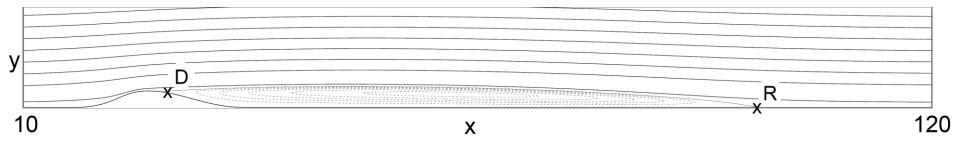
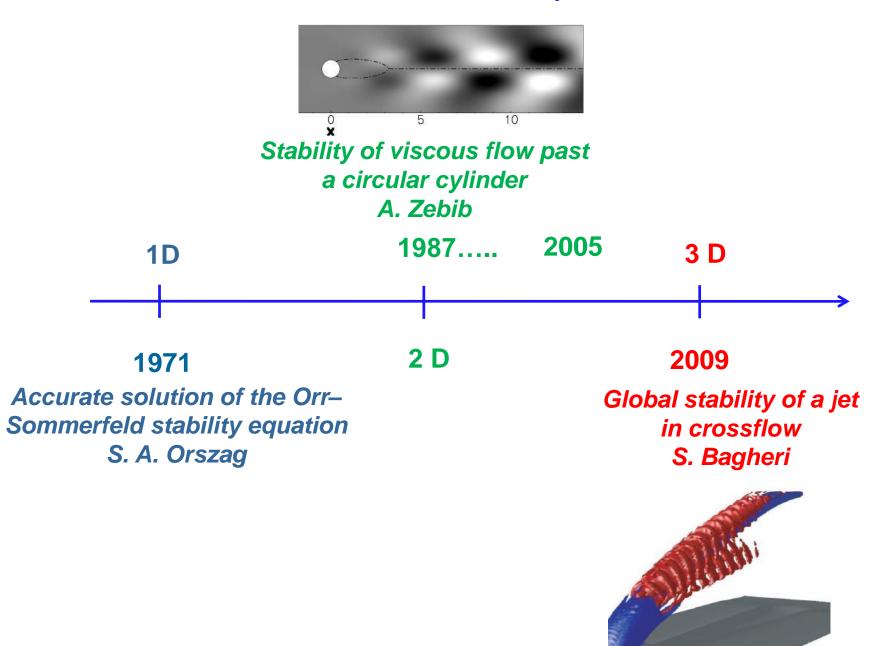
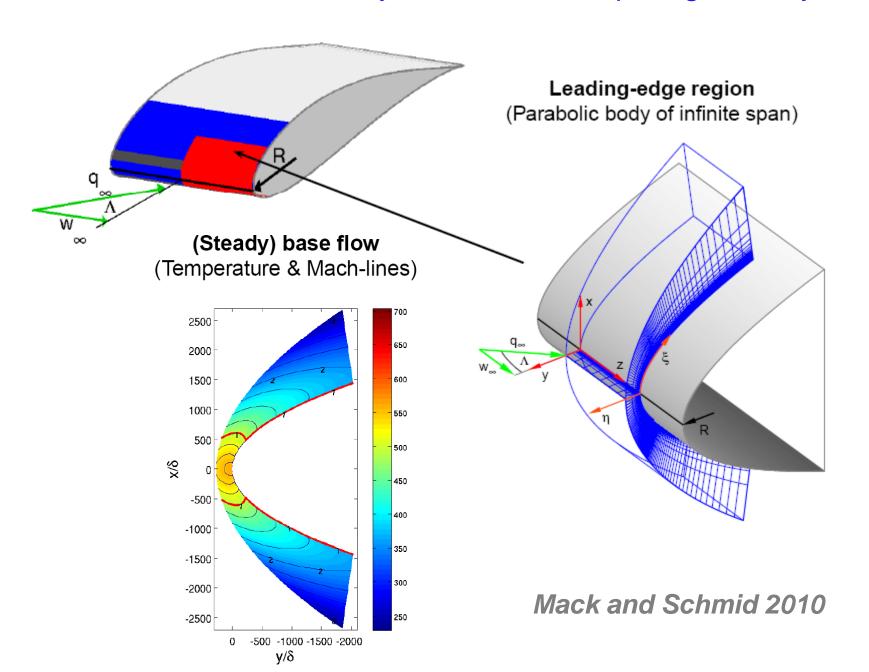
Global linear instability of flows



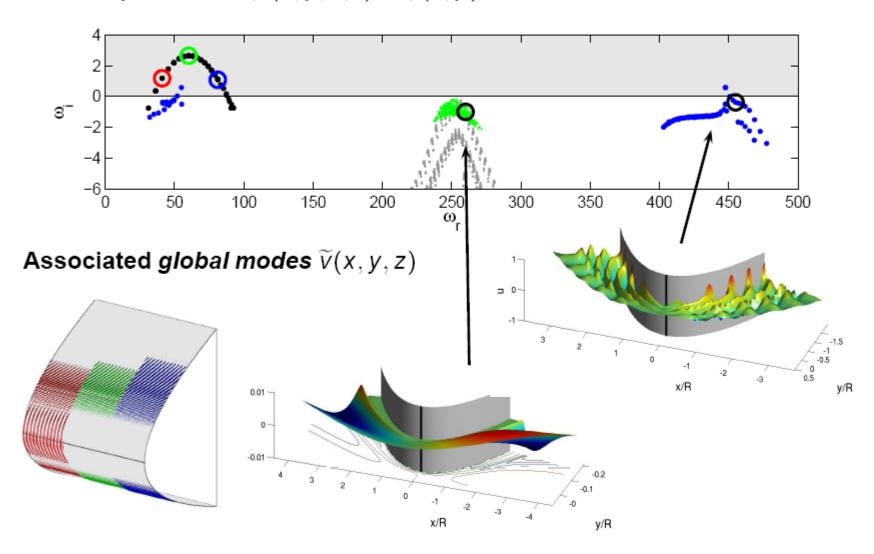
Global linear instability of flows



Global linear instability of flows in complex geometry



Global spectrum: $\phi'(x, y, z, t) = \widetilde{\phi}(x, y) e^{i(\beta z - \omega t)}$ with $\omega = \omega_r + i\omega_i$



Mack and Schmid 2010

Discretization methods

All standard methods

- Spectral methods (memory saving)
- Finite elements
- Finite volumes

Finite differences

Sparse and parallelizable

Very few compressible studies

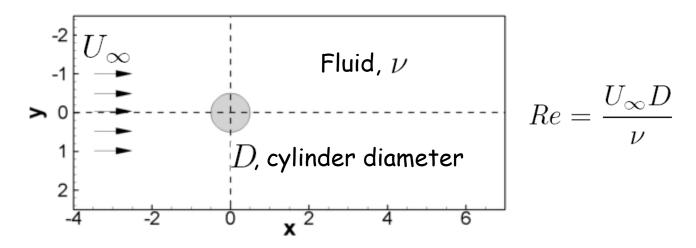
Apparently no use of « non-standard » methods:

