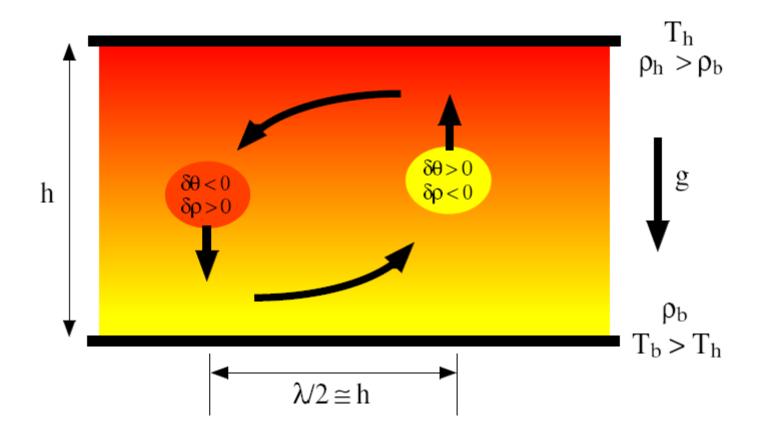
Most flows are unstable...

Vortex shedding Saffman-Taylor Flow separation **Tollmien-Schlichting** Rayleigh-Taylor **Lift-up and Streaks** Traffic waves **Meandering instability Gravito-capillary waves Taylor-Couette** Rayleigh-Plateau **Tearing instability Coiling instability** Rayleigh-Benard **Benard-Marangoni Kelvin-Helmholtz**

Chaos

Rayleigh Bénard convection



Lessons learned from linear stability analysis

- 1. The pure conductive solution becomes unstable above a threshold, which for fixed depth h and fluid properties is simply proportional to the temperature gradient.
- 2. We therefore introduced a control parameter which equals 0 at threshold $r = \frac{\Delta T \Delta T_{\rm c}}{\Delta T_{\rm c}}$
- 3. Close to threshold, when linearity can be assumed, the perturbation writes

$$v_z = X(t)f_v(z)\sin(kx), \qquad k = 2\pi/\lambda$$

- 4. Temperature and vertical velocity are in phase
- 5. The unstable wavelength at threshold is roughly 2h

Heuristic equation for an unstable system

$$\frac{d}{dt}X = \sigma X$$

$$\sigma = r/\tau_0$$

- 1. We retrieve the critical slowing at threshold
- 2. The system is stable (damped in fact!) for r<0 and unstable for r>0

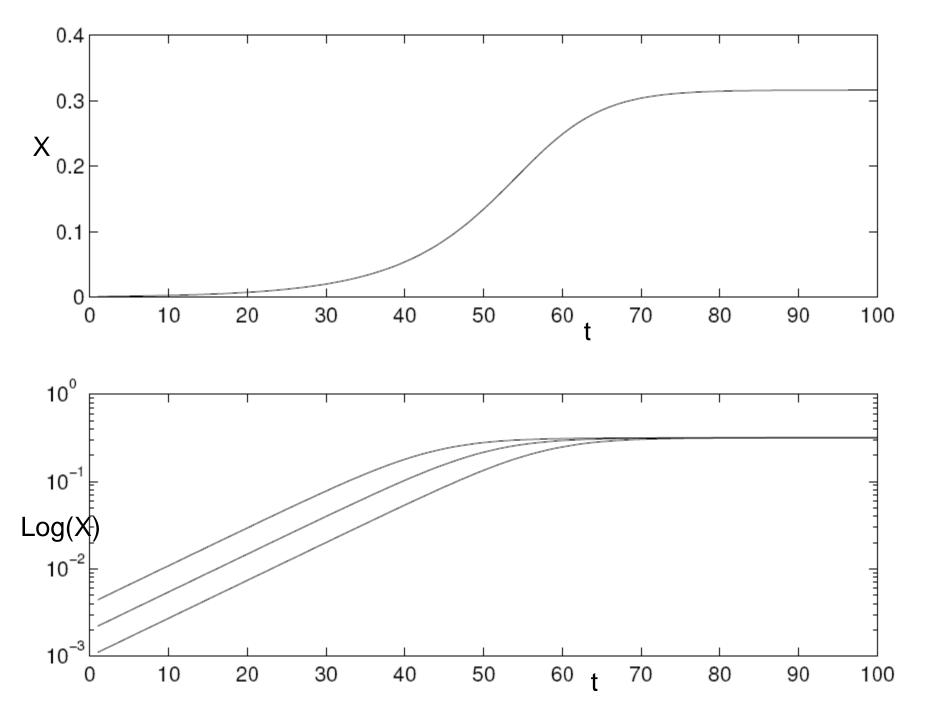
Heuristic equation for an unstable system

- 1. Since for r>0, there is exponential growth, X cannot assumed to remain small for long...
- Nonlinear effects have to be introduced.

