Vortex shedding Saffman-Taylor

Tollmien-Schlichting

Lift-up and Streaks

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Benard-Marangoni Kelvin-Helmholtz

Flow separation

Rayleigh-Taylor

Traffic waves

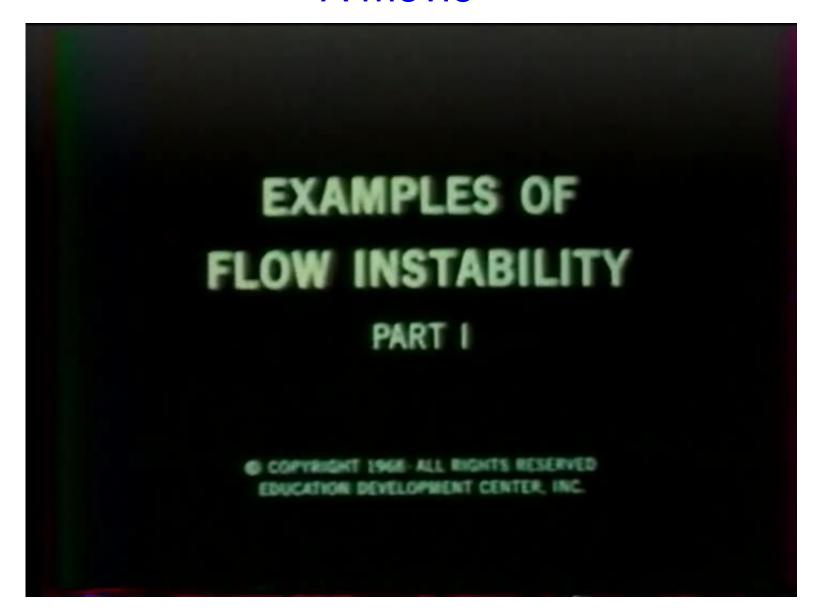
Meandering instability

Taylor-Couette

Tearing instability

Coiling instability

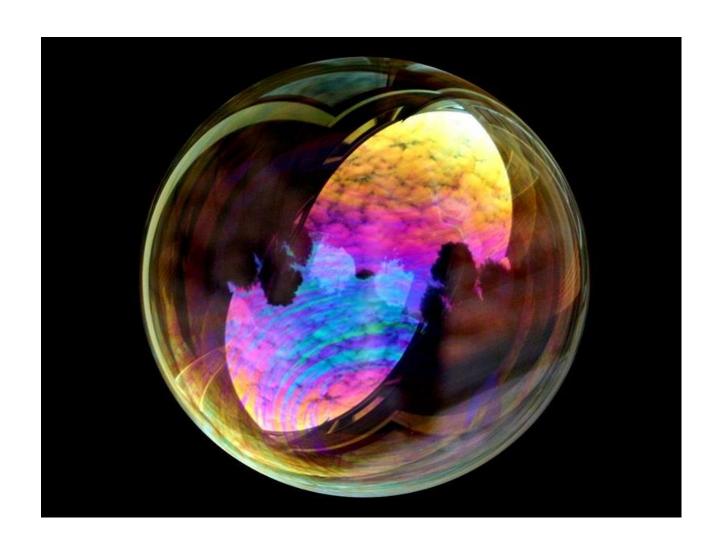
A movie



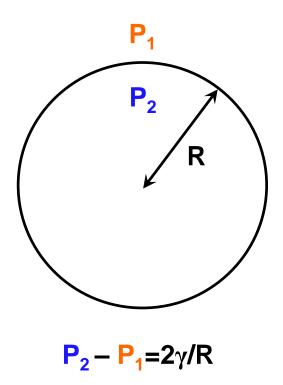
A movie

A movie

Surface tension

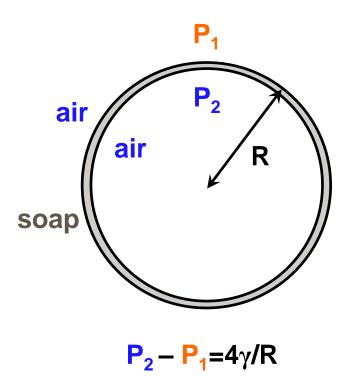


Surface tension Spherical drop or bubble



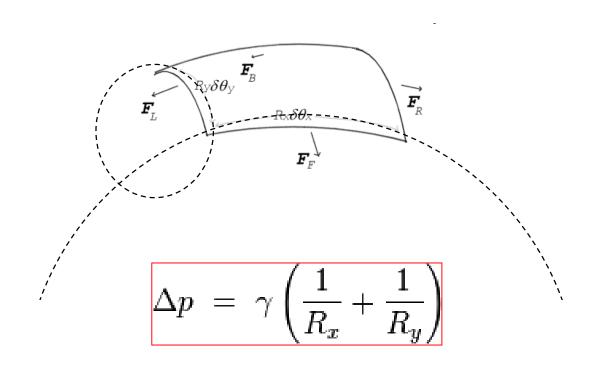