- particle methods, vortex methods,...
- Lattice-Bolzmann

Global linear instability of flows in complex geometry

- 1. Gobal instabilty of a classical 2D flow
- 2. Less classical unstable flows
- 3. Stable flows

Wake behind cylinder flow



Incompressible 2D flow described by

Navier-Stokes equations

$$\partial_t \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{u} = -\boldsymbol{\nabla} p + Re^{-1} \boldsymbol{\nabla}^2 \boldsymbol{u},$$

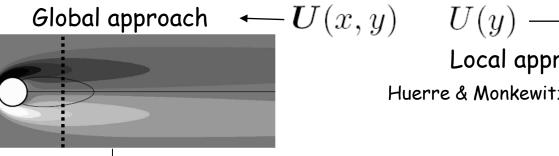
 $\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$

Stability analysis

Perturbation expansion

$$(oldsymbol{u},p)=(oldsymbol{U},P)+(oldsymbol{u}^{'},p^{'})$$
 Perturbations –

Stationary base flow

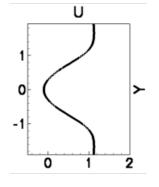


$$-U(x,y)$$

$$U(y)$$
 ———

Local approach

Huerre & Monkewitz (1990) -1



Base flow equations

$$\nabla U \cdot U = -\nabla P + Re^{-1} \nabla^2 U,$$

$$\nabla \cdot U = 0$$

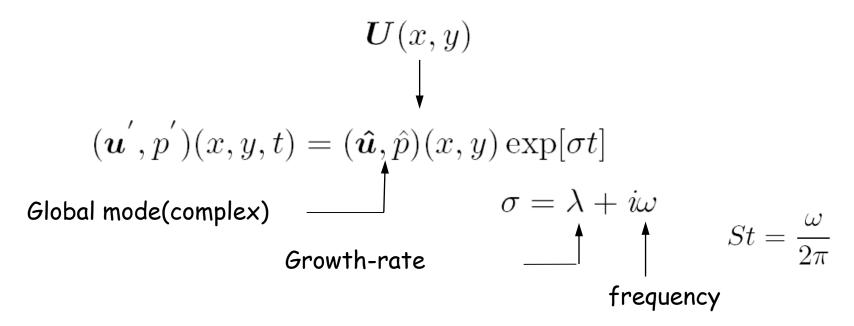
Zebib, Jackson (1987)

Linearized perturbation equations

$$\partial_{t}\boldsymbol{u}' + \nabla \boldsymbol{U} \cdot \boldsymbol{u}' + \nabla \boldsymbol{u}' \cdot \boldsymbol{U} + \nabla \boldsymbol{u}' \cdot \boldsymbol{u}' = -\nabla p' + Re^{-1} \nabla^{2} \boldsymbol{u}',$$

 $\nabla \cdot \boldsymbol{u}' = 0$

Analyse de stabilité globale



Global stability equations

$$\sigma \hat{\boldsymbol{u}} + \nabla \hat{\boldsymbol{u}} \cdot \boldsymbol{U} + \nabla \boldsymbol{U} \cdot \hat{\boldsymbol{u}} = -\nabla \hat{p} + Re^{-1} \nabla^2 \hat{\boldsymbol{u}},$$
$$\nabla \cdot \hat{\boldsymbol{u}} = 0,$$

Global stability analysis solvers

For a given value of Re , numerically solve

non linear equations,

$$\nabla U \cdot U = -\nabla P + Re^{-1} \nabla^2 U,$$

(Newton method)

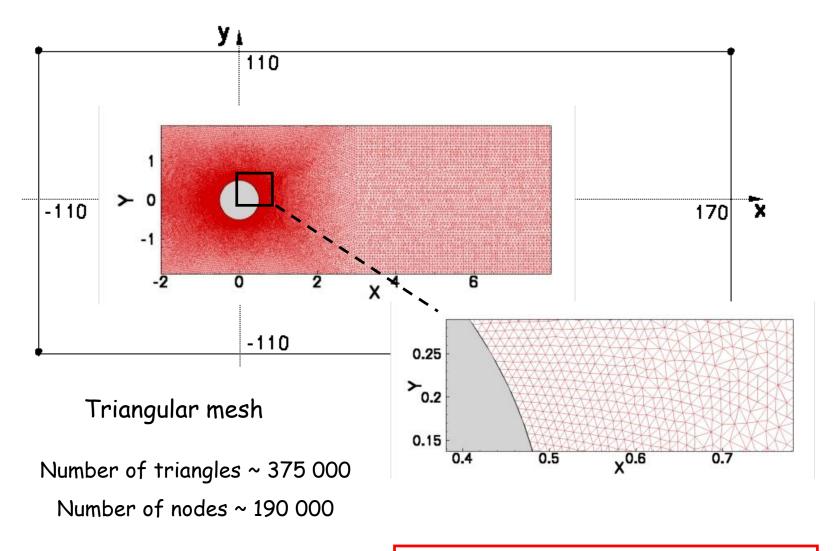
· Eigenvalue problem

$$\sigma \hat{\boldsymbol{u}} + \nabla \hat{\boldsymbol{u}} \cdot \boldsymbol{U} + \nabla \boldsymbol{U} \cdot \hat{\boldsymbol{u}} = -\nabla \hat{p} + Re^{-1} \nabla^2 \hat{\boldsymbol{u}},$$

(Krylov-Arnoldi method)

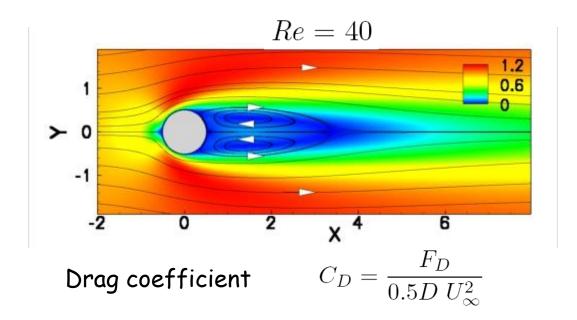
Spatial discretization = finite element methods (FreeFem++ freeware)

Computational model and mesh



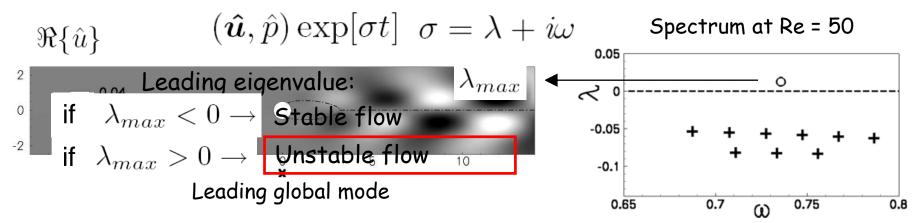
Taylor-Hood finite elements (P2,P2,P1) \rightarrow number of degrees of freedom~ 1.6 106

