation
A single stationnary unstable global mode

β=2

rounded facing step (Marquet, Chomaz, Sipp & Jacquin 2007)

β

Reσ


