Most flows are unstable...

Vortex shedding Saffman-Taylor

Tollmien-Schlichting

Lift-up and Streaks

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Benard-Marangoni Kelvin-Helmholtz

Flow separation

Rayleigh-Taylor

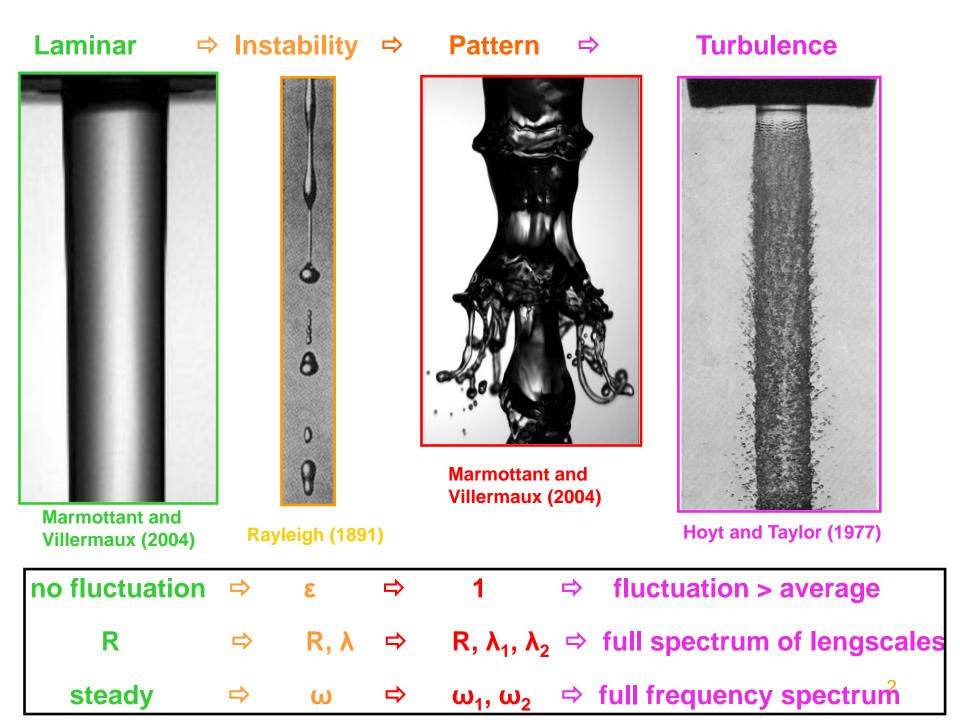
Traffic waves

Meandering instability

Taylor-Couette

Tearing instability

Coiling instability



Rayleigh Plateau Savart instability

Jetting

Jetting

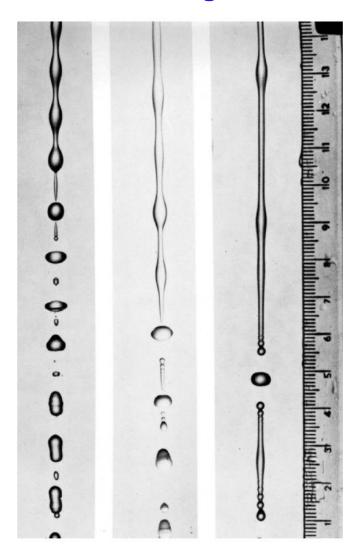
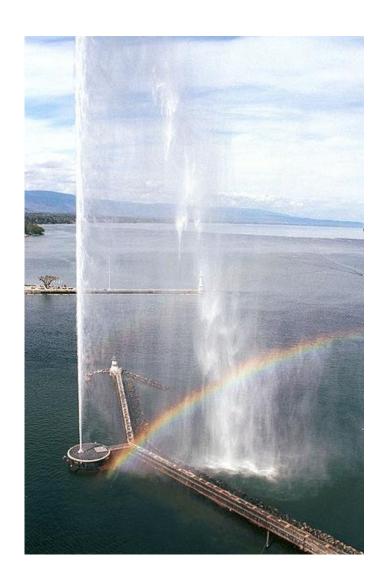