Base flow



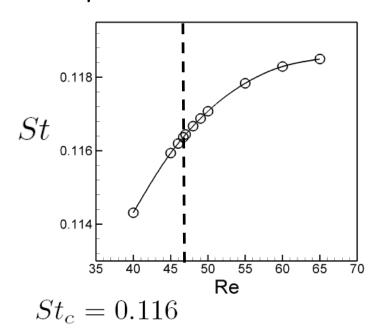
C_D	Re = 20	Re = 40
Dennis & Chang (1970)	2.05	1.52
Fornberg (1980)	2.00	1.50
Ye et al. (1999)	2.03	1.52
Giannetti & Luchini (2007)	2.05	1.54
Marquet et al. (2008)	2.00	1.50

Valeur propre et mode global dominants



Evolution as a function of the Reynolds number





To keep im mind

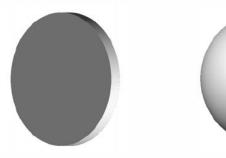
Global stability analysis= Nonlinear problem (base flow) + Eigenvalue problem

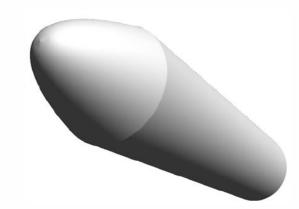
Global linear instability of flows in complex geometry

- 1. Gobal instabilty of a classical 2D flow
- 2. Less classical unstable flows
- 3. Stable flows

Prototype flows

Axisymmetric wakes





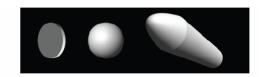
Disk

Sphere

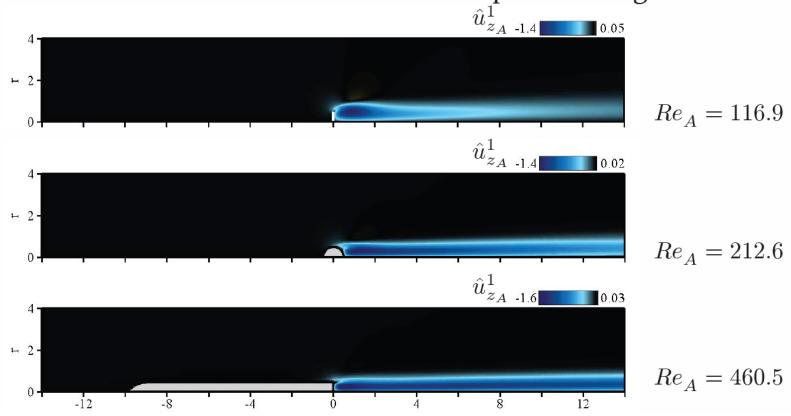
Blunt base

Meliga et al. 2008,2009,2010

Leading global modes

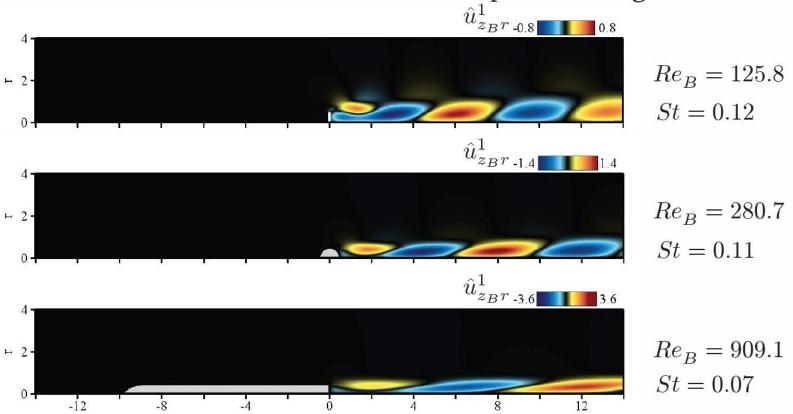


Same bifurcation sequence for all prototype flows, in the INCOMPRESSIBLE & compressible regimes

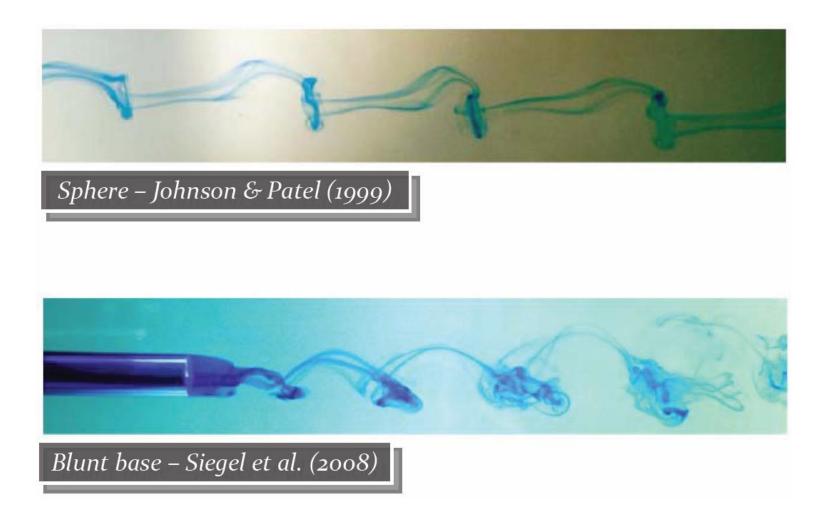


Leading global modes

Same bifurcation sequence for all prototype flows, in the INCOMPRESSIBLE & compressible regimes



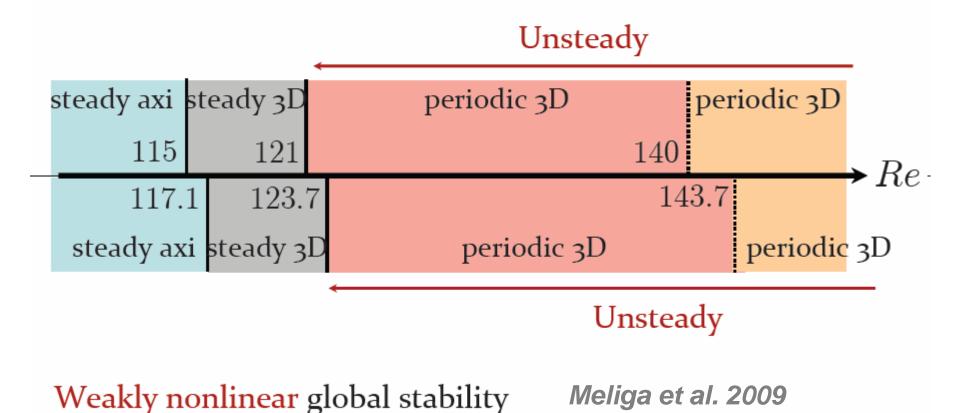
How do these theoretical considerations compare with experiments