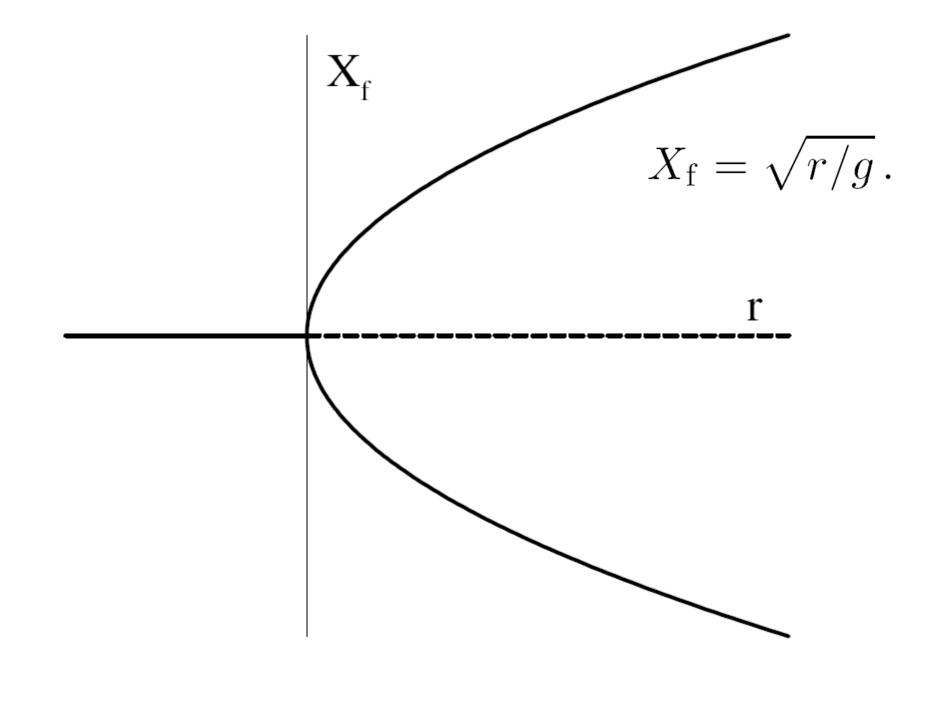
$$\frac{d}{dt}X = \sigma X$$

- 3. where σ_{eff} is now a function of X!
- 4. By symmetry, there is no reason that a positive velocity anomaly would behave differently than a negative one...

$$\tau_0 \sigma_{\text{eff}} = r - gX^2$$



$$\tau_0 \frac{d}{dt} X = F_r(X) = rX - gX^3$$



Stability of the bifurcated state?

$$\tau_0 \frac{d}{dt} (X_f + X') = \tau_0 \frac{d}{dt} X' = r(X_f + X') - g(X_f + X')^3$$

$$= [rX_f - gX_f^3] + (r - 3gX_f^2) X' + \mathcal{O}(X'^2)$$

$$\tau_0 \frac{d}{dt} X' = -2rX'$$

Stable since r>0!

Now we include more physics

X: vertical velocity

Y: temperature anomaly

P: Prandtl number

Driving force Viscous Archimedes resistance

$$\frac{d}{dt}X = P(Y - X)$$

Now we include more physics

X: vertical velocity

Y: temperature anomaly

P: Prandtl number

R: Rayleigh number

Driving force Viscous Archimedes resistance

$$\frac{d}{dt}X = P(Y - X)$$

$$\frac{d}{dt}Y = RX - Y_{\text{Heat}}$$
Heat diffusion transport

Stability of equilibrium state (X=0,Y=0)

$$X = X_0 \exp(st), \quad Y = Y_0 \exp(st),$$

 $sX_0 = P(Y_0 - X_0),$

$$sY_0 = RX_0 - Y_0,$$

$$(s+P)(s+1) - RP = 0$$

$$s^{(\pm)} = \frac{1}{2} \left(-(P+1) \pm \left[(P-1)^2 + 4PR \right]^{1/2} \right)$$

Stability of equilibrium state (X=0,Y=0)

$$X = X_0 \exp(st)$$
, $Y = Y_0 \exp(st)$, $s^{(\pm)} = \frac{1}{2} \left(-(P+1) \pm \left[(P-1)^2 + 4PR \right]^{1/2} \right)$