 γ : surface tension

Surface tension Soap bubble



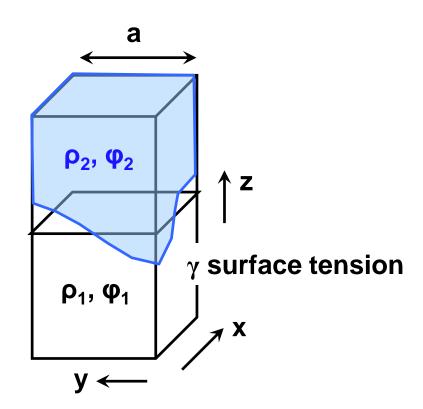
 γ : surface tension

Surface tension Laplace Law

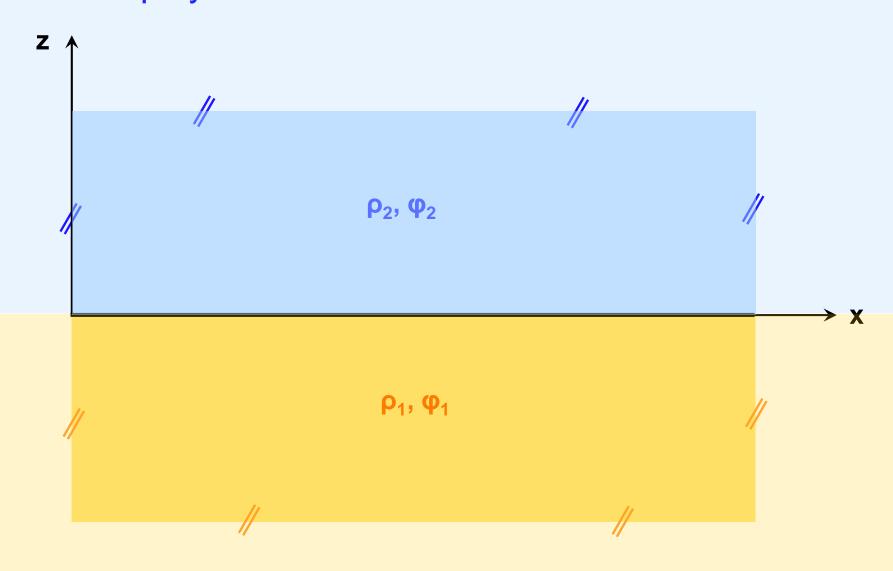


Dense fluid (ρ_2) above

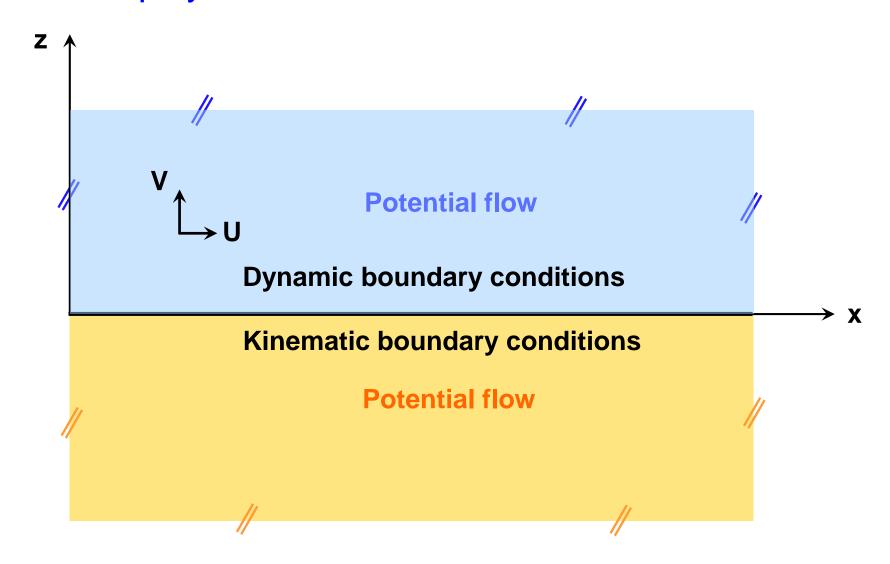
Light fluid (ρ_1) below



Rayleigh Taylor instability Simplify to 2D: two semi-infinite domains



Rayleigh Taylor instability Simplify to 2D: two semi-infinite domains



Instability analysis:

- 1. Equations and boundary conditions
- 2. Base state
- 3. Linearized equations
- 4. Normal mode expansion
- 5. Dispersion relation
- 6. Analysis of the dispersion relation