Remarkable predictions of successive symmetry breakings and thresholds

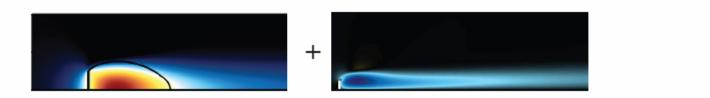
Direct numerical simulation of the 3D flow

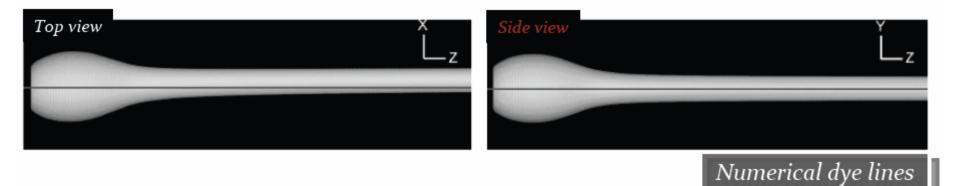
Fabre et al. (2008)



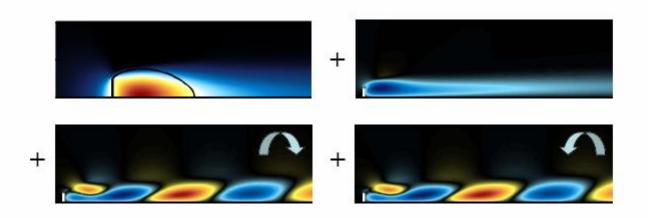
• Steady axi

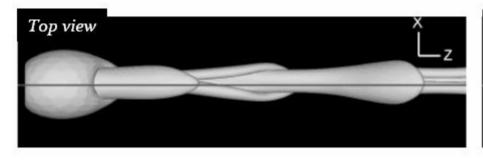
• Steady 3D + planar sym.

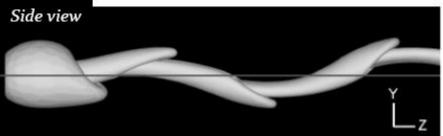




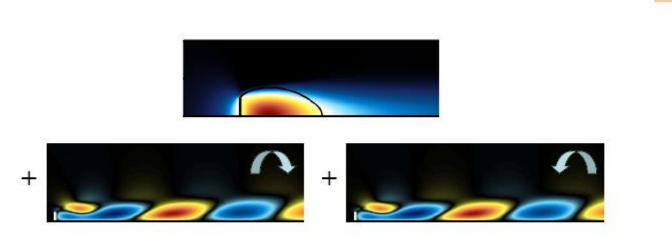
• Periodic 3D, no sym.

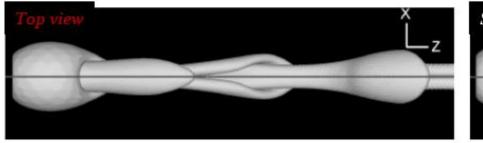


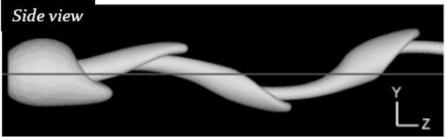




• Periodic 3D + planar sym.



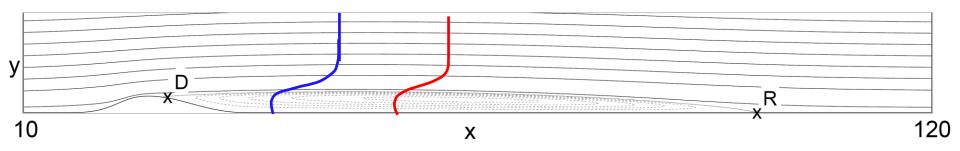




Global linear instability of flows in complex geometry

- 1. Gobal instabilty of a classical 2D flow
- 2. Less classical unstable flows
- 3. Stable flows

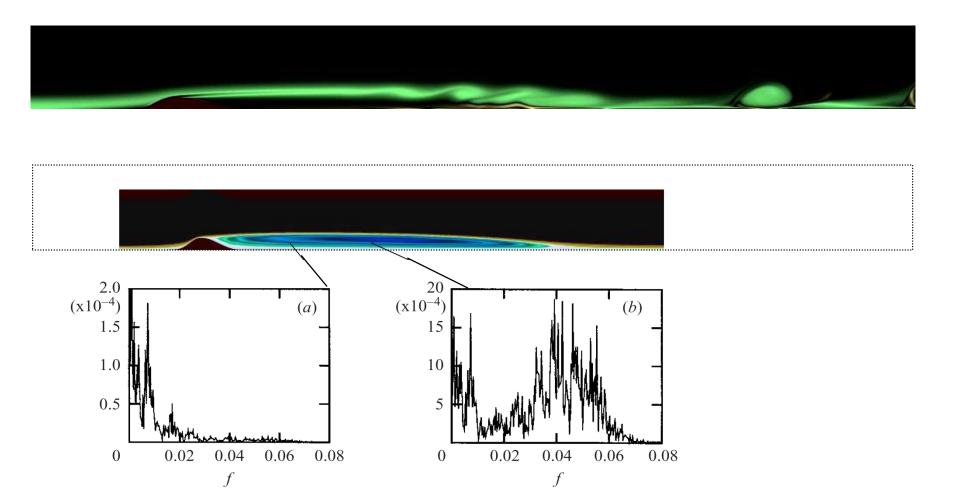
Global low frequency oscillations in a detached boundary layer



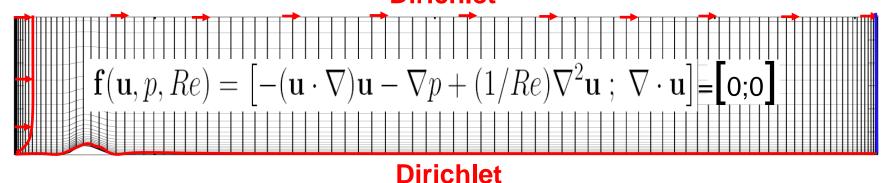
Locally parallel 1D instability fails!

Marquillie and Ehrenstein (2003)

Flapping in the DNS



Navier-Stokes steady states



Mapping and chebyshev-collocation in both streamwise x and normal y coordinates

Chebyshev discretization in a square: spurious pressure modes

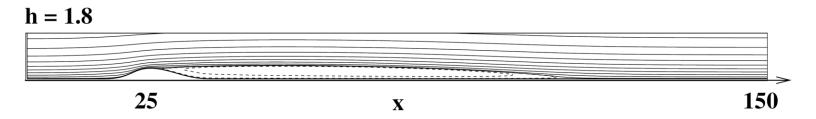
4 corners, $p_i = 0$ and $\nabla p_i = 0$

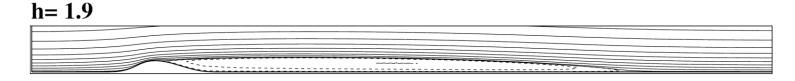
Dirichlet

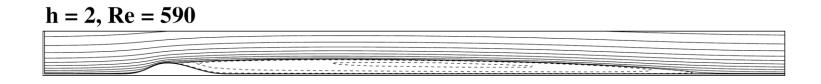
8 extra conditions: continuity of normal derivative for p at the corners and $p_i = 0$.