Unstable if
$$\left[(P-1)^2 + 4PR \right] > (P+1)^2$$

$$4PR > 4P.$$

$$R > 1$$

There is also a mean temperature correction Z

$$\mathbf{X} \propto \sin(kx)$$

$$Y \propto \sin(kx)$$

$$\frac{d}{dt}Z = XY - bZ$$

Lorentz model

X: vertical velocity

Y: temperature anomaly

Z: mean temperature correction

Driving force Viscous Archimedes resistance
$$\frac{d}{dt}X = P(Y-X) \qquad \text{Heat transport} \\ \frac{d}{dt}Y = (R-Z)X-Y \qquad \text{Heat diffusion} \\ \frac{d}{dt}Z = XY-bZ \qquad \text{diffusion Relaxation to linear temperature profile} \\ \text{Mean effect on temperature} \qquad \text{temperature profile} \\ \text{Heat diffusion} \\ \text{Relaxation to linear temperature profile} \\ \text{Mean effect on temperature} \qquad \text{temperature profile} \\ \text{The second of the profile} \\ \text{The second of t$$

Limiting equation for R close to 1 and X=Y

$$Z = XY/b$$

$$\frac{d}{dt}X = (R-1)X - X^3/b$$

Now consider Lorentz system at large R and b=8/3, P=10

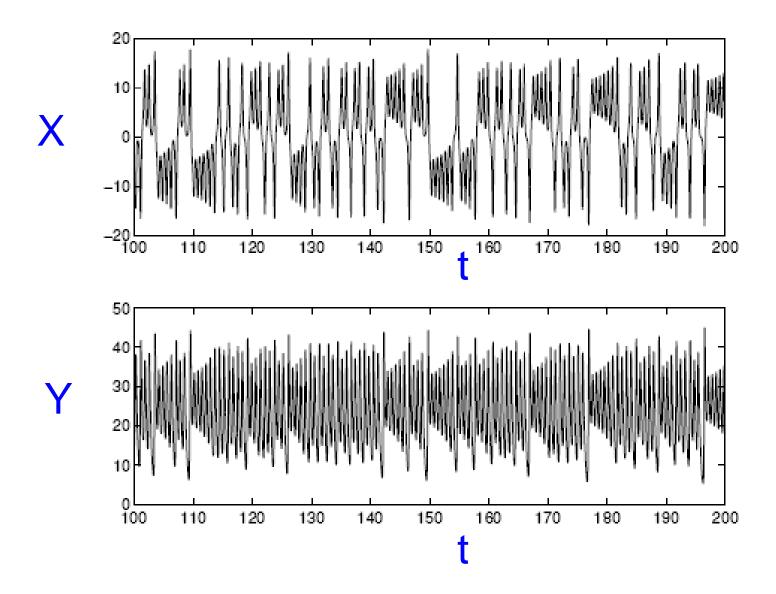
$$\frac{d}{dt}X = P(Y - X)$$

$$\frac{d}{dt}Y = (R - Z)X - Y$$

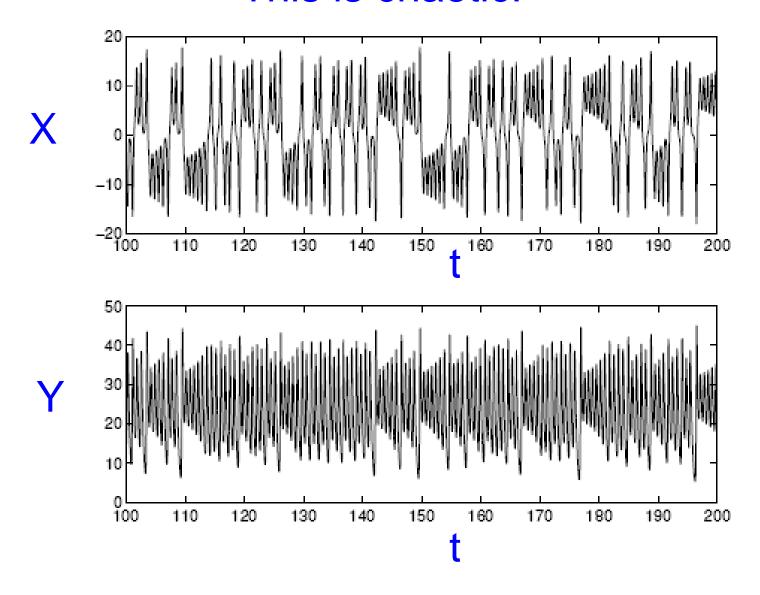
$$\frac{d}{dt}Z = XY - bZ$$

One can show that the steady convection roll solution becomes unstable for R>24.74