1. Equations

$$\Delta \Phi_1 = 0 \\
\Delta \Phi_2 = 0$$

Potential flow

$$U_1 = \frac{\partial \Phi_1}{\partial x}, \qquad V_1 = \frac{\partial \Phi_1}{\partial z}$$
 $U_2 = \frac{\partial \Phi_2}{\partial x}, \qquad V_2 = \frac{\partial \Phi_2}{\partial z}$

Velocity field

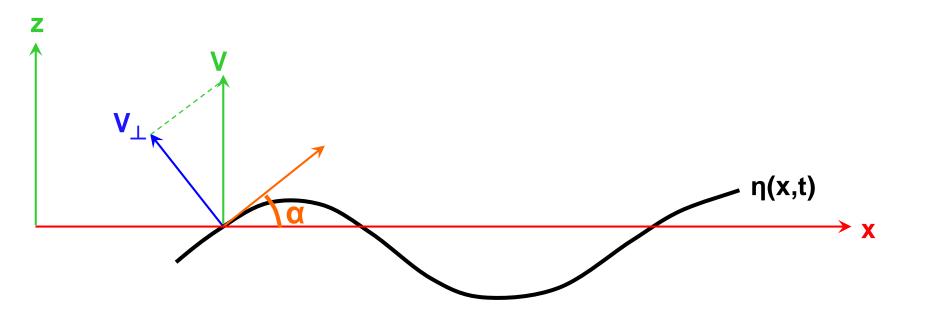
1. Boundary conditions

$$\Phi_1 = 0 \text{ at } z = -\infty$$

$$\Phi_2 = 0 \text{ at } z = +\infty$$
 far-field

at
$$z=\eta$$
 ?

1. Kinematic boundary condition

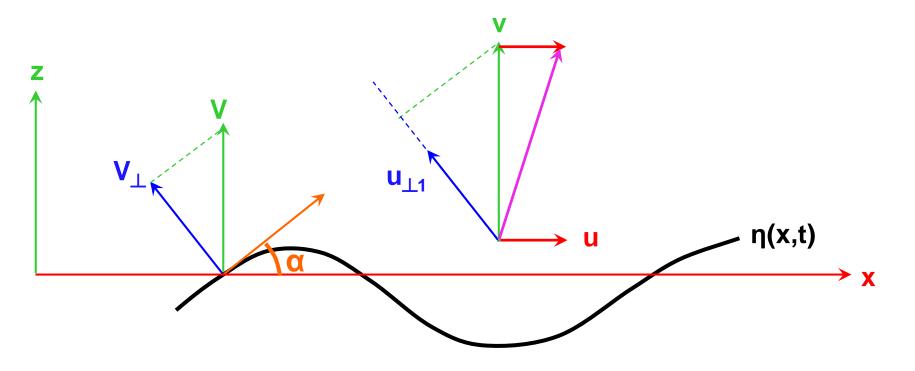


Kinematic condition: impermeability (no penetration)

