Most flows are unstable...

Vortex shedding

Saffman-Taylor

Flow separation

Tollmien-Schlichting

Rayleigh-Taylor

Lift-up and Streaks

Traffic waves

Meandering instability

Gravito-capillary waves

Taylor-Couette

Rayleigh-Plateau

Tearing instability

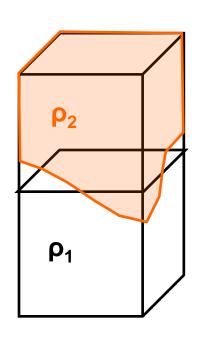
Coiling instability

Rayleigh-Benard

Kelvin-Helmholtz

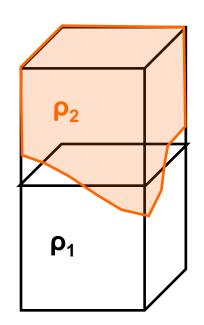
Benard-Marangoni

Dispersion relation



$$\omega^2 = \frac{-kg(\rho_2 - \rho_1) + \gamma k^3}{\rho_1 + \rho_2}$$

Dispersion relation for water waves



$$\omega^2 = \frac{-kg(\rho_2 - \rho_1) + \gamma k^3}{\rho_1 + \rho_2}$$

$$\omega^2 = \tanh(kH) \left(\frac{\gamma k^3}{\rho} + gk\right)$$

Dispersion relation

$$\omega^2 = \tanh(kH) \left(\frac{\gamma k^3}{\rho} + gk\right)$$

Capillary wavenumber: $k_c = \sqrt{
ho g/\gamma}$

Length scale: $\tilde{k} = k/k_c$

Time scale $ilde{\omega} = \omega/\sqrt{gk_c}$

One single non-dimensional parameter $H=Hk_{c}$

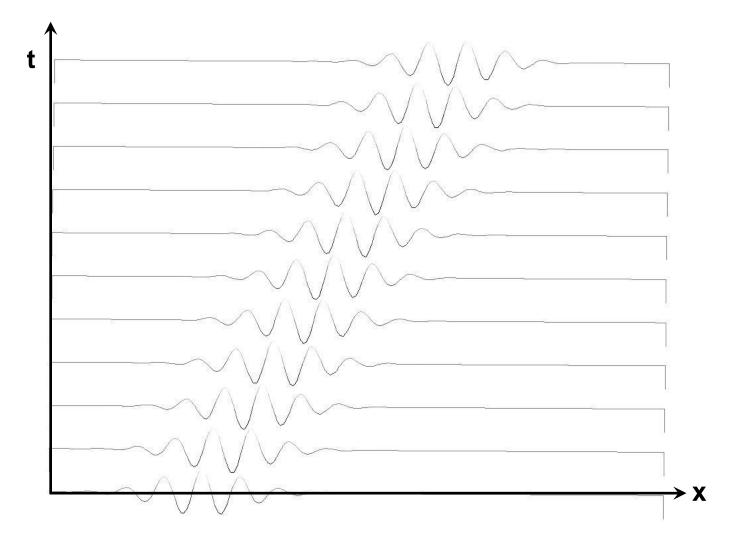
$$\tilde{\omega}^2 = \tanh(\tilde{k}\tilde{H}) \left(\tilde{k}^3 + \tilde{k} \right)$$

Dispersion relation

$$\tilde{\omega}^2 = \tanh(\tilde{k}\tilde{H}) \left(\tilde{k}^3 + \tilde{k}\right)$$

	gravity $\tilde{k} \ll 1$	capillary $\tilde{k}\gg 1$
shallow water		
$\tilde{k} \ll 1/\tilde{H}$	$\pm ilde{k} \ \sqrt{ ilde{H}}$	$\pm \tilde{k}^2 \sqrt{\tilde{H}}$
Deep water		
$\tilde{k}\gg 1/\tilde{H}$	$\pm\sqrt{ ilde{k}}$	$\pm \tilde{k} \sqrt{\tilde{k}}$

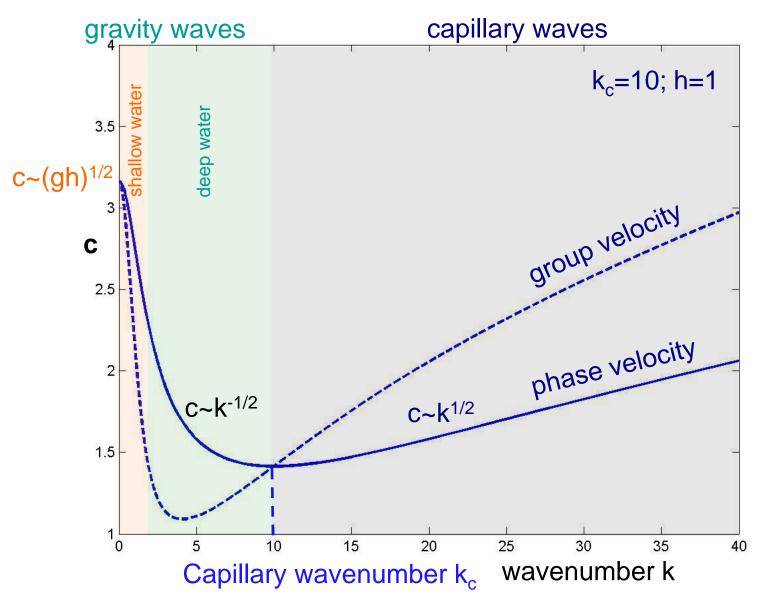
Difference between group velocity v and phase velocity c