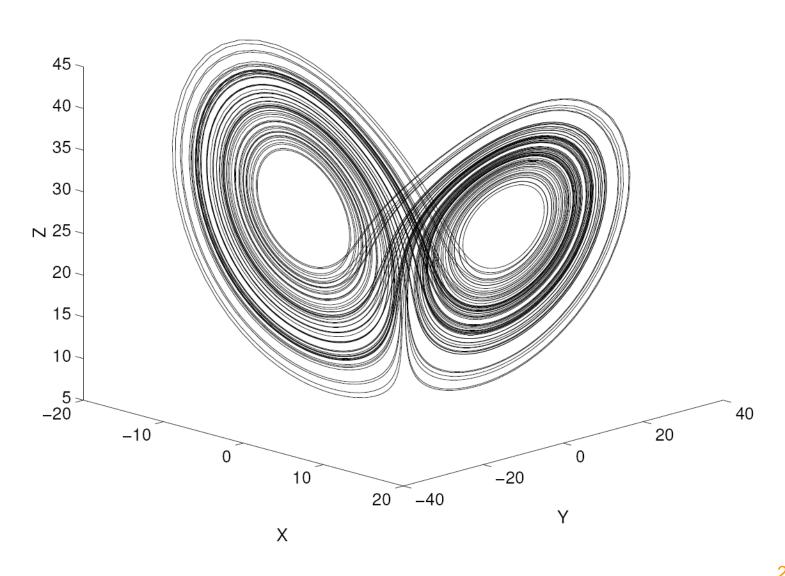
Here R=28, b=8/3, P=10



Here R=28, b=8/3, P=10 This is chaotic!

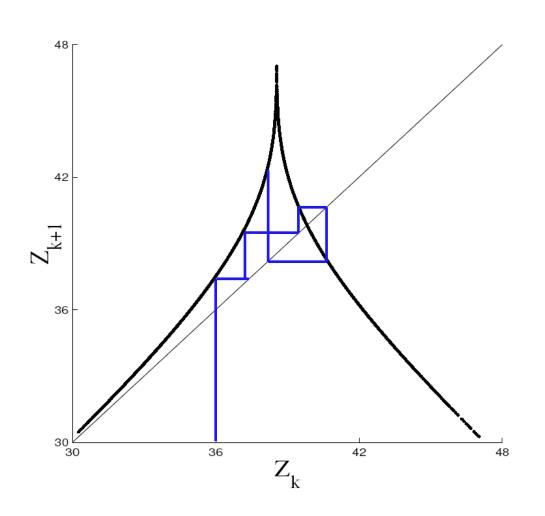


Here R=28, b=8/3, P=10 This is chaotic!



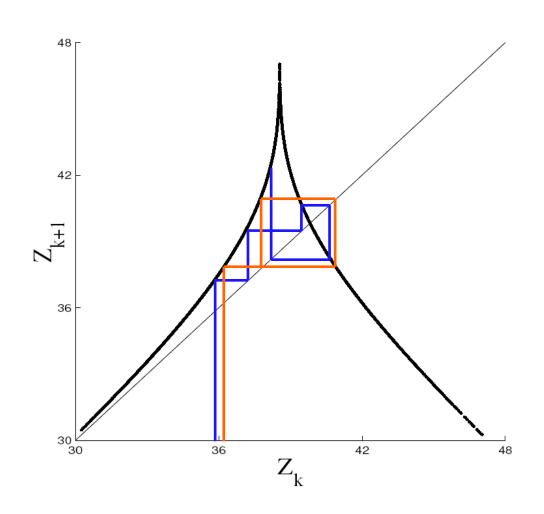
What happens?

Lorentz plot the successive maxima of Z, Z_k In fact he plots Z_{k+1} as a function of Z_k



What happens?

Lorentz plot the successive maxima of Z, Z_k In fact he plots Z_{k+1} as a function of Z_k



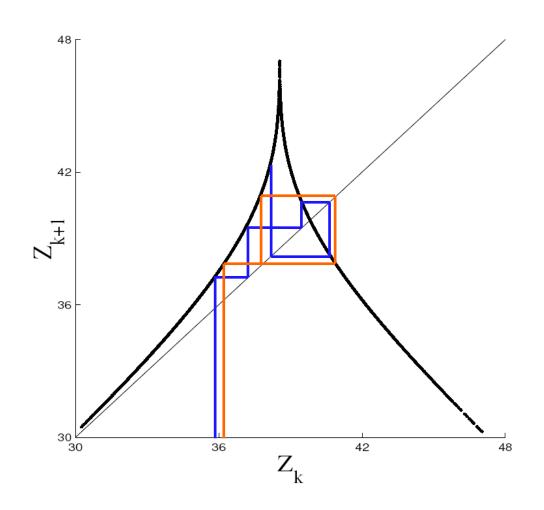
Discrete time iterations $Z_{k+1}=f(Z_k)$

Consider
$$Z_k$$
'= $Z_k+\delta Z$

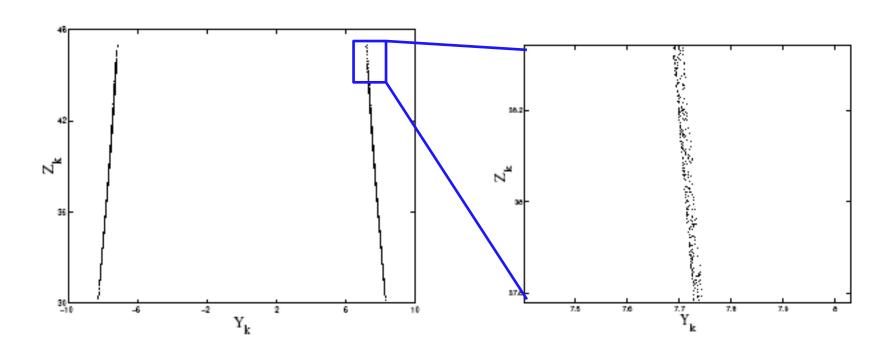
$$Z_{k+1}$$
'= Z_{k+1} +df/d $Z(Z_k)\delta Z$

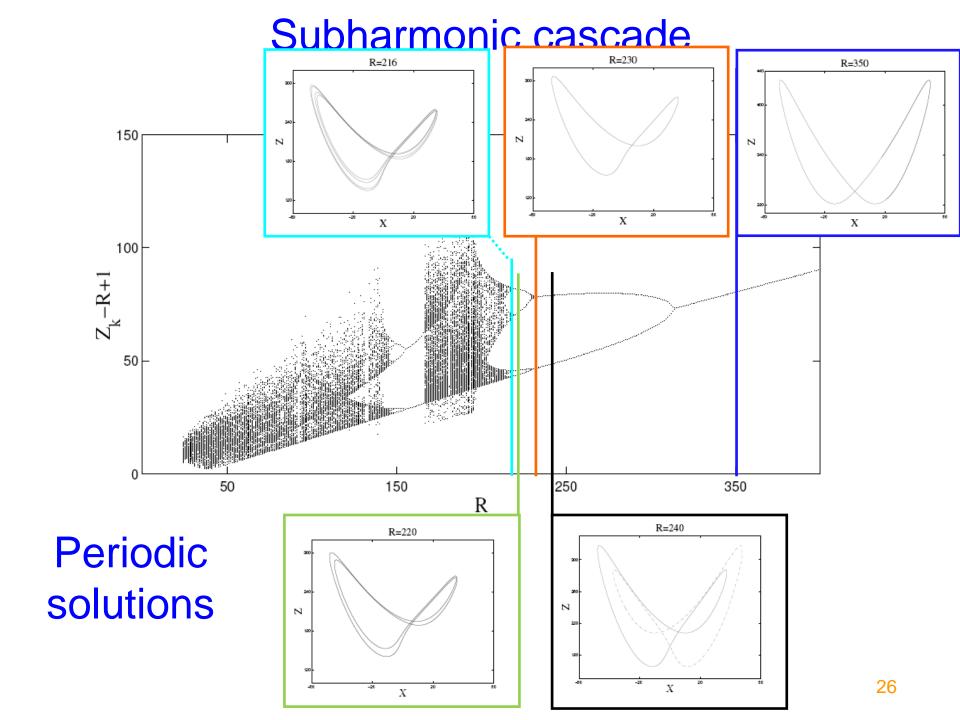
The divergence depends on the the sign of |df/dZ|-1