Domain length L=300, H=30, 250x40 collocation points

Continuation procedure to obtain unstable steady states



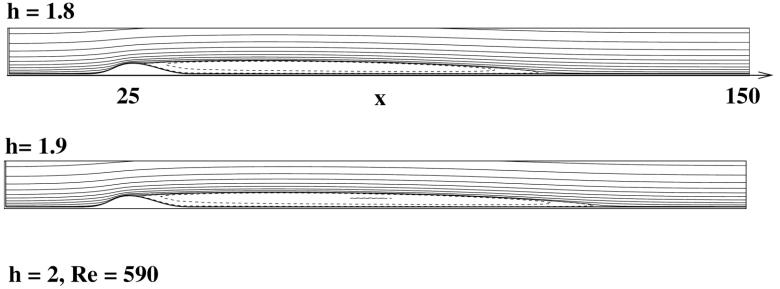


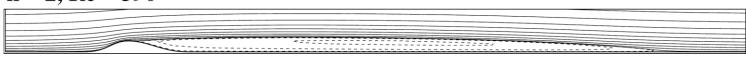




Ehrenstein and Gallaire (2008)

Continuation procedure to obtain unstable steady states





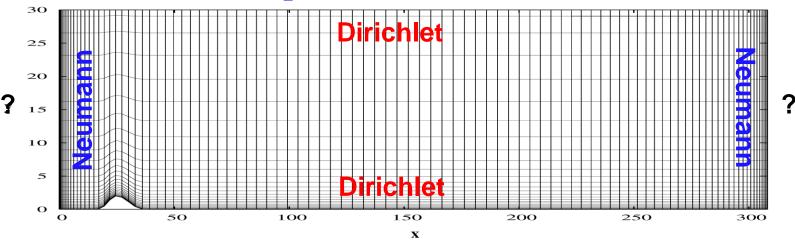
Ehrenstein and Gallaire (2008)

2D temporal global modes

Perturbation
$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{U}.\nabla)\mathbf{u} - (\mathbf{u}.\nabla)\mathbf{U} - \nabla p \ + \ \frac{1}{Re}\nabla^2 \ \mathbf{u},$$
 Base flow
$$\nabla .\mathbf{u} = 0,$$

$$[\mathbf{u}(x,y,z,t),p(x,y,z,t)] = [\hat{\mathbf{u}}(x,y),\hat{p}(x,y)]e^{\sigma t}$$

σ: growth rate

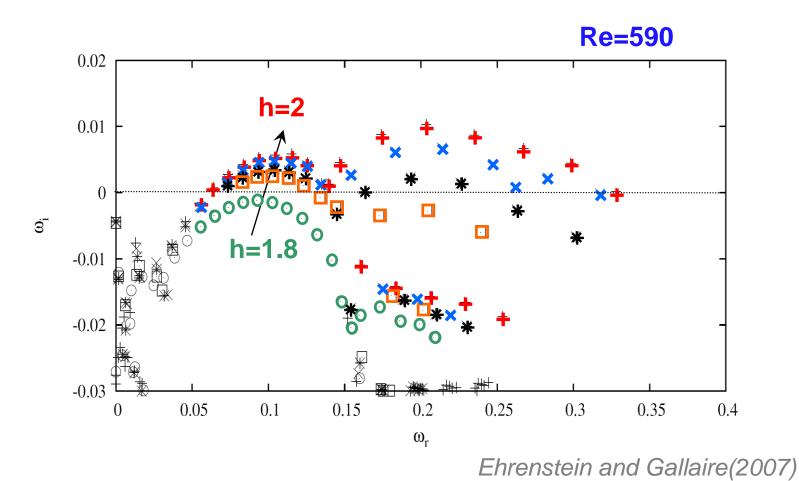


Generalized eigenvalue problem

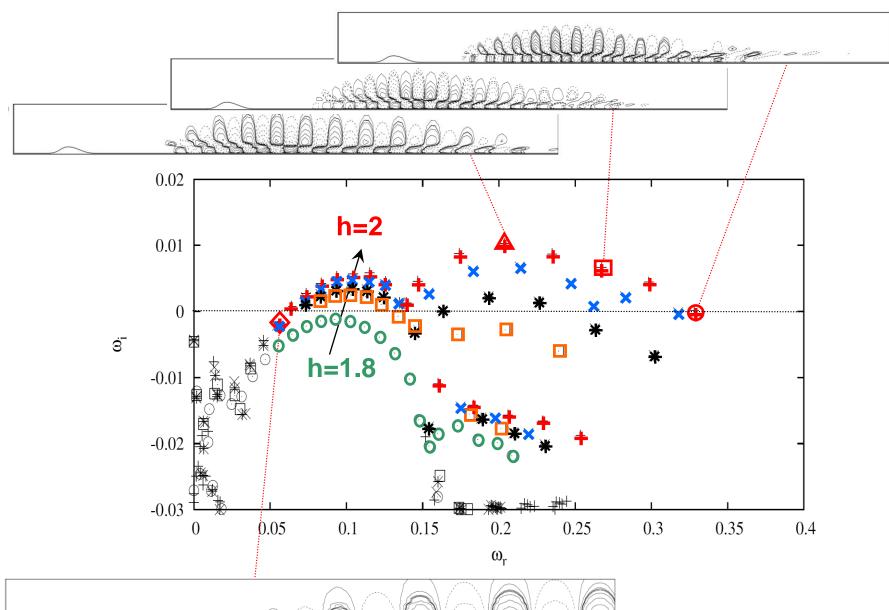
$$\mathbf{A}\hat{\mathbf{v}} = \sigma \mathbf{B}\hat{\mathbf{v}}$$

Inverse Krylov-Arnoldi method

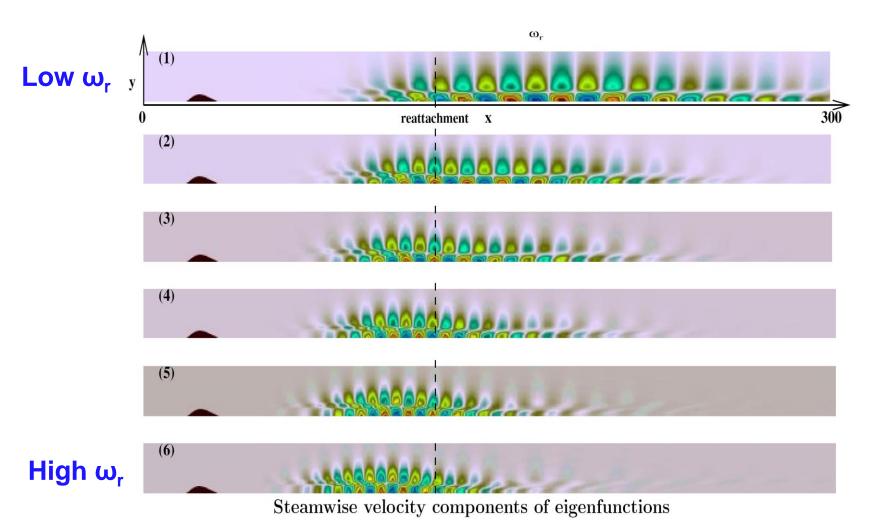
Unstable spectrum



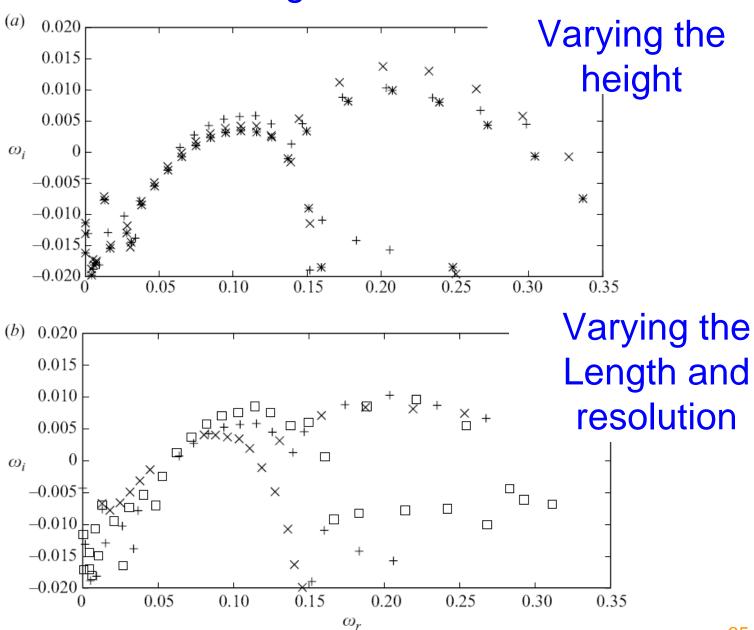
Eigenmodes



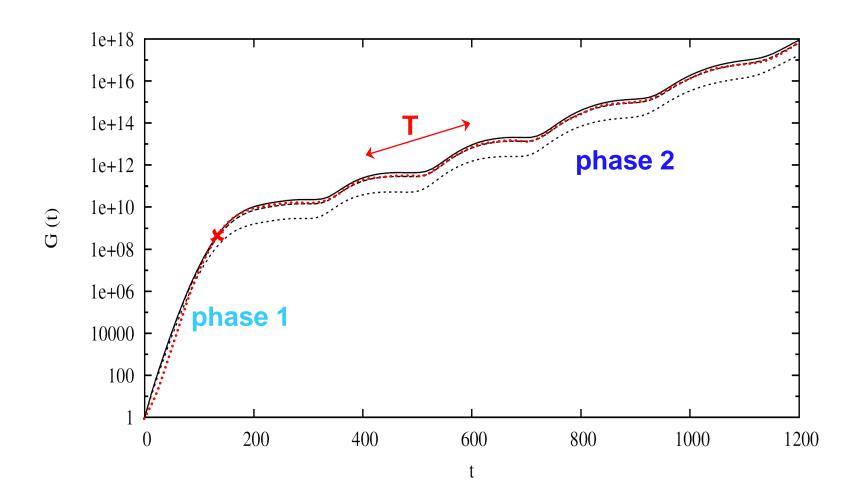
Localized modes



Convergence issues

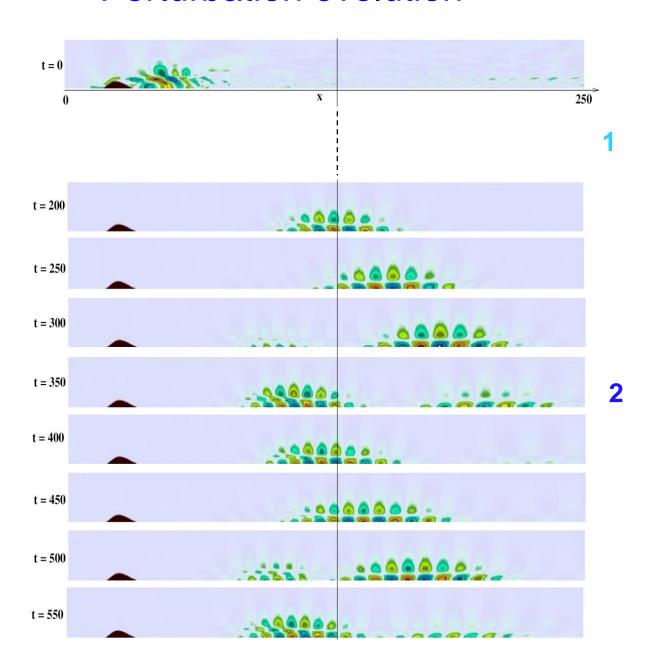


Optimal perturbation

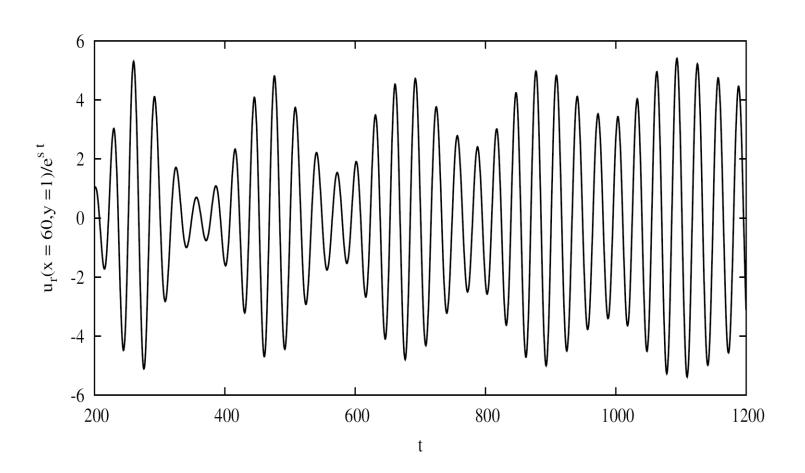


Perturbation evolution

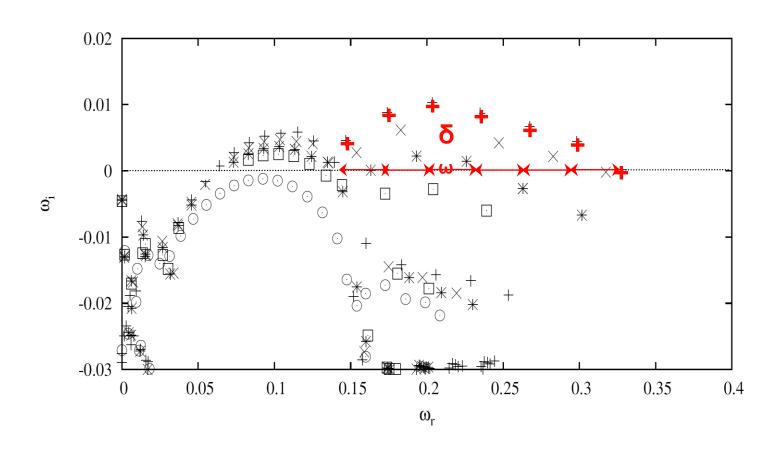
Perturbation evolution



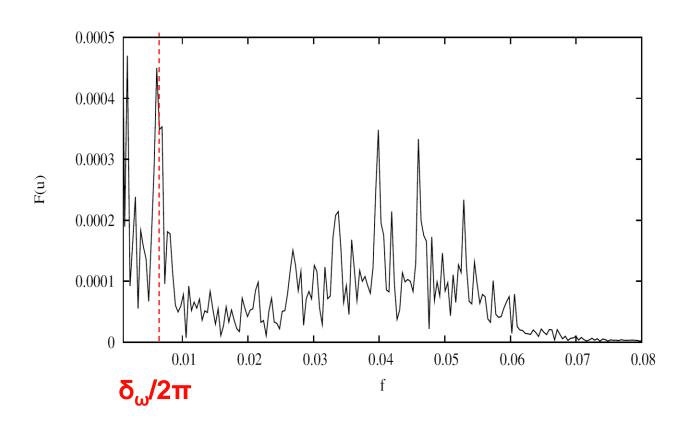
Beating behavior



Similar modes with equidistant frequencies



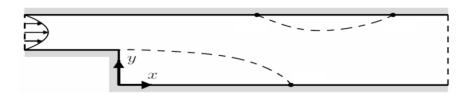
Power spectrum in DNS



Global linear instability of flows in complex geometry

