
1

Most flows are unstable...

Saffman-Taylor

Rayleigh-Taylor

Taylor-Couette

Kelvin-Helmholtz

Lift-up and Streaks

Tollmien-Schlichting

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Tearing instability

Meandering instability

Traffic waves

Benard-Marangoni

Coiling instability

Vortex shedding
Flow separation
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Laminar  Instability  Pattern  Turbulence

Hoyt and Taylor (1977)

Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004) Rayleigh (1891)

no fluctuation  ε  1  fluctuation > average

R  R, λ  R, λ1, λ2  full spectrum of lengscales

steady  ω  ω1, ω2  full frequency spectrum
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Rayleigh Plateau Savart instability

Jetting
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Jetting
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Dripping
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Geneva’s jet
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Fascinating…

Versailles’ Grandes Eaux (Eggers and Villermaux 2008)
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Useful to determine the drop size distribution

Eggers and Villermaux 2008
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Useful to determine the drop size distribution

Ink jet printer (Eggers and Villermaux 2008) 
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In 1873, Joseph Plateau found experimentally that a vertically 

falling stream of water will break up into drops if its length is 

greater than about 3.13 to 3.18 times its diameter. 

Later, Lord Rayleigh showed theoretically that a vertically falling 

column of non-viscous liquid with a circular cross-section should 

break up into drops if its length exceeded its circumference, or π

times its diameter. 

A success story for hydrodynamic linear instability 

theory 



11

Physical mechanism

Surface tension aims at reducing the exposed surface.

For a given volume, compare a cylinder and a collection of spheres 

R

h

a

n spheres
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Physical mechanism

Surface tension aims at reducing the exposed surface.

For a given volume, compare a cylinder and a collection of spheres 
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Volume π R2h 4/3πa3 n 
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Physical mechanism

Surface tension aims at reducing the exposed surface.

For a given volume, compare a cylinder and a collection of spheres 

R

h

a

n spheres

Volume π R2h 4/3πa3 n n=3R2h/4a3

Surface?
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Physical mechanism

Surface tension aims at reducing the exposed surface.

For a given volume, compare a cylinder and a collection of spheres 

R

h

a

n spheres

n=3R2h/4a3
Surface 2π R2 + 2πRh 4πa2 n 
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Physical mechanism

Surface tension aims at reducing the exposed surface.

For a given volume, compare a cylinder and a collection of spheres 

R

h

a

n spheres

Surface 2π R2 + 2πRh 3πa2R2h/a3

Surface ratio?
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Physical mechanism

Surface tension aims at reducing the exposed surface.

For a given volume, compare a cylinder and a collection of spheres 

R

h

a

n spheres

Surface 2π R2 + 2πRh 3πa2R2h/a3

Surface ratio 3R/2a<1 a>3R/2

Should produce relatively large droplets





p Re 



2Re



p Re R 



p Re R 



p Re R  p Re R  2R
dp

dR Re



 0 :  stable



 0 :  unstable

Hand waving arguments

p(R)=γ/R

dp/dR=-γ/R2 <0 !
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Instability analysis:

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation
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1. Liquid jet

z

r

R0
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1. Equations

Navier Stokes  equation in cylindrical geometry
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1. Equations

Navier Stokes  equation in cylindrical geometry

Assume axisymmetry and no swirl
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1. Equations

Euler equation in cylindrical geometry

•Neglect gravity, viscosity, outer fluid

•Axisymmetric assumption

•Radial momentum 

•Axial momentum

•Continuity equation
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1. Kinematic boundary condition

R(z,t)

z

V
┴

= ∂R/∂t cos(α)

R

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= ur cos(α)- uz sin(α)

V
┴

V

uz

ur

u
┴1

∂R/∂t=ur- uz tan(α)    ∂R/∂t=ur- uz∂R/∂z
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1. Boundary conditions

r

z

n

t

R
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1. Dynamic boundary conditions

R

R

3

3
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2. Base state

z

r

R0

U
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3. Perturb and linearize

perturbation expansion

Variables Small perturbationBase state
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3. Linearized equations

Linearized  Euler equations
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3. Linearized equations

Laplace equation for pressure



30

3. linearized kinematic boundary conditions

This holds at r=R0 (flattening)
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3. Perturbed dynamic boundary conditions

and linearize
…
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3. Perturbed and linearized dynamic boundary 

condition
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4. Normal mode expansion

Fourier transform in z and t
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Solution to Laplace equation:

Bessel function of order 0
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4. Normal mode expansion

Retrieve radial velocity:
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4. Kinematic boundary condition
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4. Dynamic boundary condition
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4. Dispersion relation
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5. Dispersion relation

•Neutral if for all ω, Im(ω)=0                             at k>1/R0

•Unstable if  there exists one ω, Im(ω)>0        at k<1/R0

•Stable (or damped) if  for all ω, Im(ω)<0:

The flow considered is not damped, we have 

neglected dissipation by neglecting viscosity
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Destabilisation d’un jet

Large wavelengths

Small wavenumbers

UNSTABLE

Small wave

lengths

large wave

numbers

STABLE
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Surface tension is destabilizing as a consequence of the radial curvature

Surface tension is stabilizing as a consequence of the axial curvature



43

Instability analysis:

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation