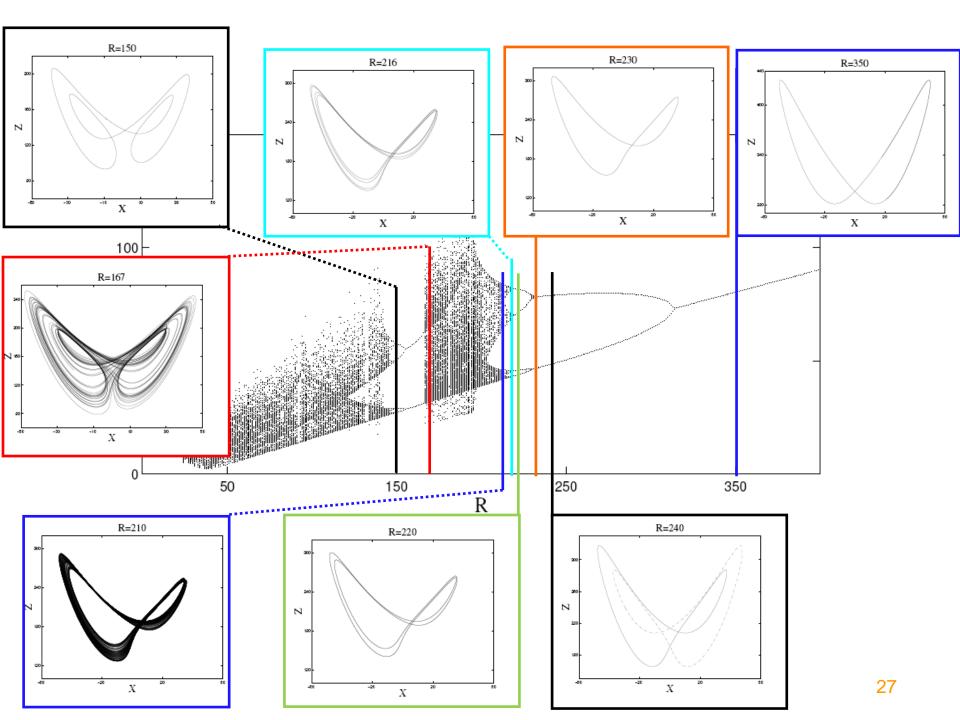
Here |df/dZ|>1 everywhere! Small initial differences get exponentially amplified Loss of memory of initial condition Butterfly effect



Beware, this is not a function







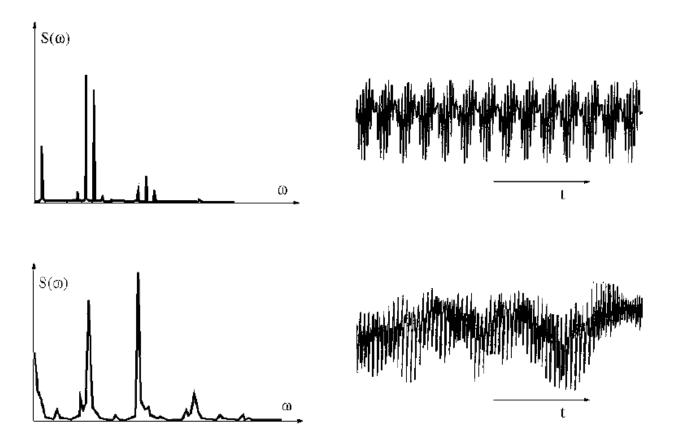
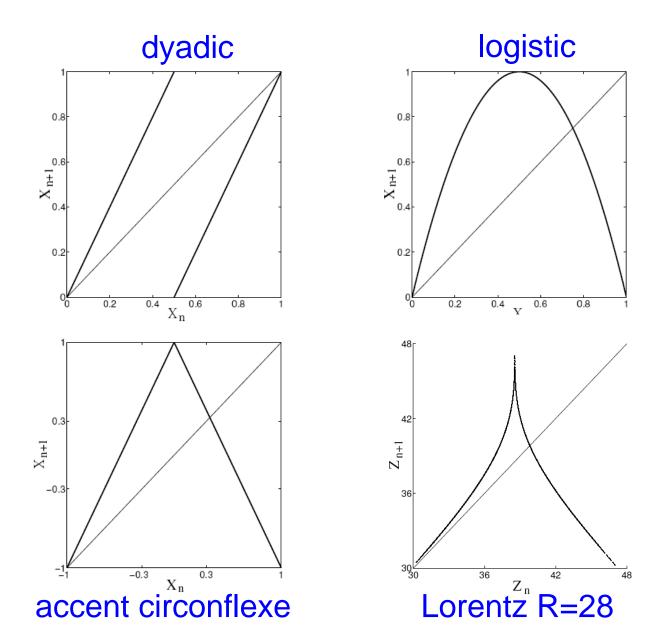
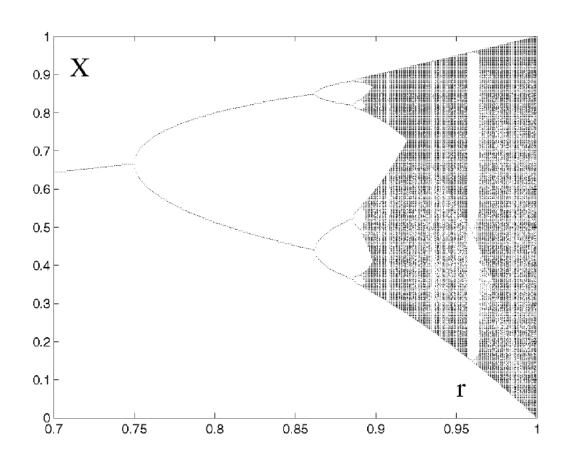


Figure 6.14: Spectres du signal de vitesse mesuré en un point de la cellule. En régime bipériodique (en haut), le spectre est composé de deux raies principales et de leurs combinaisons simples. Le régime chaotique est caractérisé par des raies au pied élargi et par la présence de bruit de basse fréquence ($\omega \approx 0$) dans le spectre (d'après Bergé et Dubois, 1981).