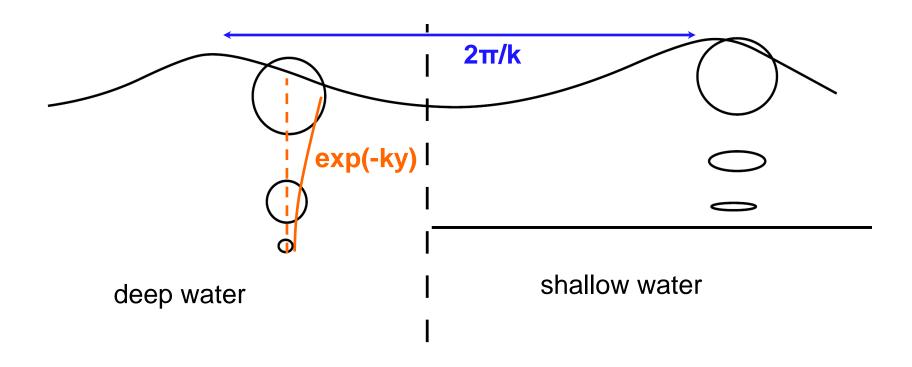
Dispersion relation

	gravity $\tilde{k} \ll 1$	capillary $ ilde{k}\gg 1$
shallow water	$\omega_{shallow/gravity} \sim \pm k \sqrt{gH}$	$\omega_{shallow/capillary} \sim \pm k^2 \sqrt{\gamma H/\rho}$
$\tilde{k} \ll 1/\tilde{H}$	$c_{shallow/gravity} \sim \pm \sqrt{gH}$	$c_{shallow/capillary} \sim \pm k \sqrt{\gamma H/\rho}$
	$v_{shallow/gravity} \sim \pm \sqrt{gH}$	$v_{shallow/capillary} \sim \pm 2k\sqrt{\gamma H/\rho}$
Deep water	$\omega_{deep/gravity} \sim \pm \sqrt{gk}$	$\omega_{deep/capillary} \sim \pm k^{3/2} \sqrt{\gamma/\rho}$
$\tilde{k}\gg 1/\tilde{H}$	$c_{deep/gravity} \sim \pm \sqrt{\frac{g}{k}}$	$c_{deep/capillary} \sim \pm k^{1/2} \sqrt{\gamma/\rho}$
	$v_{deep/gravity} \sim \pm \frac{1}{2} \sqrt{\frac{g}{k}}$	$v_{deep/capillary} \sim \pm 3/2k^{1/2}\sqrt{\gamma/\rho}$

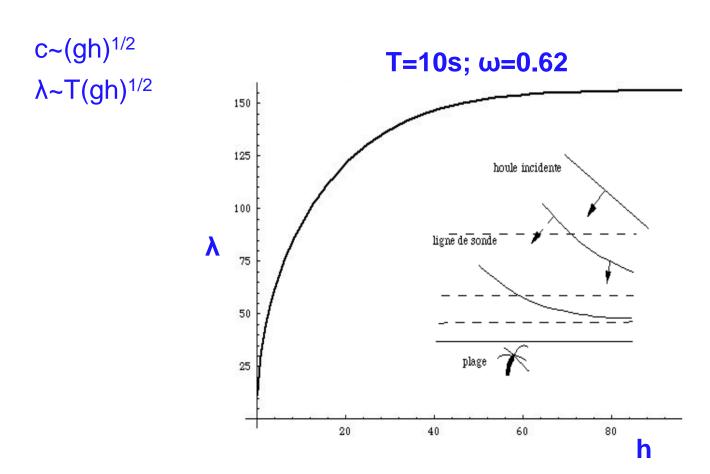
Dispersion relation



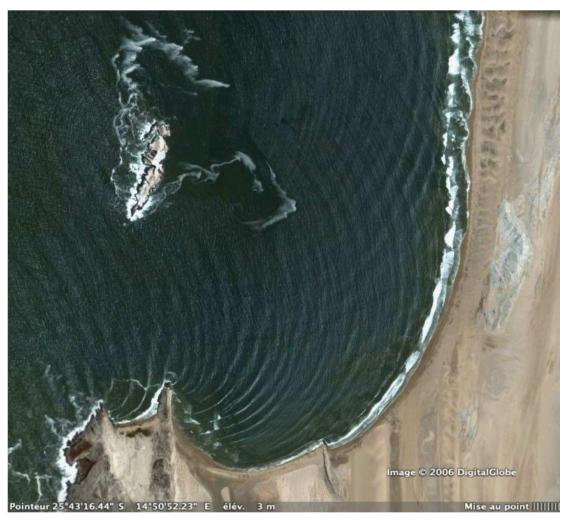
Trajectories below waves



Why are the waves parallel to the shore?