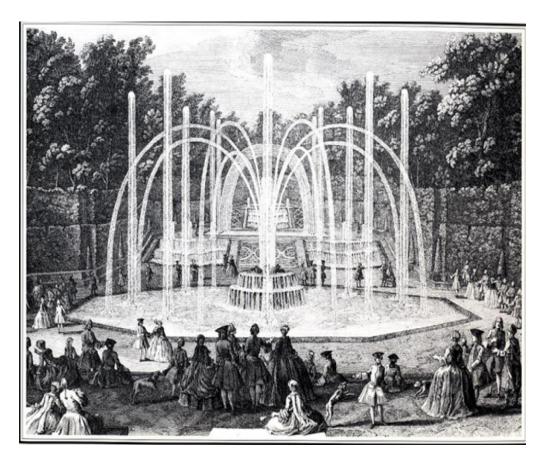
Fig. 2.8 – Un filet d'eau issu d'un tube de 4 mm de diamètre est perturbé à différentes fréquences par un haut-parleur. Les "longueurs d'onde" du chapelet de gouttes sont de 4,6, 12,5 et 42 diamètres. Cliché Rutland et Jameson 1971 (Van Dyke 1982).

Dripping

Geneva's jet



Fascinating...

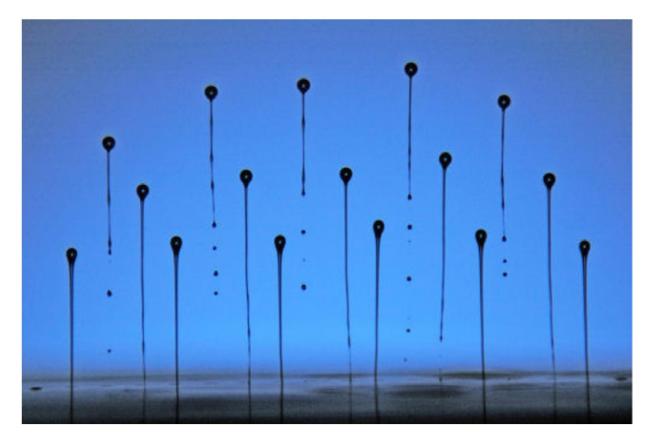


Versailles' Grandes Eaux (Eggers and Villermaux 2008)

Useful to determine the drop size distribution

Eggers and Villermaux 2008

Useful to determine the drop size distribution



Ink jet printer (Eggers and Villermaux 2008)

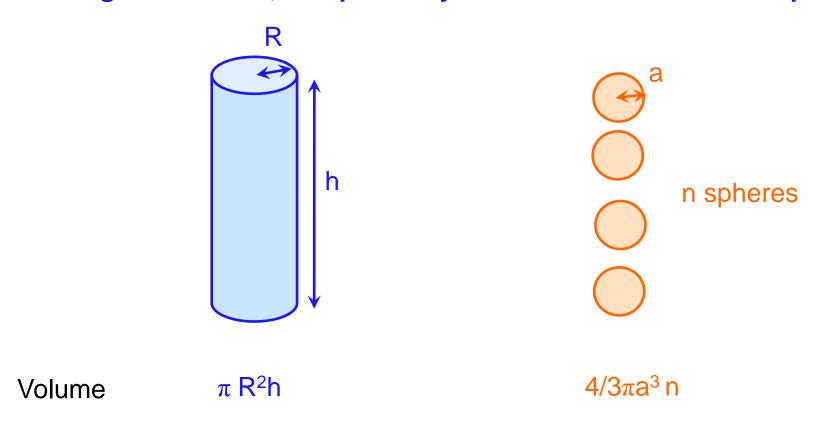
A success story for hydrodynamic linear instability theory

In 1873, Joseph Plateau found experimentally that a vertically falling stream of water will break up into drops if its length is greater than about 3.13 to 3.18 times its diameter.