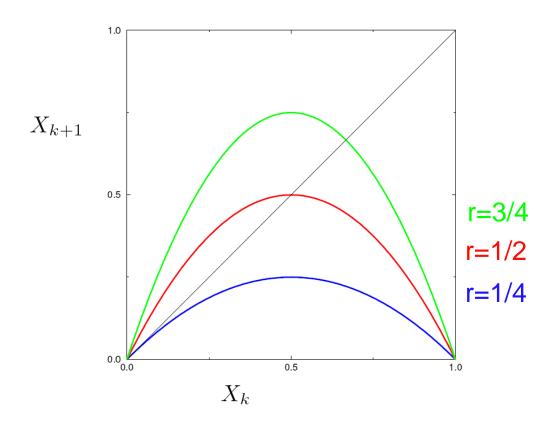
Different maps



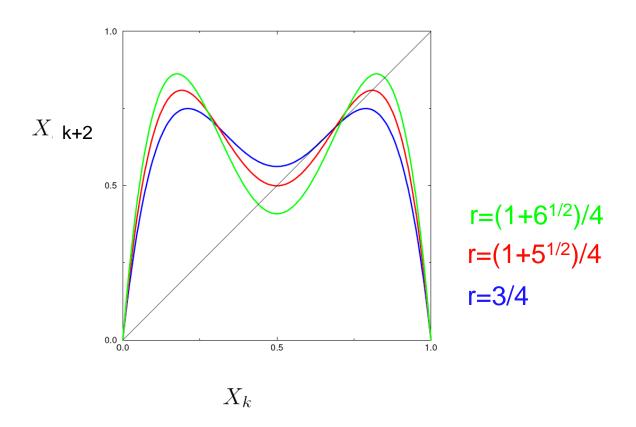
$$X_{k+1} = F_r(X_k) = 4rX_k(1 - X_k)$$



$$X_{k+1} = F_r(X_k) = 4rX_k(1 - X_k)$$



$$X_{k+1} = F_r(X_k) = 4rX_k(1 - X_k)$$

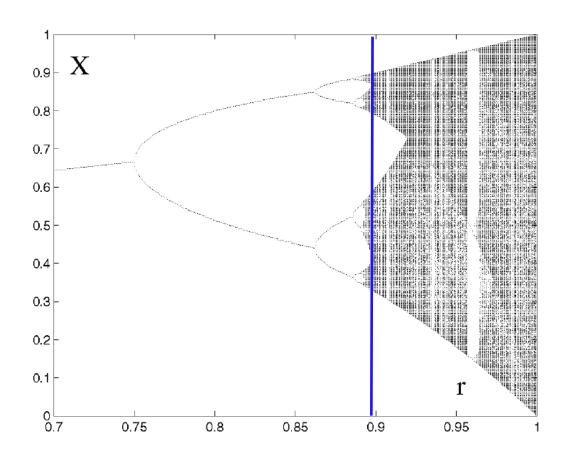


critical bifrucation parameters for period doubling

n	$T_{(n)}$	$r_{(n)}$	$r_{(n)}^{ss}$
0	1	1/4	1/2
1	2	3/4	0,80901
2	4	0,86237	0,87464
3	8	0,88602	0,88866
4	16	0,89218	
:	:	:	:
∞	∞	0,89248	0,89248

