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Injection of fluid 1 in fluid 2 in a Hele-Shaw cell

1

2



Stable?



Fluid 1 is colored Fluid 2 is colored

These 2 fluids are water and oil, what is fluid 1?
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The important parameter is the viscosity ratio

Water in oil is unstableOil in water is stable



Saffman-Taylor instability

Numerical Simulation 

Dr. Mathias Nagel, LFMI
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Viscous fingering

An example of Saffman-Taylor fingering. The interface 

here is affected by surface tension, which leads to a 

characteristic length scale over which the dendrites 

occur (adapted from Perspectives in Fluid Dynamics, 

CUP (2000))
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Viscous fingering
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Most flows are unstable...

Saffman-Taylor

Rayleigh-Taylor

Taylor-Couette

Kelvin-Helmholtz

Lift-up and Streaks

Tollmien-Schlichting

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Tearing instability

Meandering instability

Traffic waves

Benard-Marangoni

Coiling instability

Vortex shedding
Flow separation
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Garcia & Chomaz 2005

But some are very stable
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Collision of tsunamis

Solitons are very stable solutions of the nonlinear water-wave equations

Trefethen 2000
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Instabilities

Friday  10h15-13h

Homework:

Exercise or scientific article

Exam: Instabilities

Written exam 

Books:  

• Drazin P.G. , Introduction to hydrodynamic instability, CUP, 2000

• F. Charru, Instabilités hydrodynamiques, EDP sciences, 2007
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Instabilities
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Laminar/turbulent
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Instabilities and turbulence

Laminar    Instability    Disorder/Pattern/Chaos   Turbulence

Transition

Hoyt and Taylor (1977)

Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004) Rayleigh (1891)
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Laminar  Instability  Pattern  Turbulence

Hoyt and Taylor (1977)

Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004) Rayleigh (1891)

no fluctuation  ε  1  fluctuation > average
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Laminar  Instability  Pattern  Turbulence

Hoyt and Taylor (1977)

Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004) Rayleigh (1891)

R  R, λ  R, λ1, λ2  full spectrum of lengscales
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Laminar  Instability  Pattern  Turbulence

Hoyt and Taylor (1977)

Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004) Rayleigh (1891)

steady  ω  ω1, ω2  full frequency spectrum
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Laminar  Instability  Pattern  Turbulence

Hoyt and Taylor (1977)

Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004) Rayleigh (1891)

steady  ω  ω1, ω2  full frequency spectrum
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Laminar  Instability  Pattern  Turbulence

Hoyt and Taylor (1977)

Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004) Rayleigh (1891)

no fluctuation  ε  1  fluctuation > average

R  R, λ  R, λ1, λ2  full spectrum of lengscales

steady  ω  ω1, ω2  full frequency spectrum
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Laminar    Instability    Disorder/Pattern/Chaos   Turbulence

Transition

•  fluctuations amplitude

•  lengthscales  

•  frequency spectrum

Loss of predictability

Sensitivity to initial condition (butterfly effect)
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Laminar    Instability    Disorder/Pattern/Chaos   Turbulence

Transition

Beware: instability without turbulence!
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Laminar    Instability    Disorder/Pattern/Chaos   Turbulence

Transition

Beware: turbulence without linear instability!
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Instabilities

Today: 

1. Dynamical system instability (an example)

2. Definitions



A dynamical system approach
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Longitudinal static stability of an airplane

(d)
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A stable wing

∂Fz

x

x

CM

F: focal point

CM: center of mass

CP: center of lift
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Unstable wing

∂Fz

x

x

CM

F: focal point

CM: center of mass

CP: center of lift
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Dynamical longitudinal stability of an airplane

Write equations for temporal evolution:

Dynamical system approach



A dynamical system approach

?



A dynamical system approach

Stable



A dynamical system approach

?



A dynamical system approach

Unstable



A dynamical system approach

Local /Global energy minimum
Linearly stable but nonlinearly unstable

Concept of bassin of attraction



A dynamical system approach

Beware: fluid dynamics is not a 

conservative system!
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Evolution of disturbance energy

Monotonous 

stability

E

t

E is an integrated quantity: 

different disturbance flows can share the same E !

E0

Initial disturbance
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Evolution of disturbance energy

Monotonous 

stability

E

t

Asymptotic 

stability

E

t

transient growth

E0

Initial disturbance
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Evolution of disturbance energy

Monotonous 

stability

E

t

Asymptotic 

stability

E

t

Conditional 

stability

E

t

transient growth

E0

Initial disturbance

Limit cycle

bifurcated state

Eb

Bassin of attraction

Lyapunov (global) stability
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Evolution of disturbance energy

Monotonous 

stability

E

t

Asymptotic 

stability

E

t

Conditional 

stability

E

t

transient growth

E0

Initial disturbance

Limit cycle

bifurcated state

Eb

Bassin of attraction

Inconditional

instability

E

t

Chaos

turbulence
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Evolution of disturbance energy

Monotonous 

stability

E

t

Asymptotic 

stability

E

t

Conditional 

stability

E

t

transient growth

E0

Initial disturbance

Limit cycle

bifurcated state

Eb

Bassin of attraction

Inconditional

instability

E

t

Chaos

turbulence

Linear

instability

t

E
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Important concepts

•Bassin of attraction

•Bifurcation

•Subcritical/Supercritical Bifurcation
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Bifurcations and amplitude equations

ω

Centrifugal force: 

C=mRsin(θ)ω2

Gravity: P=-mg

Reaction

θ
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Bifurcations and amplitude equations

ω

Centrifugal force

Gravity

Reaction

θ
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Bifurcations and amplitude equations

ω

Centrifugal force

C=mRsin(θ)ω2cos(θ)

Gravity

Reaction

Gravity: P=-mg sin(θ)

θ

mRθ=-mgsin(θ)+mRsin(θ)ω2cos(θ)
..
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Governing equations

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)
2

..
ω0=g/R2

Pendulum frequency
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Governing equations

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)
2

..

Base ‘flow’

θ=0

ω0=g/R2

Pendulum frequency
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Governing equations

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)
2

..

Base ‘flow’

θ=0

ω0=g/R2

θ=0+ε θ’

Small perturbations

Pendulum frequency
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Governing equations

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)
2

..

Base ‘flow’

θ=0

θ'=-ω0θ’+ω2θ’2
..

Linearized equations

ω0=g/R2

θ=0+ε θ’

Small perturbations

Pendulum frequency
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θ'=-ω0θ’+ω2θ’2
..

Linearized equations

Normal mode

θ'=A exp (st)

s2= ω2 -ω0
2

ω2 <ω0
2 ω2 >ω0

2

s=±i( ω0 -ω2 )1/22

STABLE

s=±(ω2 -ω0)
1/22

UNSTABLE

Dispersion relation
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Important concept: critical slowing

When ω2~ω0 , the characteristic time τ=1/|s| 

diverges

2

Period or relaxation time T∞

Growth rate τ ∞



51

What about nonlinearities?

θ

ω2/ω0
2
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What about nonlinearities?

θ=-ω0sin(θ)+ω2sin(θ)cos(θ)
2

..

But recall the full nonlinear equation

It has another 2 steady solutions
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Physical interpretation (Potential)

θ

mθ=F’(θ)
..

F(θ)
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What about nonlinearities?

Supercritical fork bifurcation

A

stable
unstable
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Simple exercise for next week

Demonstrate the dynamic stability of the 

bifurcated states

θ

ω2/ω0
2