No fluid particles going across the interface through the normal direction

$$V_{\perp} = \partial \eta / \partial t \cos(\alpha)$$

1. Kinematic boundary condition



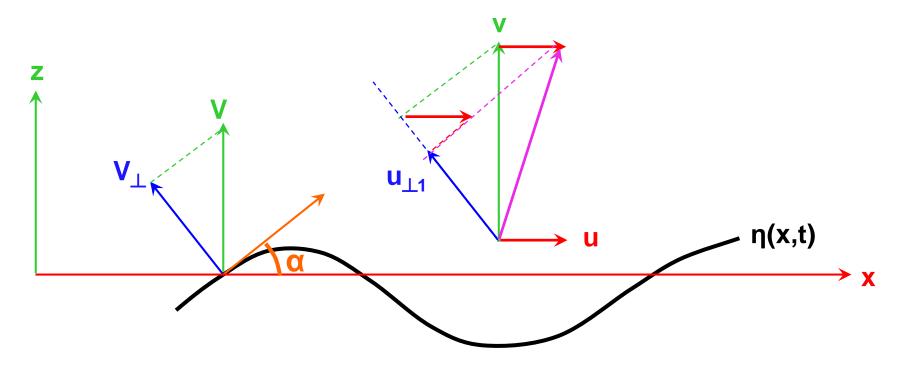
Kinematic condition: impermeability (no penetration)

No fluid particles going across the interface through the normal direction

$$V_{\perp} = \partial \eta / \partial t \cos(\alpha)$$

$$u_{\perp 1} = v_1 \cos(\alpha) +$$

1. Kinematic boundary condition



Kinematic condition: impermeability (no penetration)

No fluid particles going across the interface through the normal direction

$$\begin{array}{c} \mathbf{V}_{\perp} = \partial \eta / \partial t \, \cos(\alpha) \\ \\ \mathbf{u}_{\perp 1} = \, \mathbf{v}_{1} \, \cos(\alpha) - \, \mathbf{u}_{1} \, \sin(\alpha) \end{array} \end{array} \right\} \, \partial \eta / \partial t = \mathbf{v}_{1} - \, \mathbf{u}_{1} \, \tan(\alpha) \, \Rightarrow \boxed{ \partial \eta / \partial t = \mathbf{v}_{1} - \, \mathbf{u}_{1} \, \partial \eta / \partial \mathbf{x} }$$

1. Kinematic boundary conditions

$$\Phi_1 = 0 \text{ at } z = -\infty$$

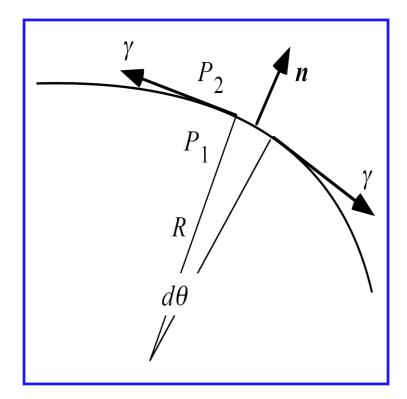
$$\Phi_2 = 0 \text{ at } z = +\infty$$
 far-field

$$U_{1} \frac{\partial \eta}{\partial x} - V_{1} = \frac{\partial \eta}{\partial t}$$

$$U_{2} \frac{\partial \eta}{\partial x} - V_{2} = \frac{\partial \eta}{\partial t}$$
at $z = \eta$

1. Dynamic boundary conditions

$$P_1 - P_2 = -\gamma \frac{\frac{\partial^2 \eta}{\partial x^2}}{(1 + \frac{\partial \eta}{\partial x}^2)^{3/2}} \text{ at } z = \eta$$



$$\mathbf{n} = \frac{(-\partial_x \eta, 1)}{\sqrt{1 + \partial_x^2 \eta}}$$

$$C = \nabla . \mathbf{n}$$

1. More equations

$$\frac{\partial \Phi_1}{\partial t} + \frac{U_1^2 + V_1^2}{2} + \frac{P_1}{\rho_1} + gz = C_1(t) = \mathbf{0}$$

$$\frac{\partial \Phi_2}{\partial t} + \frac{U_2^2 + V_2^2}{2} + \frac{P_2}{\rho_2} + gz = C_2(t) = \mathbf{0}$$

