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Most flows are unstable...

Saffman-Taylor

Rayleigh-Taylor

Taylor-Couette

Kelvin-Helmholtz

Lift-up and Streaks

Tollmien-Schlichting

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Tearing instability

Meandering instability

Traffic waves

Benard-Marangoni

Coiling instability

Vortex shedding
Flow separation

Nonlinearities: bifurcations and amplitude equations
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Agenda

1. The gravitational pendulum : a poor watch

2. A simple example of bifurcation

3. Classical bifurcations

4. Hopf bifurcation and Stuart-Landau equation

First use of Multiple scale weakly nonlinear approach  

First use of Multiple scale weakly nonlinear approach  
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Period of a gravitational pendulum

Gravity

Reaction

θ
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Gravity: P=-mg

Reaction

θ

Period of a gravitational pendulum
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Bifurcations and amplitude equations

Gravity

Reaction

θ
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Bifurcations and amplitude equations

Gravity

Reaction

Gravity: P=-mg sin(θ)

θ

mRθ=-mgsin(θ)
..
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Governing equations

θ=-ω0sin(θ)2
..

θ'=-ω0θ’2
..

Linearized equations

ω0=g/R2

θ=ε θ’

Small perturbations

Pendulum frequency
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Governing equations

θ=-ω0sin(θ)2
..

θ'=-ω0θ’2
..

Linearized equations

ω0=g/R2

θ=ε θ’

Small perturbations

Pendulum frequency

Period seems independant of amplitude.

Can this be true? Effect of nonlinearity on period?
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Multiple time scale expansion

Weakly nonlinear approach

θ=-ω0sin(θ)2
..

Order ε0

θi(t,T)

θ0=0
..

 θ0=0

.
‘
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Multiple time scale expansion

Weakly nonlinear approach

θ=-ω0sin(θ)2
..

θ1=-ω0θ1
2

..
Order ε0

θi(t,T)

Order ε1

θ0=0
..

 θ0=0

 θ1=A(T)cos(ω0t+φ(T))

.
‘
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Multiple time scale expansion

Weakly nonlinear approach

θ=-ω0sin(θ)2
..

θ1=-ω0θ1
2

..
Order ε0

θi(t,T)

Order ε1

θ0=0
..

 θ0=0

 θ1=A(T)cos(ω0t+φ(T))

Order ε2 θ2=-ω0θ2
2

..
 θ2=B(T)cos(ω0t+ψ(T))

.
‘
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Multiple time scale expansion

Weakly nonlinear approach

θ=-ω0sin(θ)2
..

θ1=-ω0θ1
2

..
Order ε0

θi(t,T)

Order ε1

θ0=0
..

 θ0=0

 θ1=A(T)cos(ω0t+φ(T))

Order ε2 θ2=-ω0θ2
2

..
 θ2=B(T)cos(ω0t+ψ(T))

Order ε3 θ3=-ω0θ3- 2θ1 + θ1/6
2

..
’

.
‘

3
.
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Order ε3 θ3=-ω0θ3- 2θ1 + ω0 θ1/6
2

..
3

Non-resonance condition

θ1= -A(T)ω0sin(ω0t+φ(T))+ω0A(T)φ(T)cos(ω0t+φ(T))’

cos3(ω0t+φ(T))=3/4 cos(ω0t+φ(T))+ 1/4cos(3 ω0t+φ(T))

θ1 =A(T)cos3(ω0t+φ(T))3 3

2’
.

’
.

’
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Order ε3 θ3=-ω0θ3- 2θ1 + ω0 θ1/6
2

..
3

Non-resonance condition

θ1= -A(T)ω0sin(ω0t+φ(T))+ω0A(T)φ(T)cos(ω0t+φ(T))’

cos3(ω0t+φ(T))=3/4 cos(ω0t+φ(T))+ 1/4cos(3 ω0t+φ(T))

θ1 =A(T)cos3(ω0t+φ(T))3 3

Attention! What happens if you force a linear system at its natural frequency?

Example:

The particular solution is θ3f = tsin(ω0t) / 2ω0

It grows linearly in time and diverges! This should be avoided

2

θ3 + ω0θ3= cos(ω0t)
..

2

’
.

’
.

’
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Order ε3 θ3=-ω0θ3- 2θ1 + ω0 θ1/6
2

..
3

Non-resonance condition

θ1= -A(T)ω0sin(ω0t+φ(T))-ω0A(T)φ(T)cos(ω0t+φ(T))’

cos3(ω0t+φ(T))=3/4 cos(ω0t+φ(T))+ 1/4cos(3 ω0t+φ(T))

θ1 =A(T)cos3(ω0t+φ(T))3 3

Attention! What happens if you force a linear system at its natural frequency?

Example:

The particular solution is θ3f = tsin(ω0t) / 2ω0

It grows linearly in time and diverges! This should be avoided

Therefore the resonant RHS should be zero

A(T)ω0sin(ω0t+φ(T))+ω0A(T)φ(T)cos(ω0t+φ(T))+ ω0 A(T)cos(ω0t+φ(T))/16=0 

2

θ3 + ω0θ3= cos(ω0t)
..