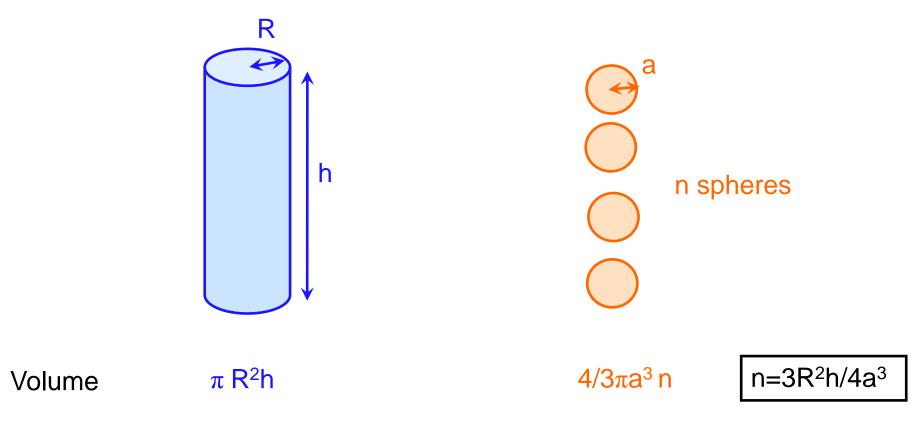
Later, Lord Rayleigh showed theoretically that a vertically falling column of non-viscous liquid with a circular cross-section should break up into drops if its length exceeded its circumference, or π times its diameter.

Surface tension aims at reducing the exposed surface. For a given volume, compare a cylinder and a collection of spheres

Surface tension aims at reducing the exposed surface. For a given volume, compare a cylinder and a collection of spheres

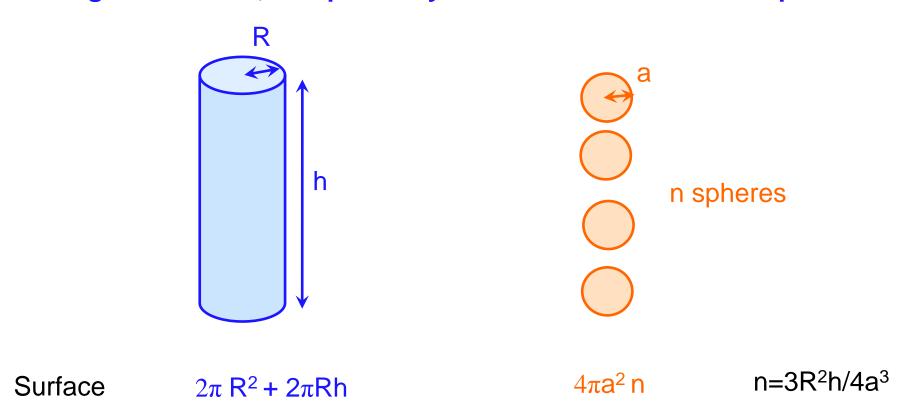


Surface tension aims at reducing the exposed surface. For a given volume, compare a cylinder and a collection of spheres

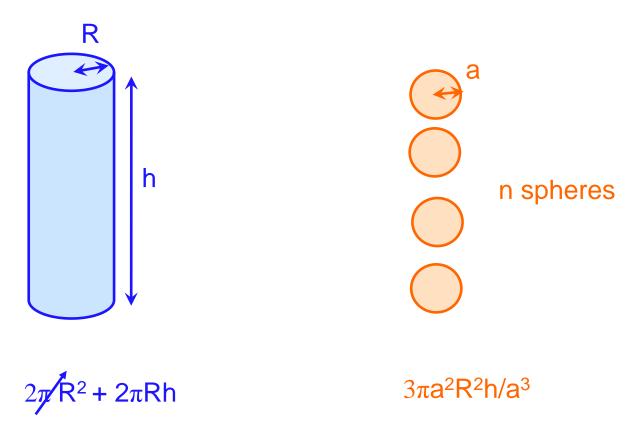


Surface?

Surface tension aims at reducing the exposed surface. For a given volume, compare a cylinder and a collection of spheres



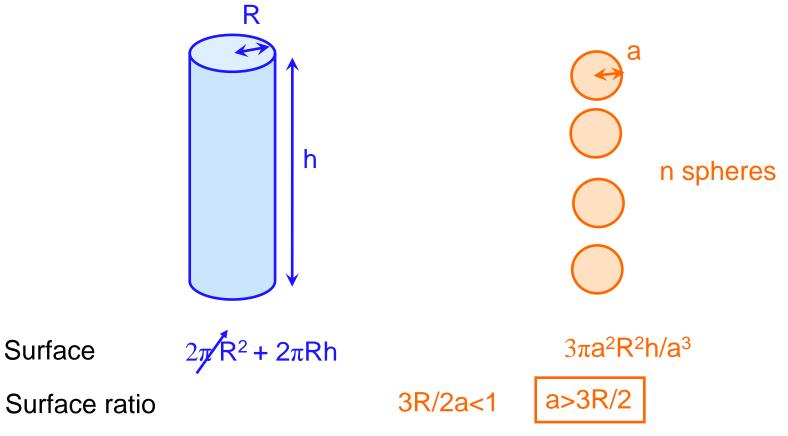
Surface tension aims at reducing the exposed surface. For a given volume, compare a cylinder and a collection of spheres



Surface ratio?