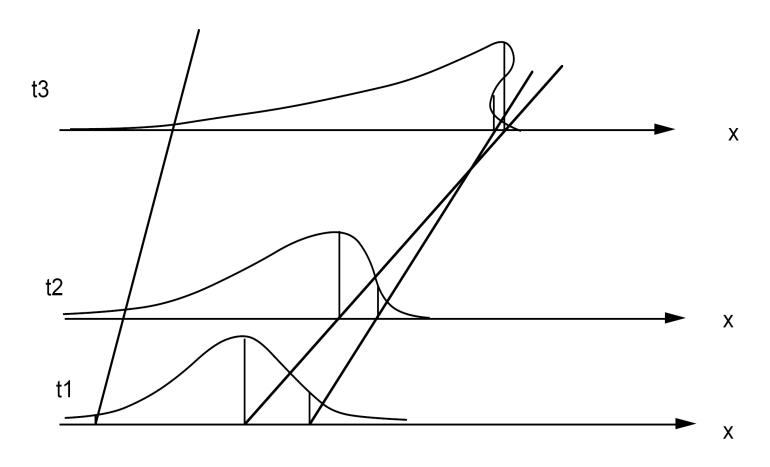


Refraction and diffraction of waves



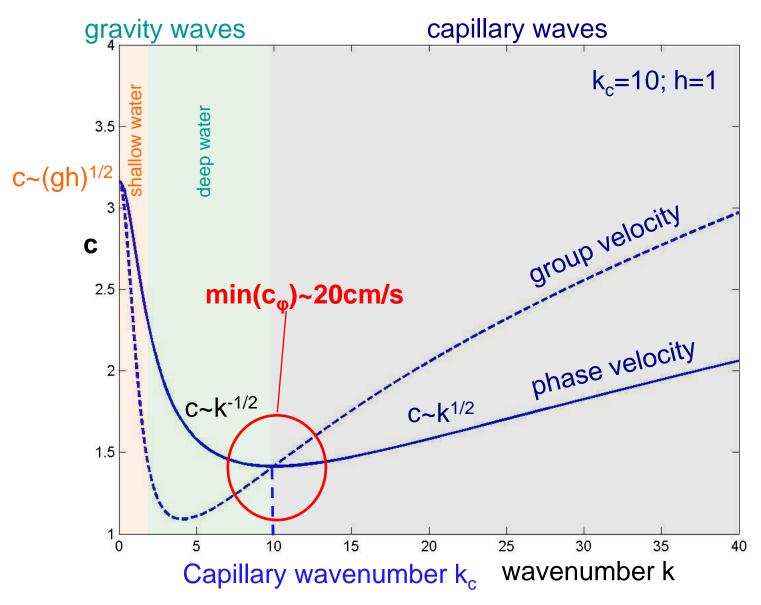
Satellite view of the shore of Namibia

Nonlinear waves/wave breaking



The velocity increases with amplitude

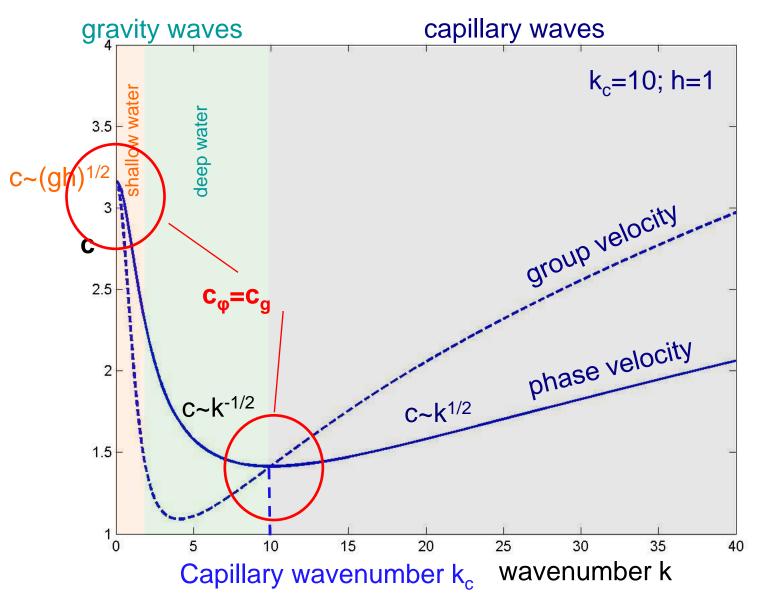
Dispersion relation



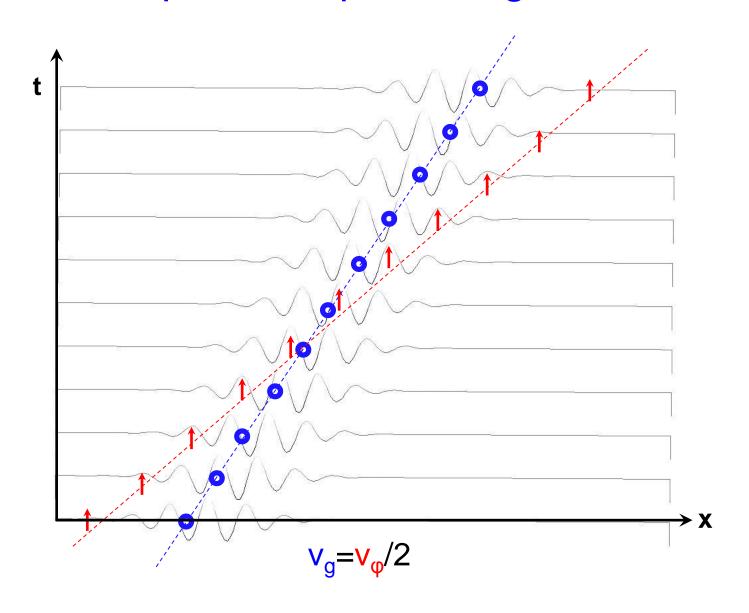
Conditions for wave pattern formation?

$$V_{\text{duck}} \leq c_{\text{min}}$$
 ?

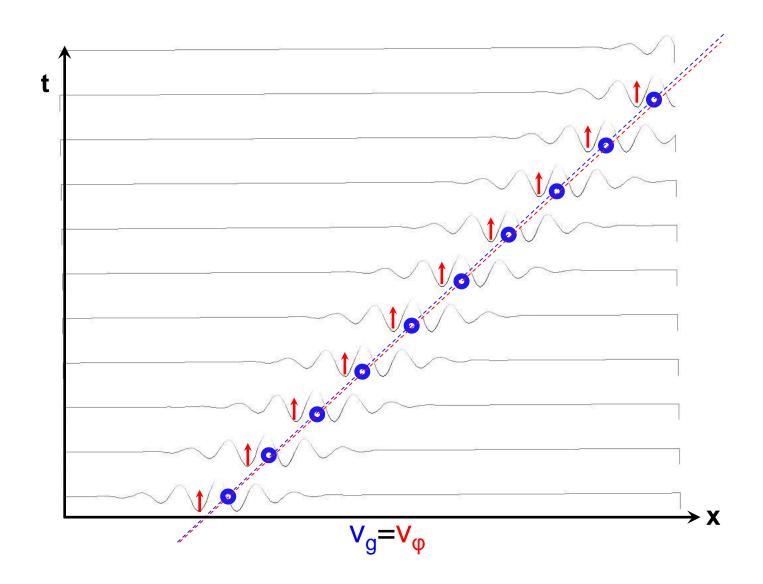
Dispersion relation



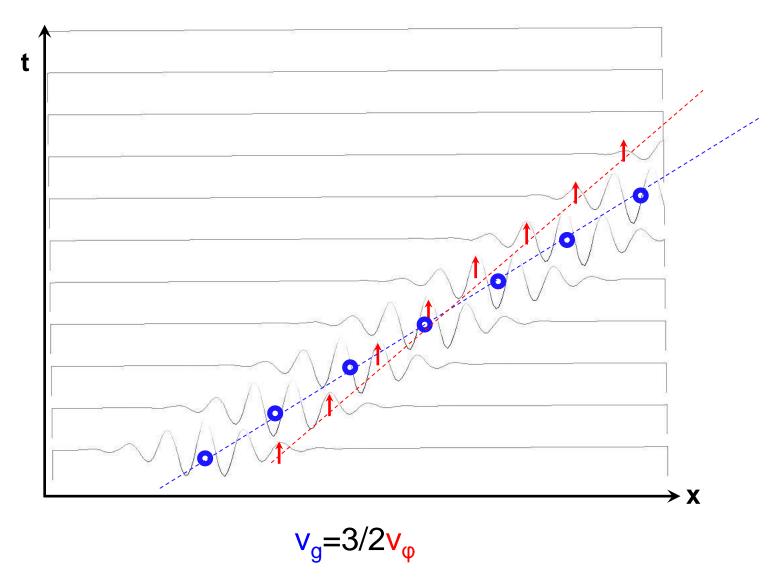
Spatio-temporel diagram



Spatio-temporal diagram



Spatio-temporal diagram



Spatio-temporal spectral analysis

Inverse Fourier Transform

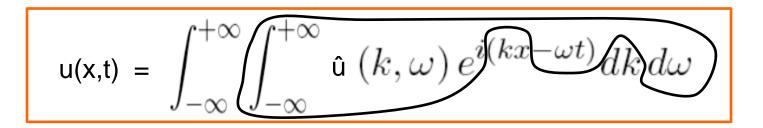
$$\mathbf{u}(\mathbf{x},\mathbf{t}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \hat{\mathbf{u}} \left(k,\omega\right) e^{i(kx-\omega t)} dk \, d\omega$$

$$\hat{\mathbf{u}}(\mathbf{k},\omega) = (2\pi)^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{u}(x,t) e^{-i(kx-\omega t)} dx dt$$

Direct Fourier Transform

Spatio-temporal spectral analysis

Inverse Fourier Transform



Use dispersion relation $\omega(k)$!