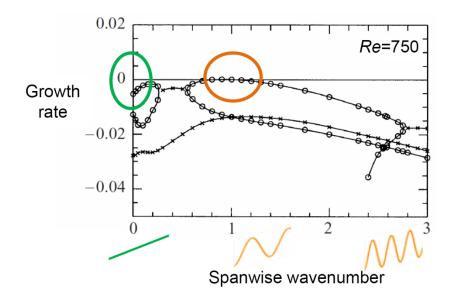
- 1. Gobal instabilty of a classical 2D flow
- 2. Less classical unstable flows
- 3. Stable flows

A typical amplifier: the backward-facing step



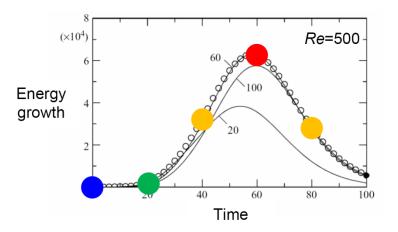
Global linear stability analysis: [Barkley, Gomes & Henderson, 2002; Lanzerstorfer & Kuhlmann, 2012]

- Stable to 2D perturbations for any Re
- Stable to 3D perturbations up to Re=715-750

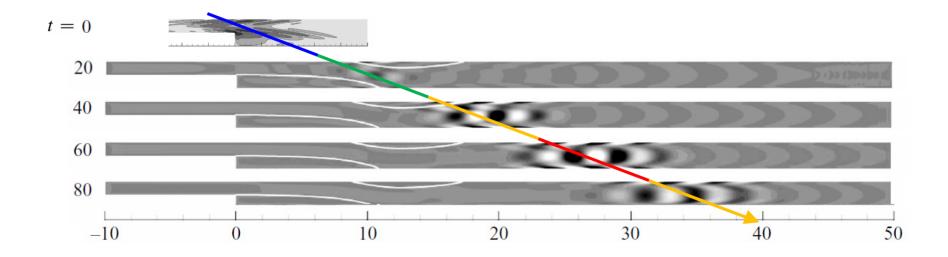


Large transient growth

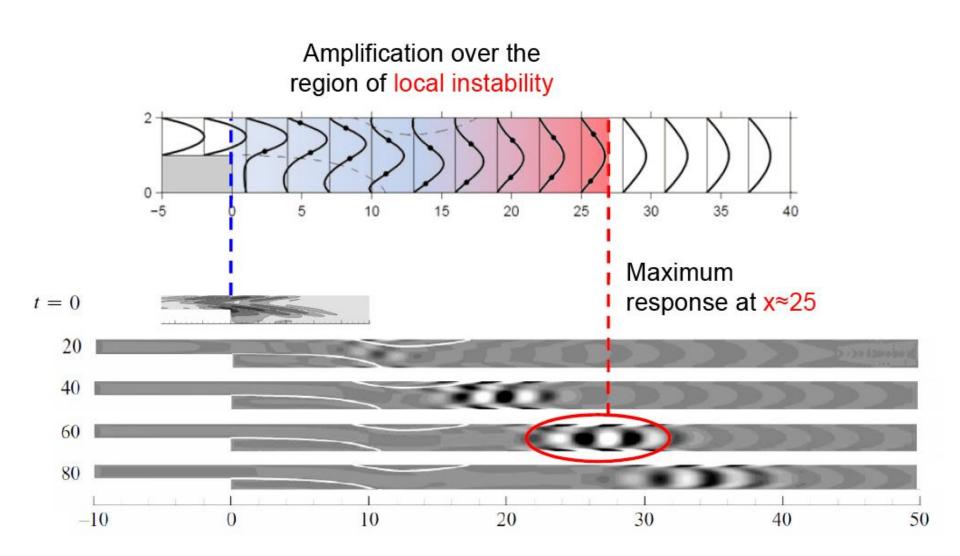
[Blackburn, Barkley & Sherwin, 2008]



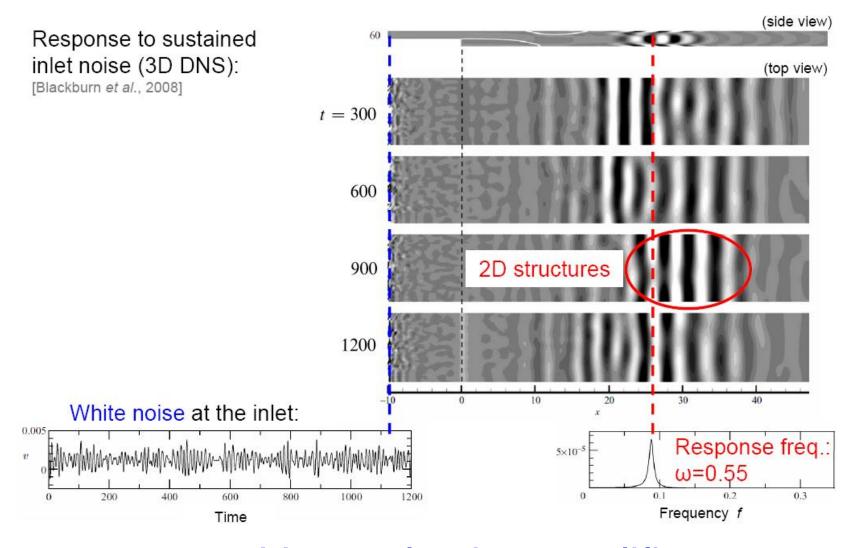
Growth in space & time: optimal perturbations amplified while convected downstream



