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Most flows are unstable...

Saffman-Taylor

Rayleigh-Taylor

Taylor-Couette

Kelvin-Helmholtz

Lift-up and Streaks

Tollmien-Schlichting

Gravito-capillary waves

Rayleigh-Plateau

Rayleigh-Benard

Tearing instability

Meandering instability

Traffic waves

Benard-Marangoni

Coiling instability

Vortex shedding
Flow separation

Chaos
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Rayleigh Bénard convection
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Lessons learned from linear stability analysis

1. The pure conductive solution becomes unstable above a threshold, 

which for fixed depth h and fluid properties is simply proportional to 

the temperature gradient.

2. We therefore introduced a control parameter which equals 0 at 

threshold

3. Close to threshold, when linearity can be assumed, the perturbation 

writes

4. Temperature and vertical velocity are in phase

5. The unstable wavelength at threshold is roughly 2h
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Heuristic equation for an unstable system

1. We retrieve the critical slowing at threshold

2. The system is stable (damped in fact!) for r<0 and unstable for r>0
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Heuristic equation for an unstable system

1. Since for r>0, there is exponential growth, X cannot assumed to 

remain small for long…

2. Nonlinear effects have to be introduced 

3. where σeff is now a function of X! 

4. By symmetry, there is no reason that a positive velocity anomaly 

would behave differently than a negative one…

eff
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Stability of the bifurcated state?

Stable since r>0!
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Now we include more physics

X: vertical velocity

Y : temperature anomaly

P: Prandtl number 

Driving force

Archimedes
Viscous 

resistance
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Driving force

Archimedes
Viscous 

resistance

Heat 

diffusion

Now we include more physics

X: vertical velocity

Y : temperature anomaly

P: Prandtl number

R: Rayleigh number 

Heat 

transport
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Stability of equilibrium state (X=0,Y=0)
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Stability of equilibrium state (X=0,Y=0)

>0

Unstable if > +

>

>
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There is also a mean temperature correction Z

X

Y 
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Lorentz model

X: vertical velocity

Y : temperature anomaly

Z: mean temperature correction

Driving force

Archimedes

Viscous 

resistance

Heat 

diffusion

Heat 

transport

Relaxation to linear 

temperature profileMean effect on temperature



Limiting equation for R close to 1 and X=Y
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Now consider Lorentz system at large R

and b=8/3, P=10
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One can show that the steady convection 

roll solution becomes unstable for R>24.74



Here R=28, b=8/3, P=10
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Here R=28, b=8/3, P=10

This is chaotic!
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Here R=28, b=8/3, P=10

This is chaotic!
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What happens?

Lorentz plot the successive maxima of Z, Zk

In fact he plots Zk+1 as a function of Zk



What happens?

Lorentz plot the successive maxima of Z, Zk

In fact he plots Zk+1 as a function of Zk
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Discrete time iterations

Zk+1=f(Zk)

Consider Zk’=Zk+δZ

Zk+1’=Zk+1+df/dZ(Zk)δZ

The divergence depends on the the sign of |df/dZ|-1



Here |df/dZ|>1 everywhere!

Small initial differences get exponentially amplified

Loss of memory of initial condition

Butterfly effect



Beware, this is not a function
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Subharmonic cascade
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Periodic 

solutions
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Different maps

logisticdyadic

Lorentz R=28accent circonflexe



Logistic map
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Logistic map
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r=1/4

r=1/2

r=3/4



Logistic map
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r=3/4

r=(1+51/2)/4

r=(1+61/2)/4

k+2



Logistic map

critical bifrucation parameters for period 

doubling 
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Periodic window
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Logistic map

Periodic window



Very very sensitive system
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Subharmonic cascade in convection
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Libchaber and Maurer ‘80

Liquid Helium

R



Intermittency
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Stable

No fixed point-

Long attracting periods

Intermittent regime



Intermittency
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Lorentz at R=166