Fourier transform:
$$u(x,t) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(kx - \omega(k)t)} \mathrm{d}k + c.c.$$

Carrier/enveloppe

Carrier/enveloppe:
$$u(x,t) = \frac{1}{2}A(x,t) e^{\mathrm{i}(k_0x - \omega_0t)} + c.c.$$

Fourier transform:
$$u(x,t) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(kx - \omega(k)t)} \mathrm{d}k + c.c.$$

Carrier/enveloppe:
$$u(x,t) = \frac{1}{2}A(x,t) e^{\mathrm{i}(k_0x - \omega_0 t)} + c.c.$$

Fourier transform:
$$u(x,t) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(kx - \omega(k)t)} \mathrm{d}k + c.c.$$

Carrier/enveloppe:
$$u(x,t) = \frac{1}{2}A(x,t) e^{\mathrm{i}(k_0x - \omega_0 t)} + c.c.$$

Enveloppe:

$$A(x,t) = \int_0^\infty \hat{u}(k) e^{i(k-k_0)x - i(\omega - \omega_0)t} dk.$$

Spectral analysis at time=0

Fourier transform:
$$u(x, 0) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) e^{i(kx)} dk + c.c.$$

 $\hat{u}(k)$ is given by Fourier transform at time t=0

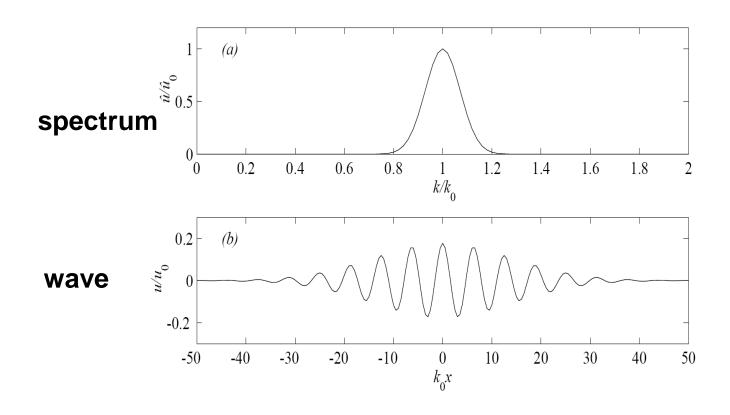
Enveloppe:

$$A(x, \mathbf{0}) = \int_0^\infty \hat{u}(k) e^{\mathbf{i}(k - k_0)x} d\mathbf{k} + \text{c.c.}$$

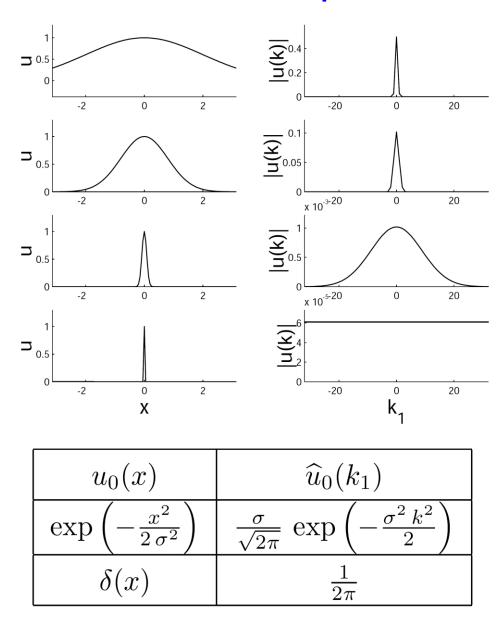
Gaussian spectrum:
$$\hat{u}(k) = u_0 e^{-\sigma^2 (k - k_0)^2}$$

Initial enveloppe :
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{x^2}{4\sigma^2}}$$

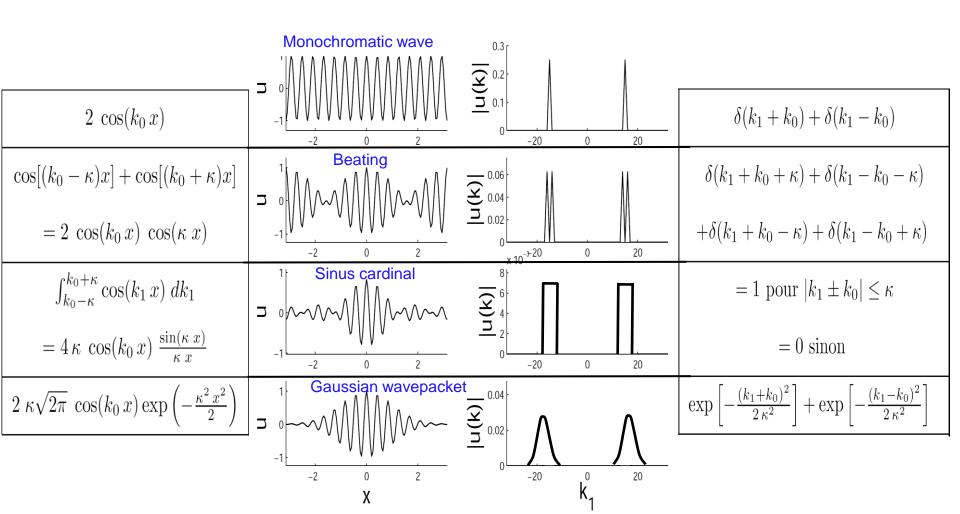
Gaussian spectrum



Gaussian wavepackets



Waves and spectra



Initial enveloppe :
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{x^2}{4\sigma^2}}$$

Gaussian spectrum:
$$\hat{u}(k) = u_0 e^{-\sigma^2 (k - k_0)^2}$$

Initial enveloppe :
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{x^2}{4\sigma^2}}$$

