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Discretization methods

All standard methods

• Spectral methods (memory saving)

• Finite elements

• Finite volumes

• Finite differences

Very few compressible studies

Apparently no use of « non-standard » methods:

•particle methods, vortex methods,…

•Lattice-Bolzmann 

Sparse and parallelizable
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Global linear instability of flows in complex geometry

1. Gobal instabilty of a classical 2D flow 

2. Less classical unstable flows

3.  Stable flows
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Wake behind cylinder flow

Navier-Stokes equations

Incompressible 2D flow described by

Fluid,

, cylinder diameter

Velocity Pressure
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Stability analysis

Base flow equations

perturbation equations

Perturbation expansion

Stationary base flow

Global approach

Local approach

Linearized perturbation equations

Perturbations

Zebib, Jackson (1987)

Huerre & Monkewitz (1990)
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Analyse de stabilité globale

Global stability equations

Global mode(complex)

frequency

Growth-rate



10

Global stability analysis solvers

• non linear equations,

(Newton method)

• Eigenvalue problem

(Krylov-Arnoldi method)

Spatial discretization = finite element methods

(FreeFem++ freeware)

For a given value of d r,,  numerically solve
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Computational model and mesh

Number of triangles ~ 375 000 

Number of nodes ~ 190 000

Triangular mesh

Taylor-Hood finite elements (P2,P2,P1) → number of degrees of freedom~ 1.6 106
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Base flow

Dennis & Chang (1970) 2.05 1.52

Fornberg (1980) 2.00 1.50

Ye et al. (1999) 2.03 1.52

Giannetti & Luchini (2007) 2.05 1.54

Marquet et al. (2008) 2.00 1.50

Drag coefficient
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Valeur propre et mode global dominants  

Spectrum at Re = 50

stable unstable

Evolution as a function of the Reynolds number

Leading global mode

Leading eigenvalue:  

Stable flow

Unstable flowif

if



To keep im mind

Global stability analysis=

Nonlinear problem (base flow ) + 

Eigenvalue problem
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Meliga et al. 2008,2009,2010
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How do these theoretical considerations 
compare with experiments
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Remarkable predictions of successive 

symmetry breakings and thresholds

Meliga et al. 2009
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Global linear instability of flows in complex geometry

1. Gobal instabilty of a classical 2D flow 

2. Less classical unstable flows

3.  Stable flows



Global low frequency oscillations in  a 

detached boundary layer

Locally parallel 1D instability fails!

Marquillie and Ehrenstein (2003)
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Flapping  in the DNS

Marquillie and Ehrenstein (2003)
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Navier-Stokes steady states

Mapping and chebyshev-collocation in both streamwise x and normal y

coordinates

Chebyshev discretization in a square: spurious pressure modes

Domain length L=300, H=30, 250x40 collocation points

Dirichlet

Dirichlet

D
ir

ic
h

le
t

N
e
u

m
a
n

n

=[0;0]

4 corners, pi =0 and     pi =0

8 extra conditions: continuity of normal derivative for p at the corners 

and pi =0.
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Continuation procedure to obtain unstable steady states

No topology change

Ehrenstein and Gallaire (2008)
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Continuation procedure to obtain unstable steady states

Reattachment increasingly difficult to capture

Ehrenstein and Gallaire (2008)
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2D temporal global modes

Generalized eigenvalue problem

Inverse Krylov-Arnoldi method

U U

^ ^

σ

σ : growth rate

Base flow

Perturbation

Dirichlet
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Unstable spectrum

Re=590

Ehrenstein and Gallaire(2007)
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h=1.8

h=2

Eigenmodes
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Localized modes

Low ωr

High ωr
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Convergence issues

Varying the 

height

Varying the 

Length and 

resolution
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Optimal perturbation



T

phase 1

phase 2
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Perturbation evolution
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Perturbation evolution

1

2
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Beating behavior
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Similar modes with equidistant frequencies
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Power spectrum in DNS

δω/2π
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1. Gobal instabilty of a classical 2D flow 
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3.  Stable flows
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The global transient growth is due to the local 

spatial growth
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Response to white noise

Very selective amplifier
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Method 1: weakly non parallel spatial stability 

analysis
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Method 2: transfer function

Nonlinear problem (base flow )

+ linear perturbation
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Method 2: transfer function

Nonlinear problem (base flow )

+ linear perturbation

for harmonic forcing

look for solution                      
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Method 2: transfer function

harmonic forcing 

Resolvent operator (transfer function)
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Method 2: transfer function

harmonic forcing 

Resolvent operator (transfer function)

Harmonic gain
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Method 2: transfer function
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Method 2: transfer function
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1. Gobal instabilty of a classical 2D flow 

2. Less classical unstable flows

3.  Stable flows



Global linear instability of flows in complex geometry

Da Vincente 2010