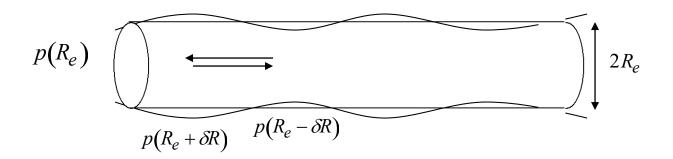
Surface

Surface tension aims at reducing the exposed surface. For a given volume, compare a cylinder and a collection of spheres



Should produce relatively large droplets

Hand waving arguments



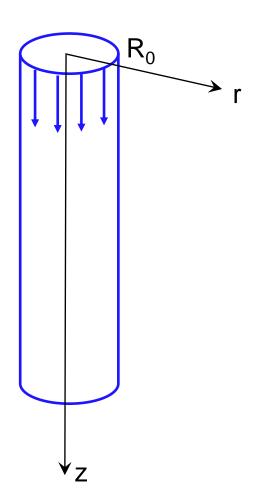
$$p(R_e + \delta R) - p(R_e - \delta R) = 2\delta R \frac{dp}{dR}\Big|_{R_e}$$
 < 0 : unstable
$$p(R) = \gamma / R$$

$$dp/dR = -\gamma / R^2 < 0 !$$

Instability analysis:

- 1. Equations and boundary conditions
- 2. Base state
- 3. Linearized equations
- 4. Normal mode expansion
- 5. Dispersion relation
- 6. Analysis of the dispersion relation

1. Liquid jet



1. Equations

Navier Stokes equation in cylindrical geometry

$$r: \rho\left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\phi}{r} \frac{\partial u_r}{\partial \phi} + u_z \frac{\partial u_r}{\partial z} - \frac{u_\phi^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \phi^2} + \frac{\partial^2 u_r}{\partial z^2} - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_\phi}{\partial \phi}\right] + \rho g_r$$

$$\phi: \rho\left(\frac{\partial u_\phi}{\partial t} + u_r \frac{\partial u_\phi}{\partial r} + \frac{u_\phi}{r} \frac{\partial u_\phi}{\partial \phi} + u_z \frac{\partial u_\phi}{\partial z} + \frac{u_r u_\phi}{r}\right) = -\frac{1}{r} \frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_\phi}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 u_\phi}{\partial \phi^2} + \frac{\partial^2 u_\phi}{\partial z^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \phi} - \frac{u_\phi}{r^2}\right] + \rho g_\phi$$

$$z: \rho\left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_\phi}{r} \frac{\partial u_z}{\partial \phi} + u_z \frac{\partial u_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \phi^2} + \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r u_r\right) + \frac{1}{r} \frac{\partial u_\phi}{\partial \phi} + \frac{\partial u_z}{\partial z} = 0.$$

1. Equations

Navier Stokes equation in cylindrical geometry

Assume axisymmetry and no swirl

$$r: \rho\left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\phi}{\partial \phi} \frac{\partial u_r}{\partial z} - \frac{u_\phi}{r}\right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \phi^2} + \frac{\partial^2 u_r}{\partial z^2} - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_\phi}{\partial \phi}\right] + \rho g_r$$

$$\phi: \rho\left(\frac{\partial u_\phi}{\partial t} + u_r \frac{\partial u_\phi}{\partial r} + \frac{u_\phi}{r} \frac{\partial u_\phi}{\partial \phi} + u_z \frac{\partial u_\phi}{\partial z} + \frac{u_r u_\phi}{r}\right) - \frac{1}{r} \frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_\phi}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 u_\phi}{\partial \phi^2} + \frac{\partial^2 u_r}{\partial z^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \phi} - \frac{u_\phi}{r^2}\right] + \rho g_\phi$$

$$z: \rho\left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_\phi}{r} \frac{\partial u_z}{\partial \phi} + u_z \frac{\partial u_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \phi^2} + \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r u_r\right) + \frac{1}{r} \frac{\partial^2 u_\phi}{\partial \phi} + \frac{\partial u_z}{\partial z} = 0.$$