Gaussian spectrum:
$$\hat{u}(k) = u_0 e^{-\sigma^2 (k - k_0)^2}$$

Evolution of enveloppe :
$$A(x,t) = \int_0^\infty \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(k-k_0)x - \mathrm{i}(\omega - \omega_0)t} \mathrm{d}k.$$

Initial enveloppe :
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{x^2}{4\sigma^2}}$$

Gaussian spectrum:
$$\hat{u}(k) = u_0 e^{-\sigma^2(k-k_0)^2}$$

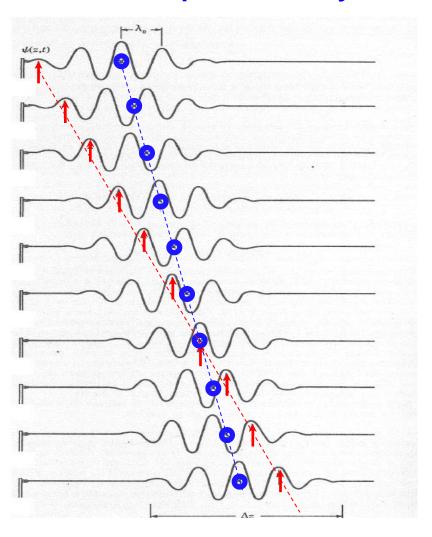
Evolution of enveloppe :
$$A(x,t) = \int_0^\infty \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(k-k_0)x - \mathrm{i}(\omega - \omega_0)t} \mathrm{d}k.$$

Definition group velocity
$$\omega - \omega_0 = c_g(k-k_0), \qquad c_g = \frac{\partial \omega}{\partial k}(k_0)$$

Definition of group velocity
$$\omega - \omega_0 = c_g(k - k_0),$$
 $c_g = \frac{\partial \omega}{\partial k}(k_0)$

$$A(x,t) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{(x-c_g t)^2}{4\sigma^2}}$$

Group velocity



Wavepacket

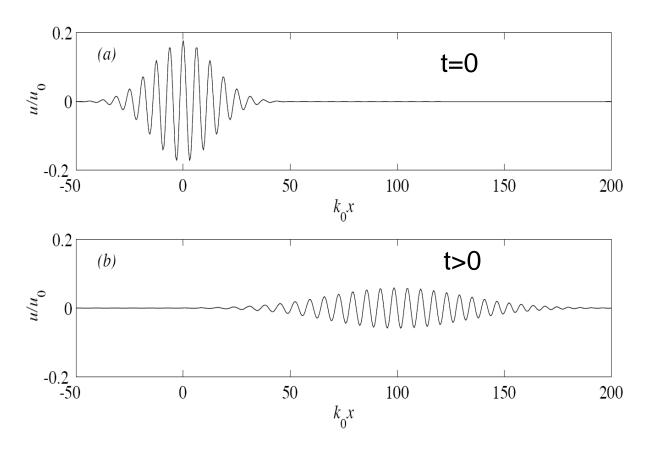
Higher order development

$$\omega - \omega_0 = c_g(k - k_0) + \frac{\omega_0''}{2}(k - k_0)^2$$

$$c_g = \frac{\partial \omega}{\partial k}(k_0), \qquad \omega_0'' = \frac{\partial^2 \omega}{\partial k^2}(k_0)$$

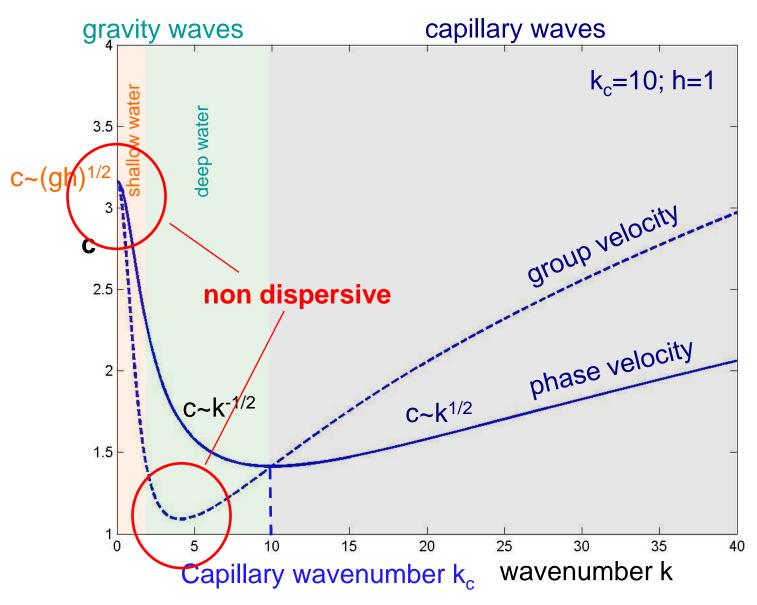
$$A(x,t) = \frac{u_0}{2} \sqrt{\frac{\pi}{\sigma^2 + \frac{1}{2}i\omega_0''t}} \exp\left(-\frac{(x - c_g t)^2}{4(\sigma^2 + \frac{1}{2}i\omega_0''t)}\right)$$

Wave packet dispersion

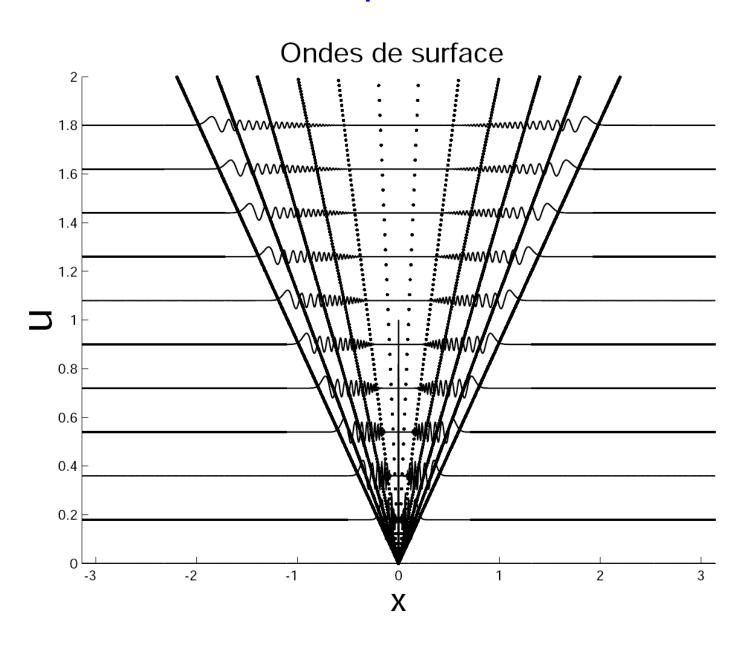


Onde correspondant à l'enveloppe pour $\sigma^{-1}k_0 = 0,1$ et $\omega_0'' = 4c_g/k_0$: (a), instant initial t = 0; (b), $c_g t = 100/k_0$.