2nd Bernouilli relations

2. Base state

$$\Phi_{1} = 0,$$

$$\Phi_{2} = 0,$$

$$\eta = 0,$$

$$P_{1} = -\rho_{1}gz$$

$$P_{2} = -\rho_{2}gz$$

3. Perturb and linearize perturbation expansion

$$\begin{aligned}
\Phi_1 &= 0 &+ \epsilon \phi_1 \\
\Phi_2 &= 0 &+ \epsilon \phi_2 \\
U_1 &= 0 &+ \epsilon u_1 \\
V_1 &= 0 &+ \epsilon v_1 \\
U_2 &= 0 &+ \epsilon u_2 \\
V_2 &= 0 &+ \epsilon v_2 \\
P_1 &= -\rho_1 gz &+ \epsilon p_1 \\
P_2 &= -\rho_2 gz &+ \epsilon p_2 \\
\eta &= 0 &+ \epsilon \sigma
\end{aligned}$$

Variables Base state Small perturbation

3. Linearized equations

$$\Delta \phi_1 = 0$$

$$\Delta \phi_2 = 0$$

perturbed potential flow

$$u_{1} = \frac{\partial \phi_{1}}{\partial x}, \qquad v_{1} = \frac{\partial \phi_{1}}{\partial z}$$

$$u_{2} = \frac{\partial \phi_{2}}{\partial x}, \qquad v_{2} = \frac{\partial \phi_{2}}{\partial z}$$

3. Perturbed kinematic boundary conditions

$$\phi_1 = 0 \text{ at } z = -\infty$$
 $\phi_2 = 0 \text{ at } z = +\infty$

$$-\epsilon^{2}u_{1}\frac{\partial\sigma}{\partial x} + \epsilon v_{1} = \epsilon \frac{\partial\sigma}{\partial t} \text{ at } z = \epsilon\sigma$$
$$-\epsilon^{2}u_{2}\frac{\partial\sigma}{\partial x} + \epsilon v_{2} = \epsilon \frac{\partial\sigma}{\partial t} \text{ at } z = \epsilon\sigma$$

3. Perturbed kinematic boundary conditions

$$\phi_1 = 0 \text{ at } z = -\infty$$

$$\phi_2 = 0 \text{ at } z = +\infty$$

$$-\epsilon^{2}v_{1}\frac{\partial\sigma}{\partial x} + \epsilon v_{1} = \epsilon \frac{\partial\sigma}{\partial t} \text{ at } z = \epsilon\sigma$$

$$-\epsilon^{2}u_{2}\frac{\partial\sigma}{\partial x} + \epsilon v_{2} = \epsilon \frac{\partial\sigma}{\partial t} \text{ at } z = \epsilon\sigma$$

$$v_1 = \frac{\partial \sigma}{\partial t}$$
 at $z = \epsilon \sigma$
 $v_2 = \frac{\partial \sigma}{\partial t}$ at $z = \epsilon \sigma$

3. Flattened kinematic boundary conditions

$$\frac{\partial \phi_1}{\partial z} = \frac{\partial \sigma}{\partial t} \text{ at } z = \epsilon \sigma$$

$$\frac{\partial \phi_2}{\partial z} = \frac{\partial \sigma}{\partial t} \text{ at } z = \epsilon \sigma$$

Taylor expansion around 0:

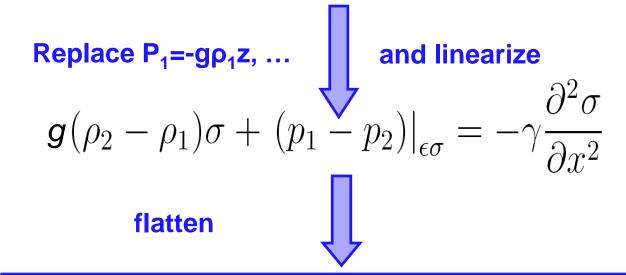
$$\frac{\partial \phi}{\partial z}(\epsilon \sigma) = \frac{\partial \phi}{\partial z}(0) + \epsilon \sigma \frac{\partial^2 \phi}{\partial z^2}(0) + \dots$$

$$\frac{\partial \phi_1}{\partial z} = \frac{\partial \sigma}{\partial t} \text{ at } z = 0$$

$$\frac{\partial \phi_2}{\partial z} = \frac{\partial \sigma}{\partial t} \text{ at } z = 0$$