The global transient growth is due to the local spatial growth



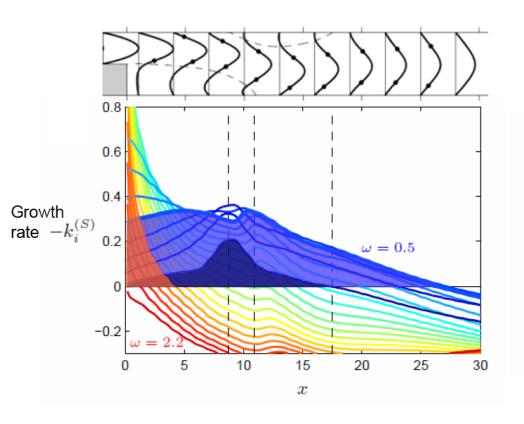
Response to white noise

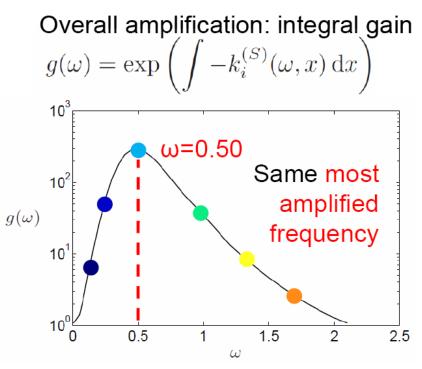


Method 1: weakly non parallel spatial stability analysis

Parallel flow: $\mathbf{u}'(x, y, t) = \mathbf{u}(y) e^{i(kx - \omega t)}$

Spatial analysis $\omega \in \mathbb{R}, k \in \mathbb{C}$





Nonlinear problem (base flow)

$$\nabla \cdot \mathbf{U}_b = 0,$$

$$\mathbf{U}_b \cdot \nabla \mathbf{U}_b + \nabla P_b - Re^{-1} \nabla^2 \mathbf{U}_b = \mathbf{0},$$

+ linear perturbation

$$\nabla \cdot \mathbf{u}' = 0,$$

$$\partial_t \mathbf{u}' + \nabla \mathbf{u}' \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u}' + \nabla p' - Re^{-1} \nabla^2 \mathbf{u}' = \mathbf{F}$$

Nonlinear problem (base flow)

$$\mathbf{\nabla \cdot U}_b = 0,$$
 $\mathbf{U}_b \cdot \mathbf{\nabla U}_b + \mathbf{\nabla} P_b - Re^{-1} \mathbf{\nabla}^2 \mathbf{U}_b = \mathbf{0},$
+ linear perturbation

$$\nabla \cdot \mathbf{u}' = 0,$$

$$\partial_t \mathbf{u}' + \nabla \mathbf{u}' \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u}' + \nabla p' - Re^{-1} \nabla^2 \mathbf{u}' = \mathbf{F}$$

for harmonic forcing $\mathbf{F}(t) = \mathbf{f}e^{i\omega t}$

look for solution $(\mathbf{u}', p')(\mathbf{x}, t) = (\mathbf{u}, p)(\mathbf{x}) e^{i\omega t}$

harmonic forcing

$$\nabla \cdot \mathbf{u} = 0,$$

$$i\omega \mathbf{u} + \nabla \mathbf{u} \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u} + \nabla p - Re^{-1} \nabla^2 \mathbf{u} = \mathbf{f}$$

Resolvent operator (transfer function)

$$\mathbf{u} = \mathcal{R}(\omega)\mathbf{f}$$

harmonic forcing

$$\nabla \cdot \mathbf{u} = 0,$$

$$i\omega \mathbf{u} + \nabla \mathbf{u} \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u} + \nabla p - Re^{-1} \nabla^2 \mathbf{u} = \mathbf{f}$$

Resolvent operator (transfer function)

$$\mathbf{u} = \mathcal{R}(\omega)\mathbf{f}$$

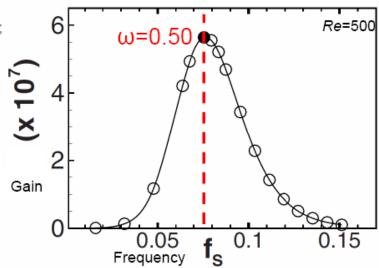
Harmonic gain

$$G^{2}(\omega) = \frac{||\mathbf{u}||^{2}}{||\mathbf{f}||^{2}} = \frac{(\mathcal{R}\mathbf{f} \mid \mathcal{R}\mathbf{f})}{(\mathbf{f} \mid \mathbf{f})} = \frac{(\mathcal{R}^{\dagger}\mathcal{R}\mathbf{f} \mid \mathbf{f})}{(\mathbf{f} \mid \mathbf{f})}$$
₅₁

Optimal harmonic gain [Marquet &Sipp, 2010;

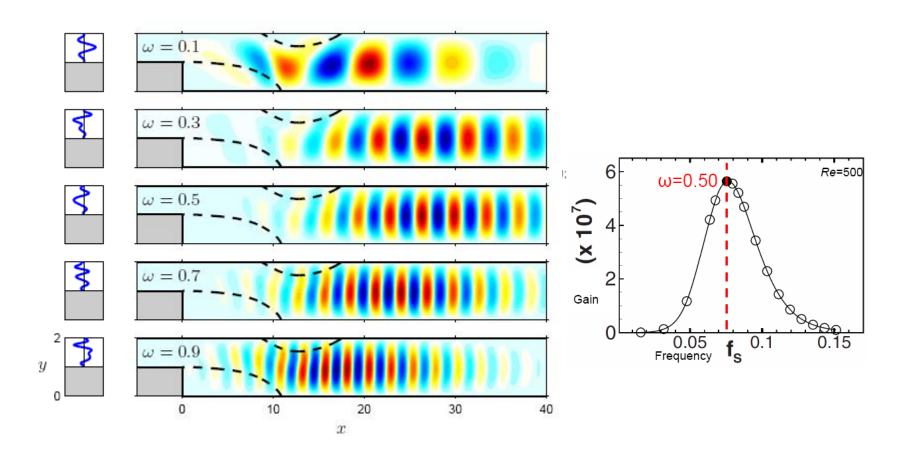
Marquet et al., 2010, priv. comm.].

same preferred frequency, large gain



Optimal forcing

and optimal response very similar to transient growth:



Global linear instability of flows in complex geometry

- 1. Gobal instabilty of a classical 2D flow
- 2. Less classical unstable flows
- 3. Stable flows

Global linear instability of flows in complex geometry

