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Rayleigh-Taylor instability

Saffman-Taylor

Rayleigh-Taylor

Taylor-Couette

Kelvin-Helmholtz

Lift-up and Streaks

Tollmien-Schlichting

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Tearing instability

Meandering instability

Traffic waves

Benard-Marangoni

Coiling instability

Vortex shedding
Flow separation



A movie
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A movie

3



A movie
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Surface tension
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Surface tension

Spherical drop or bubble

P1

P2

R

P2 – P1=2γ/R

γ: surface tension
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Surface tension

Soap bubble

P1

P2 – P1=4γ/R

γ: surface tension

P2

Rair

air

soap
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Surface tension

Laplace Law
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Rayleigh Taylor instability

z

x

y

Dense fluid (ρ2) above

Light fluid (ρ1) below

a

ρ2, φ2

ρ1, φ1

γ surface tension
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Rayleigh Taylor instability

Simplify to 2D : two semi-infinite domains

ρ2, φ2

ρ1, φ1

z

x
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Rayleigh Taylor instability

Simplify to 2D : two semi-infinite domains

Potential flow

Potential flow

z

x

Dynamic boundary conditions

Kinematic boundary conditions

V

U
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Instability analysis:

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation
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1. Equations

Potential flow

Velocity field



14

1. Boundary conditions

far-field

?
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

z

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

V
┴

V
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

z

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)+

V
┴

V

u

v

u
┴1
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

z

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)- u1 sin(α)

V
┴

V

u

v

u
┴1

∂η/∂t=v1- u1 tan(α)    ∂η/∂t=v1- u1∂η/∂x
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1. Kinematic boundary conditions

far-field
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1. Dynamic boundary conditions
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1. More equations

2nd Bernouilli relations

= 0

= 0
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2. Base state
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3. Perturb and linearize

perturbation expansion

Variables Small perturbationBase state
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3. Linearized equations

perturbed potential flow
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3. Perturbed kinematic boundary conditions
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3. Perturbed kinematic boundary conditions
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3. Flattened kinematic boundary conditions

Taylor expansion around 0:

transforms a b.c. at an unkwown interface into a fixed place!
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3. Perturbed dynamic boundary conditions

Replace P1=-gρ1z, …

flatten

and linearize

g
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3. Perturbed and linearized Bernouilli

Perturbed 2nd Bernouilli relations

Linearized 2nd Bernouilli relations
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4. Normal mode expansion

Fourier transform in x and t
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Solution to Laplace equation:

z

2

1
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Replace in boundary conditions

This is an eigenvalue problem iωX=MX!
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5. Dispersion relation

•Neutral if for all ω, Im(ω)=0:

•Unstable if  there exists one ω, Im(ω)>0

•Stable (or damped) if  for all ω, Im(ω)<0:
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5. Dispersion relation

•Neutral if for all ω, Im(ω)=0:

•Unstable if  there exists one ω, Im(ω)>0

•Stable (or damped) if  for all ω, Im(ω)<0:

The flow considered is not damped, we have 

neglected dissipation by neglecting viscosity
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4. Dispersion relation

capillary length: 2.7mm for air/water

k

ωi

kc

Large wavelengths

Small wavenumbers

NSU

Small wave

lengths

large wave

numbers
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Instability analysis:

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation



38

Rayleigh Taylor instability

z

x

y

Dense fluid (ρ2) above

Light fluid (ρ1) below

a

ρ2, φ2

ρ1, φ1
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Base state

z

x

y

Flat Interface at z=0     h(x,y)=0

No flow      φ1(x,y)=0,   φ2(x,y)=0

C=
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Global instability analysis:

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Fourier series expansion

5. Countable number of admissible frequencies: discretized 

dispersion relation

6. Analysis of the linear stability conditions
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Rayleigh-Taylor instability

This is just the linear part of the story!

Jones & Jacobs 1997
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Rayleigh-Taylor instability

This is just the linear part of the story!

Jones & Jacobs 1997

Aref & Tryggvason 1989

ModelDNS
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Rayleigh-Taylor instability

This is just the linear part of the story!

ModelDNS Aref & Tryggvason 1989
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Rayleigh-Taylor instability

This is just the linear part of the story!

www.LBmethod.org

Jonas Lätt, EPFL

http://www.lbmethod.org/


45

Rayleigh-Taylor instability

A nonlinear paradox: pooring syrup

Stable but mixedUnstable but not mixed
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Instability of suspended thin films
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Instability analysis:

• A physical mechanism (handwaving arguments)

• Scaling laws  

• A dispersion relation that links wavelengths and frequencies

• An experimental validation