3. Perturbed dynamic boundary conditions

$$(P_1 + \epsilon p_1 - P_2 - \epsilon p_2)|_{\epsilon\sigma} = -\gamma \epsilon \frac{\partial^2 \sigma}{\partial x^2} \left(1 - 3/2\epsilon^2 \left(\frac{\partial \sigma}{\partial x} \right)^2 \right)$$



$$(\rho_2 - \rho_1)g\sigma + (p_1 - p_2)|_0 = -\gamma \frac{\partial^2 \sigma}{\partial x^2}$$

3. Perturbed and linearized Bernouilli

Perturbed 2nd Bernouilli relations

$$\epsilon \frac{\partial \phi_1}{\partial t} + \epsilon^2 \frac{u_1^2 + v_1^2}{2} + \epsilon \frac{p_1}{\rho_1} = 0$$

$$\epsilon \frac{\partial \phi_2}{\partial t} + \epsilon^2 \frac{u_2^2 + v_2^2}{2} + \epsilon \frac{p_2}{\rho_2} = 0$$

Linearized 2nd Bernouilli relations

$$\frac{\partial \phi_1}{\partial t} + \frac{p_1}{\rho_1} = 0$$

$$\frac{\partial \phi_2}{\partial t} + \frac{p_2}{\rho_2} = 0$$

Fourier transform in x and t

$$\phi_1 = f_1(z) \exp(i(kx - \omega t)),$$

$$\phi_2 = f_2(z) \exp(i(kx - \omega t)),$$

$$\sigma = C \exp(i(kx - \omega t)),$$

k is the wavenumber and ω the frequency (in rad/s)

$$\lambda = 2\pi/k \qquad T = 2\pi/\omega$$

$$f = \omega/(2\pi)$$

Solution to Laplace equation:

Solution to Laplace equation:

Z

2

$$\phi = (\alpha \exp(kz) + \beta \exp(-kz))\exp(i(kx - \omega t))$$

1

$$\phi = (\alpha \exp(kz) + \beta \exp(-kz)) \exp(i(kx - \omega t))$$

Solution to Laplace equation:

$$\phi_1 = A \exp(kz) \exp(i(kx - \omega t)),$$

$$\phi_2 = B \exp(-kz) \exp(i(kx - \omega t)),$$

$$\sigma = C \exp(i(kx - \omega t)).$$

Replace in boundary conditions

$$g(\rho_2 - \rho_1)C + i\omega\rho_1 A - i\omega\rho_2 B = \gamma k^2 C$$
$$kA = -i\omega C$$
$$-kB = -i\omega C$$

This is an eigenvalue problem iωX=MX!

$$kg(\rho_2 - \rho_1)C + \omega^2 \rho_1 C + \omega^2 \rho_2 C = \gamma k^3 C$$

5. Dispersion relation

$$\omega^2 = \frac{-kg(\rho_2 - \rho_1) + \gamma k^3}{\rho_1 + \rho_2}$$

- •Unstable if there exists one ω , Im(ω)>0
- •Neutral if for all ω , Im(ω)=0:
- •Stable (or damped) if for all ω , Im(ω)<0:

5. Dispersion relation

$$\omega^2 = \frac{-kg(\rho_2 - \rho_1) + \gamma k^3}{\rho_1 + \rho_2}$$

•Unstable if there exists one ω , Im(ω)>0

$$\rho_2 > \rho_1$$

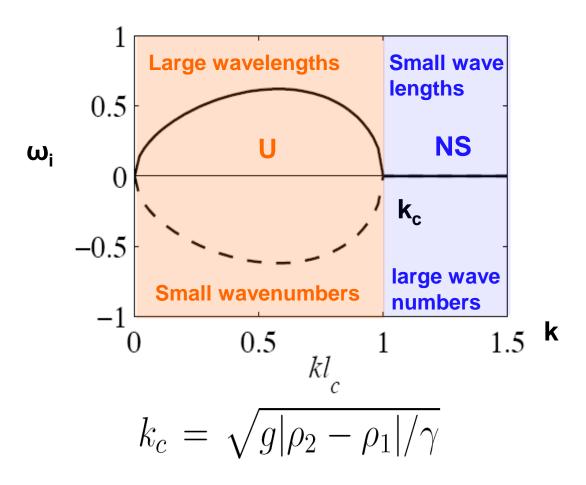
•Neutral if for all ω , Im(ω)=0:

$$\rho_1 > \rho_2$$

•Stable (or damped) if for all ω , Im(ω)<0:

The flow considered is not damped, we have neglected dissipation by neglecting viscosity

4. Dispersion relation



$$l_c = \sqrt{\gamma/(g|\rho_2 - \rho_1|)}$$

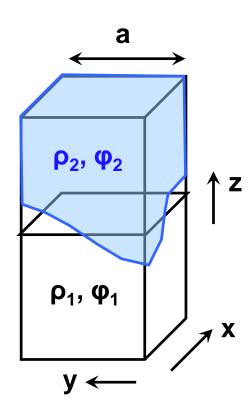
capillary length: 2.7mm for air/water

Instability analysis:

- 1. Equations and boundary conditions
- 2. Base state
- 3. Linearized equations
- 4. Normal mode expansion
- 5. Dispersion relation
- 6. Analysis of the dispersion relation

Dense fluid (ρ_2) above

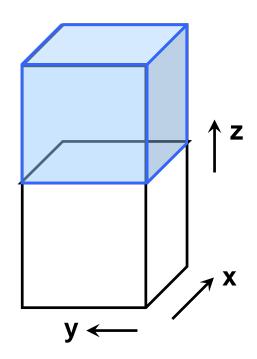
Light fluid (ρ_1) below



Base state

Flat Interface at $z=0 \Rightarrow h(x,y)=0$

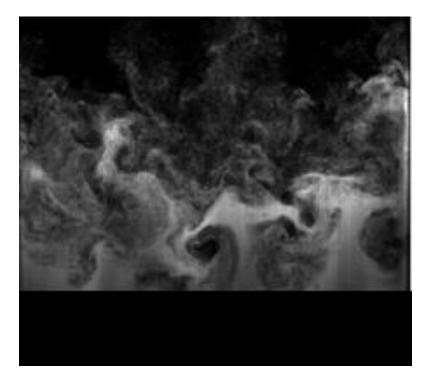
No flow $\Rightarrow \phi_1(x,y)=0, \phi_2(x,y)=0$



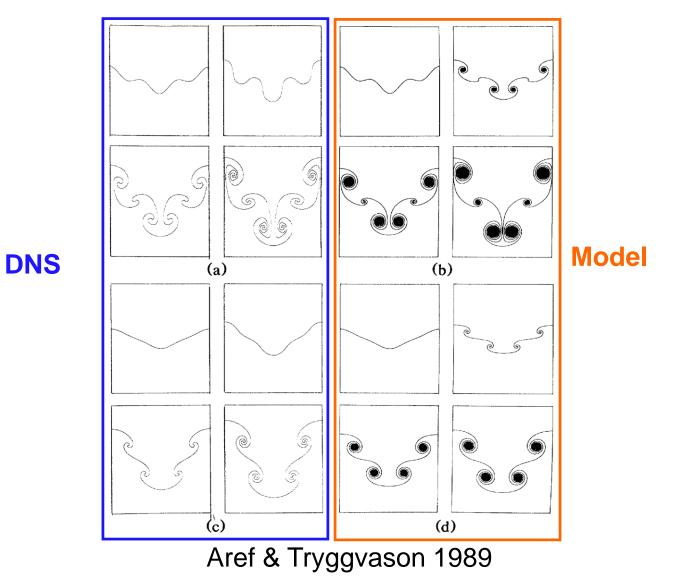
$$\mathbf{C} = \frac{\left(1 + \left(\frac{\partial S}{\partial x}\right)^{2}\right) \frac{\partial^{2} S}{\partial y^{2}} - 2\frac{\partial S}{\partial x} \frac{\partial S}{\partial y} \frac{\partial^{2} S}{\partial x \partial y} + \left(1 + \left(\frac{\partial S}{\partial y}\right)^{2}\right) \frac{\partial^{2} S}{\partial x^{2}}}{\left(1 + \left(\frac{\partial S}{\partial x}\right)^{2} + \left(\frac{\partial S}{\partial y}\right)^{2}\right)^{3/2}}$$