1. Equations

Euler equation in cylindrical geometry

Radial momentum

$$\rho\left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + u_z \frac{\partial u_r}{\partial z}\right) = -\frac{\partial p}{\partial r} + \mu\left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r}\right) + \frac{\partial^2 u_r}{\partial z^2} - \frac{u_r}{r^2}\right] + \rho g_r$$

Axial momentum

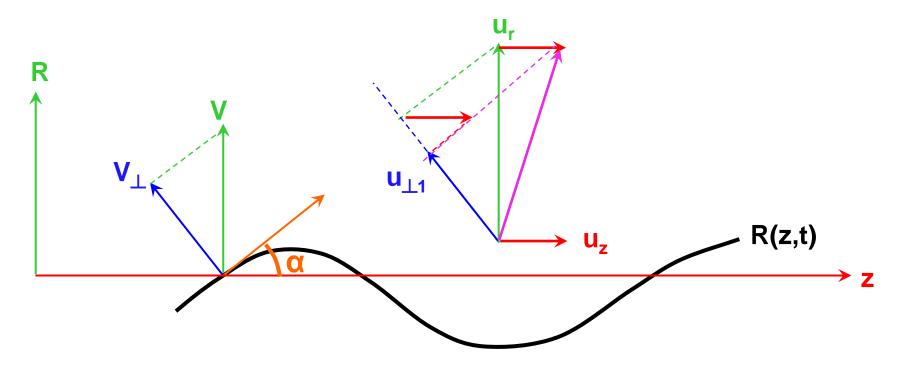
$$\rho\left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + u_z \frac{\partial u_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r}\right) + \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z$$

Continuity equation

$$\frac{1}{r}\frac{\partial}{\partial r}\left(ru_r\right) + \frac{\partial u_z}{\partial z} = 0.$$

- Neglect gravity, viscosity, outer fluid
- Axisymmetric assumption

1. Kinematic boundary condition



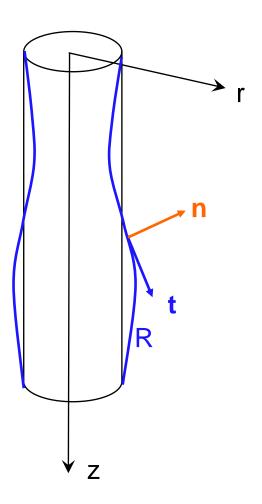
Kinematic condition: impermeability (no penetration)

No fluid particles going across the interface through the normal direction

$$\begin{array}{c} V_{\perp} = \partial R/\partial t \, cos(\alpha) \\ u_{\perp 1} = \, u_r \, cos(\alpha) - \, u_z \, sin(\alpha) \end{array} \end{array} \right\} \, \partial R/\partial t = u_r - \, u_z \, tan(\alpha) \ \, \Rightarrow \boxed{ \partial R/\partial t = u_r - \, u_z \partial R/\partial z }$$

1. Boundary conditions

$$P - P_{atm} = \gamma C$$



$$\mathbf{t} = \frac{\left(\frac{\partial R}{\partial z}, 0, 1\right)}{\sqrt{1 + \frac{\partial R}{\partial z}^2}}$$

$$\mathbf{n} = \frac{\left(1, 0, -\frac{\partial R}{\partial z}\right)}{\sqrt{1 + \frac{\partial R^2}{\partial z^2}}}$$

$$C = \nabla . \mathbf{n}$$

1. Dynamic boundary conditions

$$C = \nabla .\mathbf{n}$$

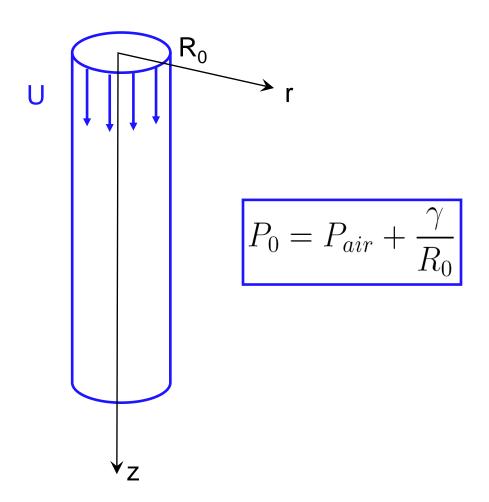
$$\nabla .(f_r, f_\theta, f_z) = \frac{1}{r} \frac{\partial (rf_r)}{\partial r} + \frac{1}{r} \frac{\partial f_\theta}{\partial \theta} + \frac{\partial f_z}{\partial z}$$