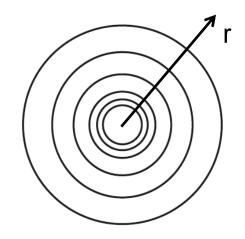
Relation de dispersion



Dispersion



Dispersion



Waves with k reach r at time t=r/v(k) For deep gravity waves: $v_{deep/gravity} \sim \pm \frac{1}{2} \sqrt{\frac{g}{k}}$

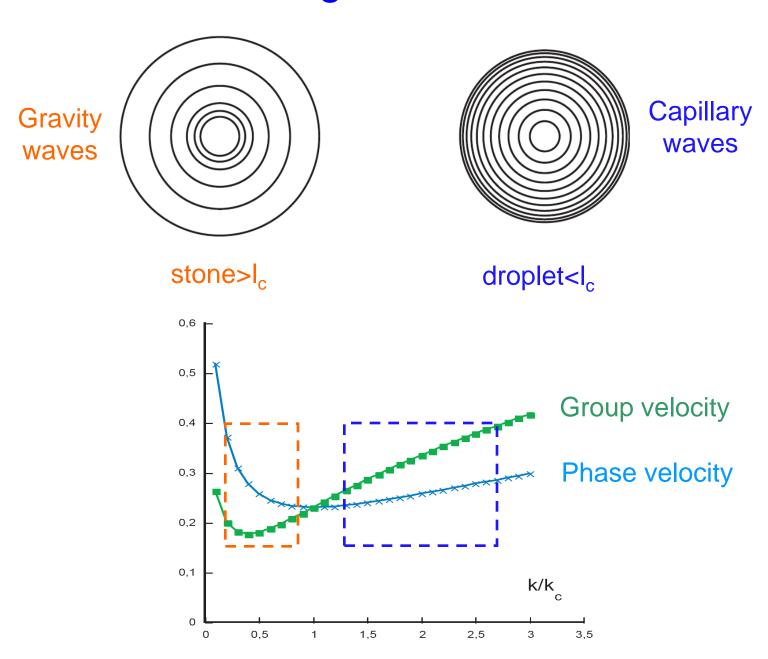
 $k=gt^2/4r^2$

Since $\omega_{deep/gravity} \sim \pm \sqrt{gk}$

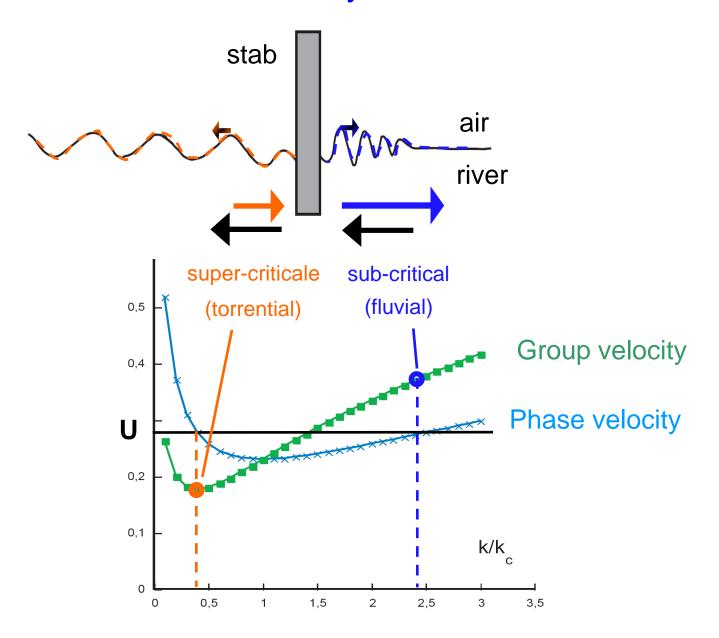
 $\omega = gt/2r$

⇒The frequency increases with time

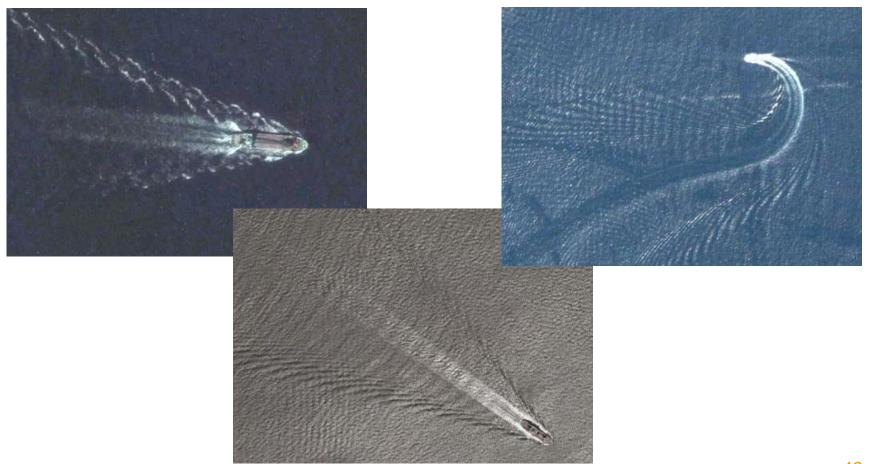