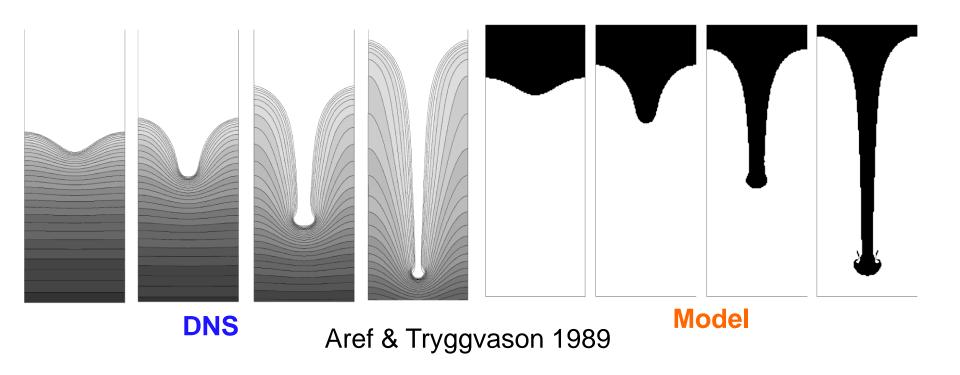
Global instability analysis:

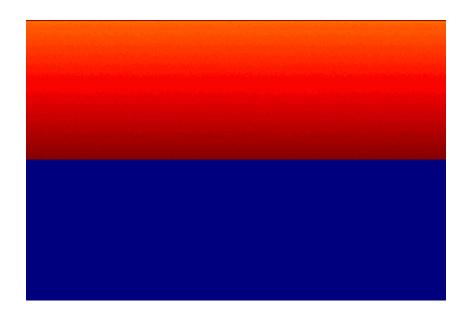
- 1. Equations and boundary conditions
- 2. Base state
- 3. Linearized equations
- 4. Fourier series expansion
- 5. Countable number of admissible frequencies: discretized dispersion relation
- 6. Analysis of the linear stability conditions



Jones & Jacobs 1997

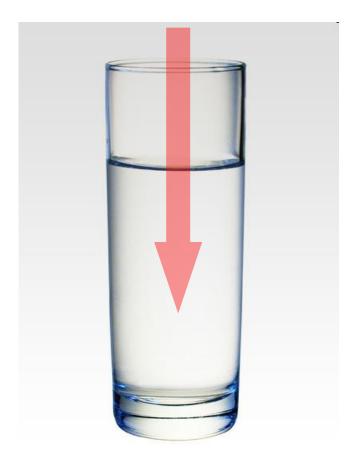






www.LBmethod.org
Jonas Lätt, EPFL

A nonlinear paradox: pooring syrup



Unstable but not mixed

Stable but mixed

Instability of suspended thin films

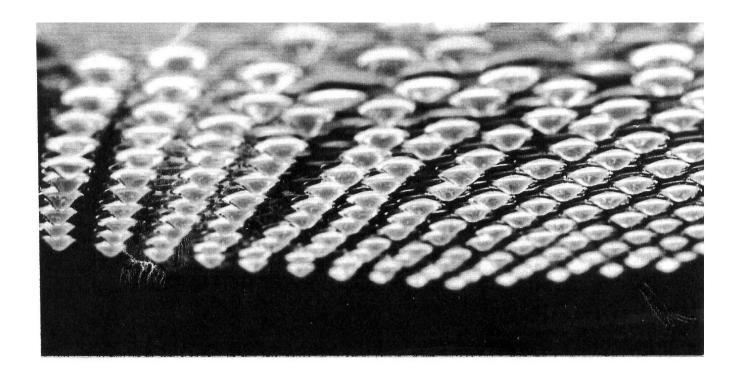


Fig. 2.6 – Une couche mince d'huile est déposée sur une plaque plane, puis la plaque est retournée. le film d'huile est instable et l'instabilité se manifeste par l'apparition de gouttes pendantes disposées sur un réseau ici hexagonal (Fermigier et al. 1990).

Instability analysis:

- A physical mechanism (handwaving arguments)
- Scaling laws
- A dispersion relation that links wavelengths and frequencies
- An experimental validation