$$C = \frac{1}{R} \frac{\partial \left(r \frac{1}{\sqrt{1 + \frac{\partial R}{\partial z}^2}}\right)}{\partial r} - \frac{\partial^2 R}{\partial z^2} \frac{1}{\sqrt{1 + \frac{\partial R}{\partial z}^2}}$$

$$C = \frac{1}{R} \frac{\partial^2 R}{\partial z^2} \frac{1}{\sqrt{1 + \frac{\partial R}{\partial z}^2}}$$

25

2. Base state



3. Perturb and linearize perturbation expansion

$$U_r = 0 + \epsilon u_r(z, r, t)$$

$$U_z = U + \epsilon u_z(z, r, t)$$

$$P = P_0 + \epsilon p(z, r, t)$$

$$R = R_0 + \epsilon \eta(z, t)$$

Variables Base state Small perturbation

3. Linearized equations

Linearized Euler equations

$$\frac{\partial u_r}{\partial t} + U \frac{\partial u_r}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r}$$

$$\frac{\partial u_z}{\partial t} + U \frac{\partial u_z}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z}$$

$$\frac{1}{r} \frac{\partial r u_r}{\partial r} + \frac{\partial u_z}{\partial z} = 0$$

3. Linearized equations

Laplace equation for pressure

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{\partial^2 p}{\partial z^2} = 0$$

3. linearized kinematic boundary conditions

$$\frac{\partial \eta}{\partial t} + U \frac{\partial \eta}{\partial z} = u_r$$

This holds at $r=R_0$ (flattening)

3. Perturbed dynamic boundary conditions

$$R = R_0 + \epsilon \eta$$

$$\mathbb{C} = \frac{1}{R_0} \left(1 - \frac{1}{2} \epsilon^2 \frac{\partial \eta^2}{\partial z} \right) \left(1 - \epsilon \frac{\eta}{R_0} \right) - \epsilon \frac{\partial^2 \eta}{\partial z^2} \dots$$

$$C = \frac{1}{R_0} - \epsilon \frac{\eta}{R_0^2} - \epsilon \frac{\partial^2 \eta}{\partial z^2}$$

3. Perturbed and linearized dynamic boundary condition

$$|P_0 + \epsilon p|_R = P_{air} + \gamma \left(\frac{1}{R_0} - \epsilon \frac{\eta}{R_0^2} - \epsilon \frac{\partial^2 \eta}{\partial z^2} \right)$$

$$P_0 = P_{air} + \frac{\gamma}{R_0}$$

$$p|_{R} = -\gamma \left(\frac{\eta}{R_0^2} + \frac{\partial^2 \eta}{\partial z^2} \right)$$

Fourier transform in z and t

$$u_r = \hat{u}_r(r)\exp(i(kz - \omega t)),$$

$$u_z = \hat{u}_z(r)\exp(i(kz - \omega t)),$$

$$p = \hat{p}(r)\exp(i(kz - \omega t)),$$

$$\eta = B\exp(i(kx - \omega t))$$

k is the wavenumber and ω the frequency (in rad/s)

$$\lambda = 2\pi/k \qquad T = 2\pi/\omega$$

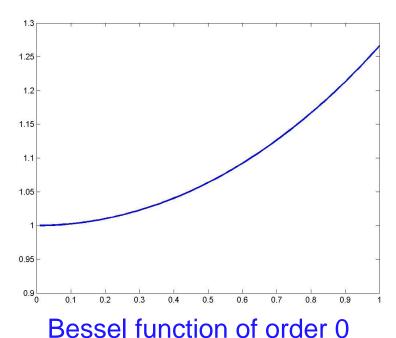
$$f = \omega/(2\pi)$$

Solution to Laplace equation:

$$\frac{\partial^2 \hat{p}}{\partial r^2} + \frac{1}{r} \frac{\partial \hat{p}}{\partial r} - k^2 \hat{p} = 0$$