Rings in water



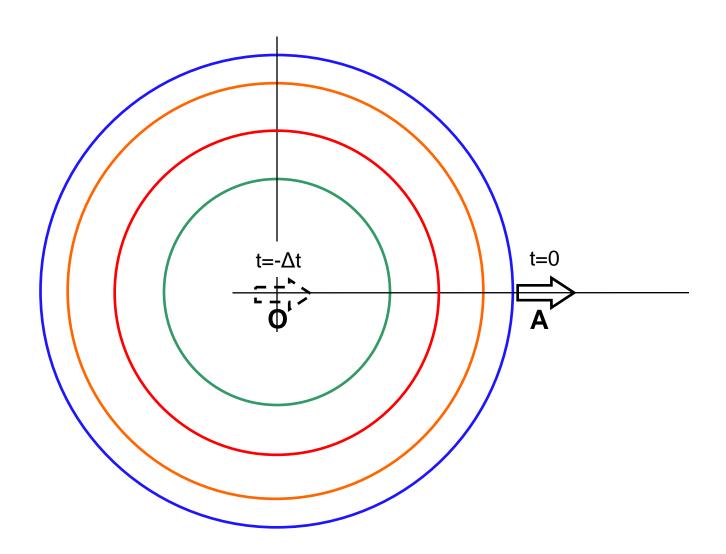
Waves created by obstacle in a river

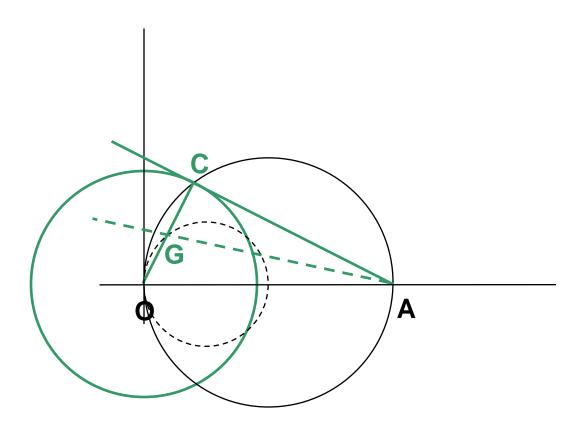


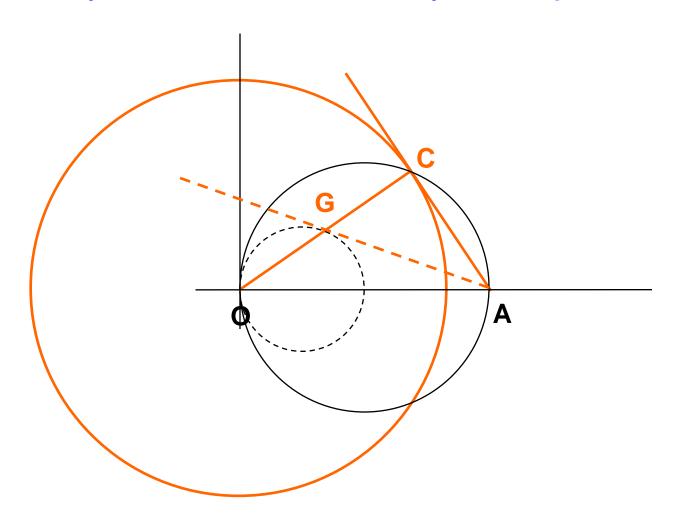
Kelvin's wake

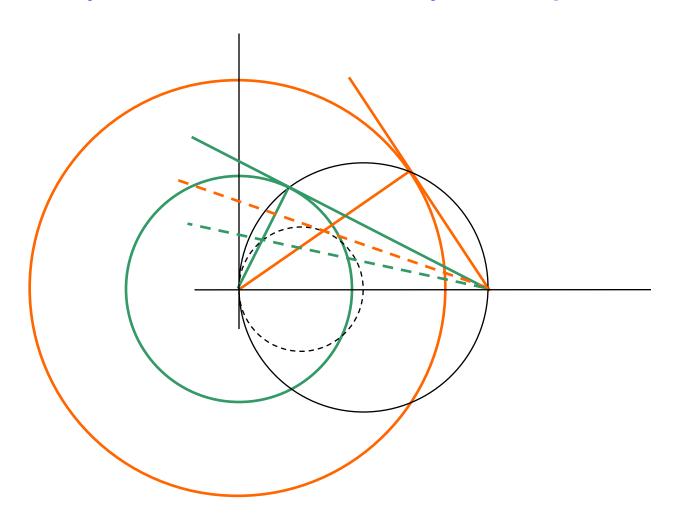


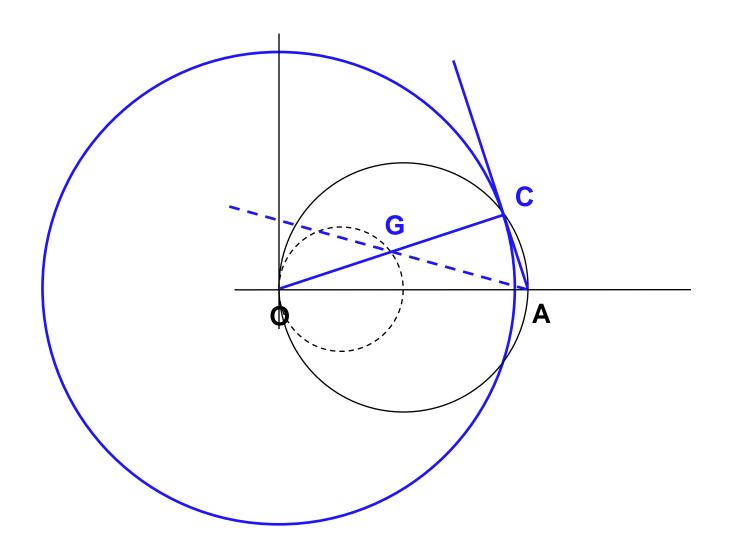
Kelvin's wake

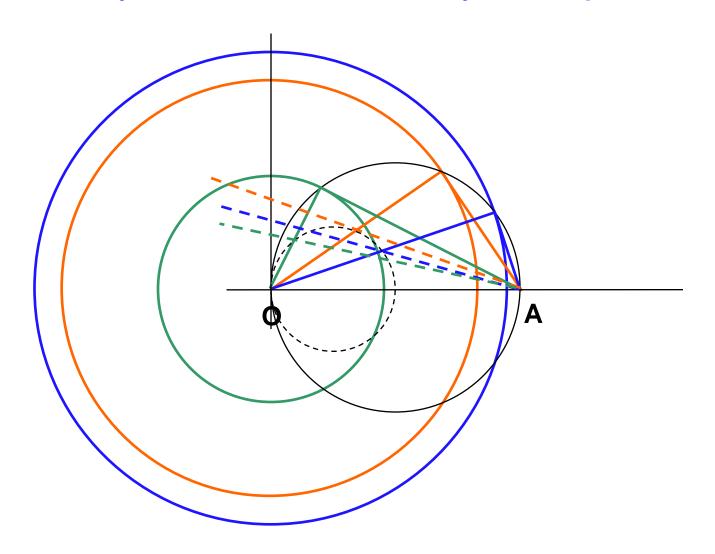


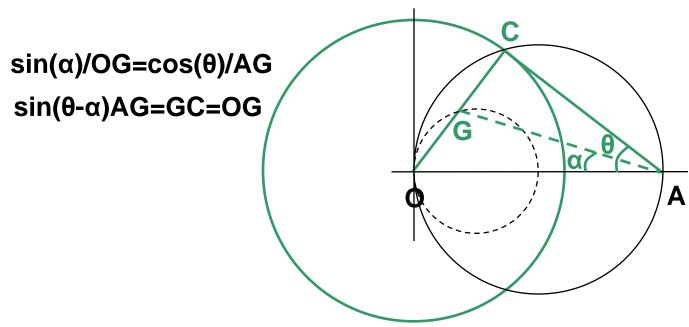




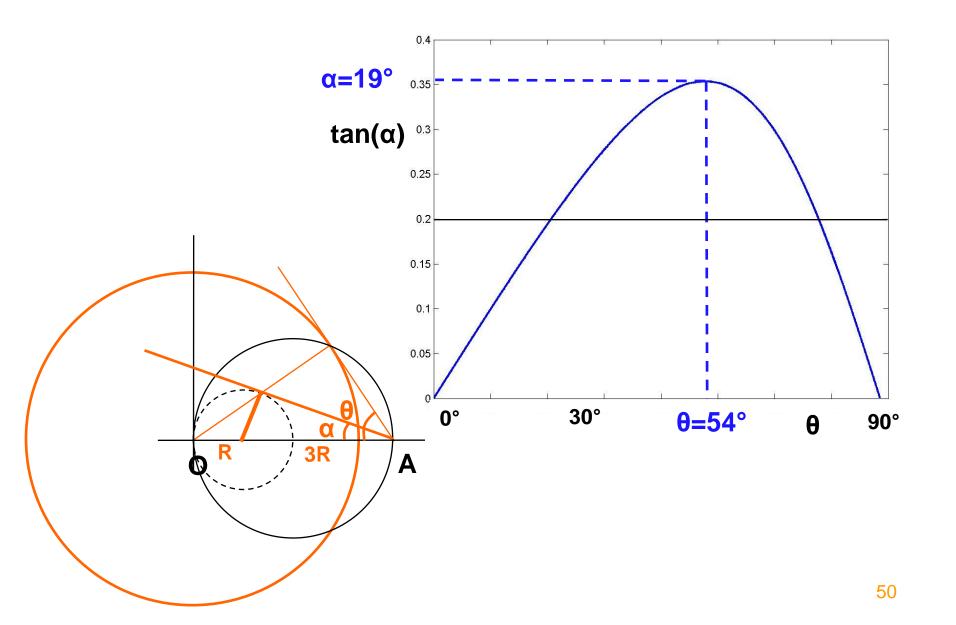