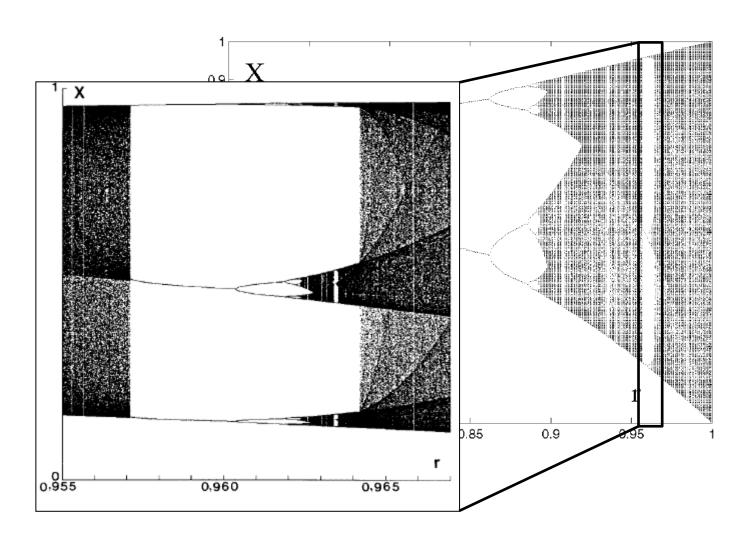
Periodic window

$$X_{k+1} = F_r(X_k) = 4rX_k(1 - X_k)$$

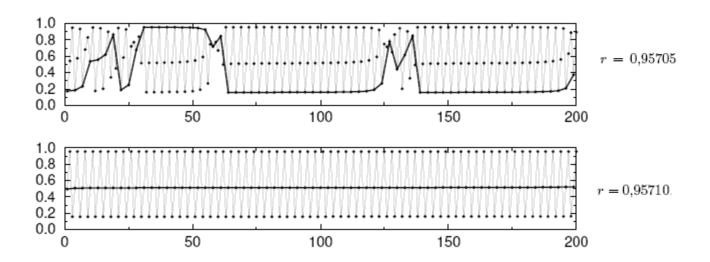


Logistic map Periodic window

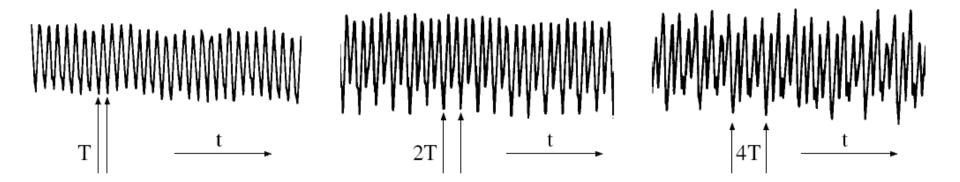
$$X_{k+1} = F_r(X_k) = 4rX_k(1 - X_k)$$



Very very sensitive system

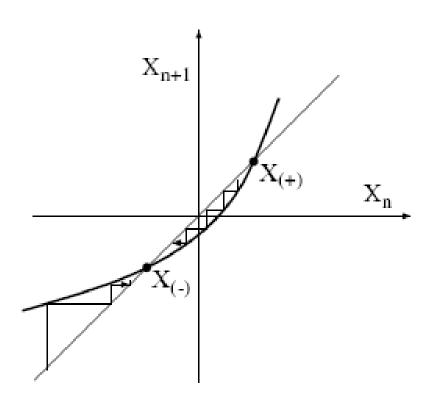


Subharmonic cascade in convection

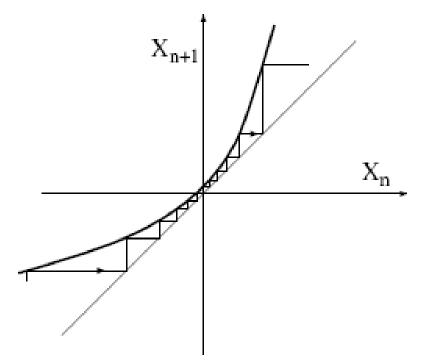


Libchaber and Maurer '80 Liquid Helium

Intermittency

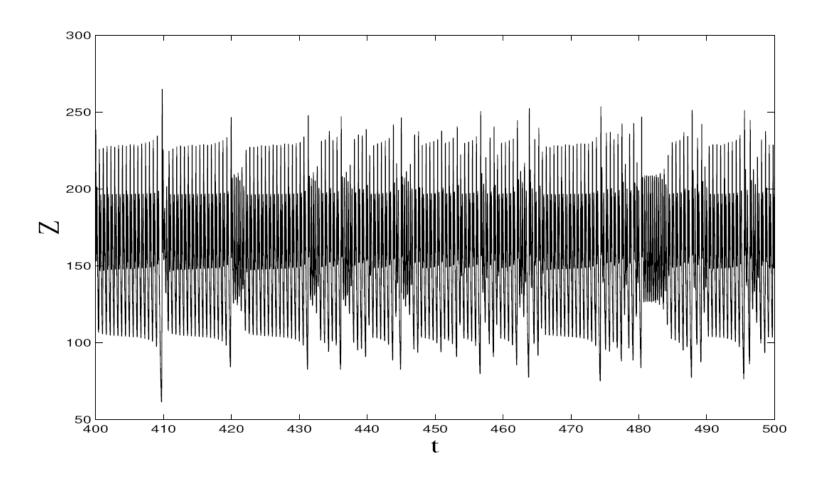


Stable



No fixed point-Long attracting periods Intermittent regime

Intermittency



Lorentz at R=166