Solution to Laplace equation:

$$\hat{p}(r) = AI_0(kr)$$



Retrieve radial velocity:

$$-i\omega\hat{u}_r + ikU\hat{u}_r = -\frac{1}{\rho}AkI_0'(kr)$$

$$\hat{u}_r = -\frac{i}{\rho(\omega - kU)} Ak I_0'(kr)$$

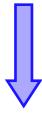
4. Kinematic boundary condition

$$\frac{\partial \hat{\eta}}{\partial t} + U \frac{\partial \hat{\eta}}{\partial z} = \hat{u}_r$$

$$-i\omega B + ikUB = -\frac{i}{\rho(\omega - Uk)}AkI_0'(kr)$$

4. Dynamic boundary condition

$$p(R_0) = -\gamma \left(\frac{B}{R_0^2} - k^2 B\right)$$



$$AI_0(kR_0) = -\gamma \left(\frac{B}{R_0^2} - k^2 B\right)$$

4. Dispersion relation

$$\left(\begin{array}{c|c}
I_0(kR_0) & \gamma\left(\frac{1}{R_0^2} - k^2\right) \\
\hline
\frac{k^2 I_0'(kR_0)}{\rho(\omega - Uk)} & -(\omega - Uk)
\end{array}\right) \begin{pmatrix} A \\ B \end{pmatrix} = 0$$

$$\omega = Uk \pm \sqrt{\frac{\gamma k^2}{\rho} \left(k^2 - \frac{1}{R_0^2}\right) \frac{I_0'(kR)}{I_0(kR)}}$$

5. Dispersion relation

$$\omega = Uk \pm \sqrt{\frac{\gamma k^2}{\rho}} \left(k^2 - \frac{1}{R_0^2} \right) \frac{I_0'(kR)}{I_0(kR)}$$

•Unstable if there exists one ω , Im(ω)>0 at k<1/R₀

•Neutral if for all ω , Im(ω)=0 at k>1/R₀

•Stable (or damped) if for all ω , Im(ω)<0:

The flow considered is not damped, we have neglected dissipation by neglecting viscosity

Destabilisation d'un jet

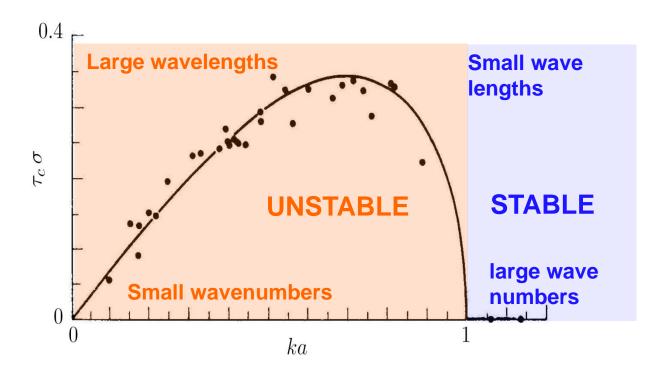
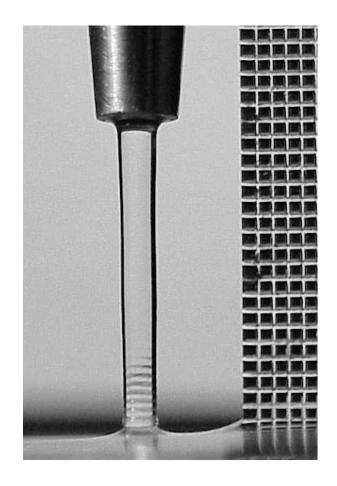


Fig. 2.10 – Taux de croissance $\tau_c \sigma$, avec $\tau_c = \sqrt{\rho a^3/\gamma}$, de l'instabilité d'un filet fluide non visqueux, et points expérimentaux. D'après (Drazin & Reid 2004).



Surface tension is destabilizing as a consequence of the radial curvature Surface tension is stabilizing as a consequence of the axial curvature

Instability analysis:

- 1. Equations and boundary conditions
- 2. Base state
- 3. Linearized equations
- 4. Normal mode expansion
- 5. Dispersion relation
- 6. Analysis of the dispersion relation