2

’
.

’
.

’

2’
3

’



Nonlinear frequency correction

1616

Therefore the resonant RHS should be zero

A(T)ω0sin(ω0t+φ(T))+ω0A(T)φ(T)cos(ω0t+φ(T))+ ω0 A(T)cos(ω0t+φ(T))/16=0 2’
3

’



Nonlinear frequency correction

1717

Therefore the resonant RHS should be zero

A(T)ω0sin(ω0t+φ(T))+ω0A(T)φ(T)cos(ω0t+φ(T))+ ω0 A(T)cos(ω0t+φ(T))/16=0 

+ω0A(T)φ(T) + ω0 A(T)/16=0

A(T)ω0= 0

2’
3

’

’
32

’



Nonlinea frequency correction

1818

Therefore the resonant RHS should be zero

A(T)ω0sin(ω0t+φ(T))+ω0A(T)φ(T)cos(ω0t+φ(T))+ ω0 A(T)cos(ω0t+φ(T))/16=0 

+ω0A(T)φ(T) + ω0 A(T)/16=0

A(T)ω0= 0

φ(T)= φ0-ω0A0T/16 

A(T)=A0

2’
3

’

’
32

’

2



Nonlinea frequency correction

1919

Therefore the resonant RHS should be zero

A(T)ω0sin(ω0t+φ(T))+ω0A(T)φ(T)cos(ω0t+φ(T))+ ω0 A(T)cos(ω0t+φ(T))/16=0 

+ω0A(T)φ(T) + ω0 A(T)/16=0

A(T)ω0= 0

φ(T)= φ0-ω0A0T/16 

A(T)=A0

The oscillation frequency depends on the amplitude

ω =ω0(1-A0/16) Borda’s Formula

A gravitational pendulum is not a good oscillator for a watch!

2’
3

’

’
32

’

2

2
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Agenda

1. The gravitational pendulum : a poor watch

2. A simple example of bifurcation

3. Classical bifurcations

4. Hopf bifurcation and Stuart-Landau equation

First use of Multiple scale weakly nonlinear approach  

First use of Multiple scale weakly nonlinear approach  
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Bifurcations and amplitude equations

ω

Centrifugal force

Gravity

Reaction

θ
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Bifurcations and amplitude equations

ω

Centrifugal force: 

C=mRsin(θ)ω2

Gravity: P=-mg

Reaction

θ
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Bifurcations and amplitude equations

ω

Centrifugal force

Gravity

Reaction

θ
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Bifurcations and amplitude equations

ω

Centrifugal force

C=mRsin(θ)ω2cos(θ)

Gravity

Reaction

Gravity: P=-mg sin(θ)

θ

mRθ=-mgsin(θ)+mRsin(θ)ω2cos(θ)
..
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Governing equations

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)2
..

Base flow

θ=0

θ'=-ω0θ’+ω2θ’2
..

Linearized equations

ω0=g/R2

θ=0+ε θ’

Small perturbations

Pendulum frequency
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θ'=-ω0θ’+ω2θ’2
..

Linearized equations

Normal mode

θ'=A exp (st)

s2= ω2 -ω0
2

ω2 <ω0
2 ω2 >ω0

2

s=±i( ω0 -ω2 )1/22

STABLE

s=±(ω2 -ω0)
1/22

UNSTABLE

Dispersion relation
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Important concept: critical slowing

When ω2~ω0 , the characteristic time τ=1/|s| diverges2

Period or relaxation time T∞

Growth rate τ ∞
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What about nonlinearities?

Slow time scale

Close to threshold

Asymptotic expansion

Weakly nonlinear theory : multiscale expansion 

θ'=-ω0θ’+ω2θ’2
..

Order 0 Base state

Order 1

θi(t,T)


Constant 1st order 

perturbation
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What about nonlinearities?

θ'=-ω0θ’+ω2θ’2
..

Order 0 Base state

Order 1



Order 2



Order 3



Constant  (in t!) 1st order 

perturbation

Constant  (in t!) 2nd order 

perturbation

Secularity condition

= Non-resonance condition

= Compatilibity condition

=
0

If not, θ3 would grow like t2 and ruin the 

ordering in the expansion 
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What about nonlinearities?

θ'=-ω0θ’+ω2θ’2
..

Order 0

Order 1



Order 2



Order 3


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What about nonlinearities?

θ

ω2/ω0
2
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What about nonlinearities?

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)2
..

But recall the full nonlinear equation

It has another 2 steady solutions
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Physical interpretation (Potential)

θ

mθ=F’(θ)
..

F(θ)
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What about nonlinearities?

It has another 2 steady solutions

34

θ

ω2/ω0
2
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Stability of these bifurcated branches?

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)2
..

θ'=-ω0cos(θs) θ’ -ω2sin2(θs) θ’ +ω2cos2(θs) θ’
..

2

θ'=-ω2cos2(θs) θ’ -ω2sin2(θ0) θ’ +ω2cos2(θ0) θ’
..

ω0=ω2cos(θs)
2

θ =θs+ θ’

θ'=-ω2sin2(θ0) θ’
..