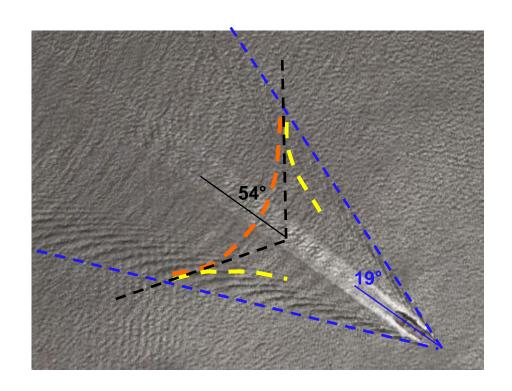


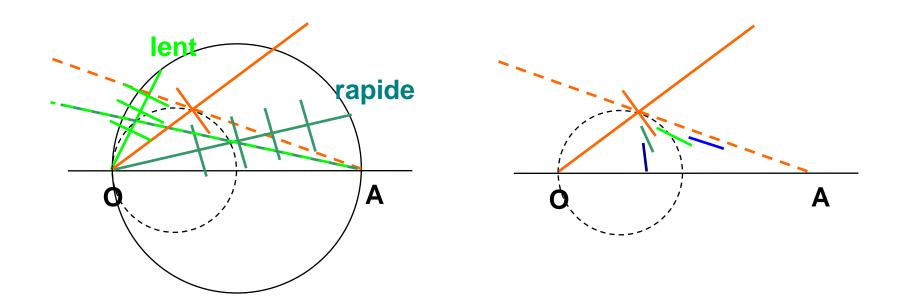




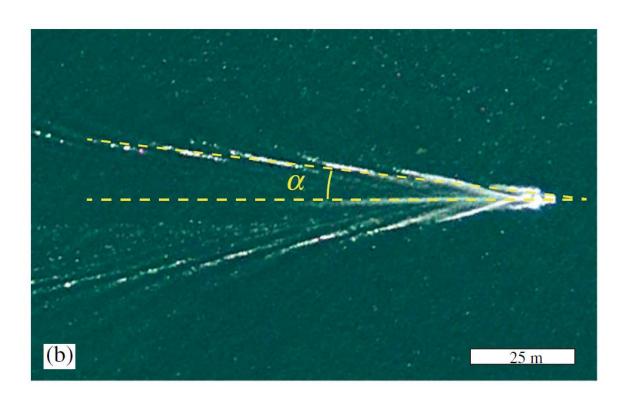
- \Rightarrow sin(α)=cos(θ)sin(θ - α)
- $\Rightarrow \sin(\alpha) = \cos(\theta)(\sin(\theta)\cos(\alpha) + \cos(\theta)\sin(\alpha))$
- \Rightarrow tan(α)=cos(θ)sin(θ)/(1+cos²(θ))





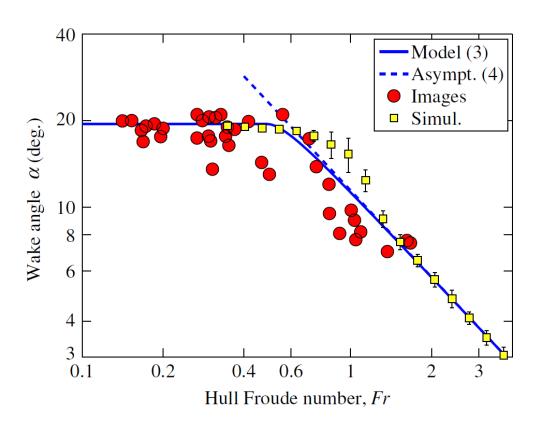


But observations show



Moisy and Rabaud 2013

But observations show



Moisy and Rabaud 2013