STABLE!
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Supercritical fork bifurcation

A
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Agenda

1. The gravitational pendulum : a poor watch

2. A simple example of bifurcation

3. Classical bifurcations

4. Hopf bifurcation and Stuart-Landau equation

First use of Multiple scale weakly nonlinear approach  

First use of Multiple scale weakly nonlinear approach  
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Supercritical fork bifurcation

A
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Subcritical fork bifurcation

A



40
Subcritical bifurcation

A
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What about nonlinearities?

Hysteresis cycle!

A
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Saddle Node bifurcation

A
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Transcritical bifurcation

A
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What about nonlinearities?

Transcritical bifurcation

A
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Hopf bifurcation

A
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Agenda

1. The gravitational pendulum : a poor watch

2. A simple example of bifurcation

3. Classical bifurcations

4. Hopf bifurcation and Stuart-Landau equation

First use of Multiple scale weakly nonlinear approach  

First use of Multiple scale weakly nonlinear approach  



http://envsci.rutgers.edu/~lintner/teaching.html

en.wikipedia.org/wiki/File:Vortex-street-1.jpg

Natural oscillators



Cylinder wake 

Oscillator, intrinsic dynamics, absolutely unstable (Triantafyllou 86, 

Monkewitz 88)

Globally unstable Re>47

Cylinder wake

axial velocity

vorticity



Canonical example of Hopf bifurcation 

Bénard-von Karman street

Threshold

Supercritical Hopf Bifurcation



t=0 INITIAL t=80 SNAPSHOT

Nonlinear Saturation

Amplitude

Prediction?



Saturation



growth rate

Saturation...preceded by exponential growth



Linear stability analysis

Base flow equations

Perturbation expansion

Stationary base flow

Linearized perturbation equations

Perturbations

Base flow
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Global stability analysis

Singular generalized eigenvalue problem

Global mode

frequenc
y

Growth-rate

Zebib, Jackson (1987)



Global stability analysis solvers

• Non linear equations,

(Newton method)

• Eigenvalue problem

(Krylov-Arnoldi method)

Spatial discretization = finite element methods

(FreeFem++ freeware)

For a given value of d r,,  numerically solve

Taylor-Hood finite elements (P2,P2,P1)

→ number of degrees of freedom~ O(106) 



Dominant eigenvalue
Spectrum at Re = 50

stable unstable

Evolution as a function of the Reynolds 
number

Leading global mode

Leading eigenvalue:  

Rec ~ 47 Stc ~ 0.11

Jackson (1987), Zebib (1987), Ding & Kawahara (1999), Barkley (2006), Giannetti & Luchini (2003, 2007),

Sipp & Lebedev (2007), Marquet, Sipp & Jacquin (2009)…

Dominant 

eigenmode



growth rate

Saturation...preceded by exponential growth

Eigenmod

e

Base flow



t=0 INITIAL t=80 SNAPSHOT

Frequency correction



Frequency correction

DNS

Expe (Williamson ‘88)

Linear base flow (Pier 2002)



F
re

q
u
e
n
c
y

Base flow

The mean flow is 

neutrally (marginally) stable

Barkley (2006), Malkus (1956) 

G
ro

w
th

-r
a
te

Re

Mean flow

Mean flow

Base flow

Re

Two limitations:

A posteriori prediction: need mean flow

No information on amplitude



t=80 SNAPSHOT

Mean flow distortion

MEAN FLOW

SNAPSHOT

BASE FLOW

EIGENMODE

Stuart 1958, Maurel, Pagneux and Wesfreid 1995 , Barkley 2006



Transient mean flow correction

t



Stuart-Landau amplitude equation

Experimental
Sreenivasan, Strykowsky & Olinger (1986)
Provansal, Mathis & Boyer (1987)

Numeric
Dusek, Le Gal & Fraunié (1994)

Analytic
Sipp & Lebedev (2007)

δ : distance from threshold



Bifurcation theory

Departure from threshold:

Expansion:

q0 base flow, 

q1 leading order perturbation

4) The wake of a disk & nonlinear dynamics

BF diffusion Base flow
modifications

harmonics

q2 second order perturbation, no secular terms with frequency 

A(T) unknown

Stuart (1960) , Sipp & Lebedev (2007)



Bifurcation theory

BF diffusion Base flow
modifications

harmonics

q2 second order perturbation, no secular terms with frequency 



Resonance at third order

Third order secular (resonant) forcing terms

4) The wake of a disk & nonlinear dynamics

q3



 The Fredholm alternative  A           orthogonal to the adjoint of

Resonance at third order

Third order secular (resonant) forcing terms

4) The wake of a disk & nonlinear dynamics

Giannetti & Luchini (2003), Sipp & Lebedev (2007), Marquet, Sipp & Jacquin (2009)…

q3



Compatibility condition

yields closure and the normal form

y Ae leading order determined by resonant terms at e3

Sipp & Lebedev (2007)

=1



Normal form

 predicts saturation 

 nonlinear frequency correction 

Sipp & Lebedev (2007)


