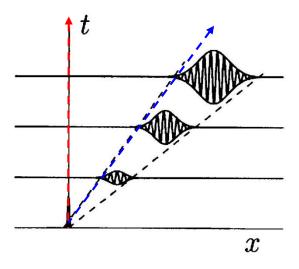
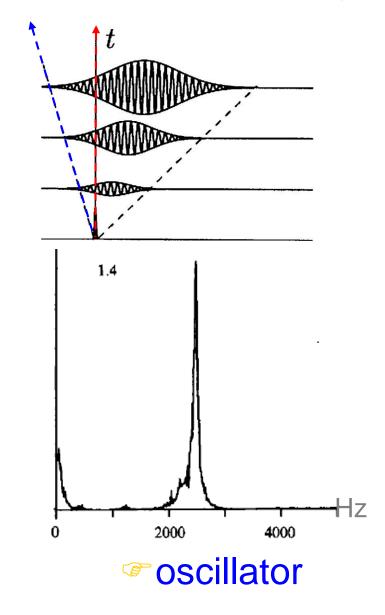
Most flows are unstable...

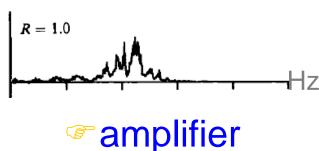
- 1. Intro-definitions
- Rayleigh-Taylor
- 3. Rayleigh Plateau (destabilization through surface tension)
- 4. Rayleigh-Benard (convection)
- 5. Benard-Marangoni
- 6. Taylor Couette-Centrifugal instability
- 7. Kelvin-Helmholtz
- 8. Inflection point theorem Rayleigh
- 9. Orr sommerfeld, transient growth
- 10. Spatial growth
- 11. Spatio-temporal growth
- 12. Global stability analysis and resolvent

Convective instability

Absolute instability

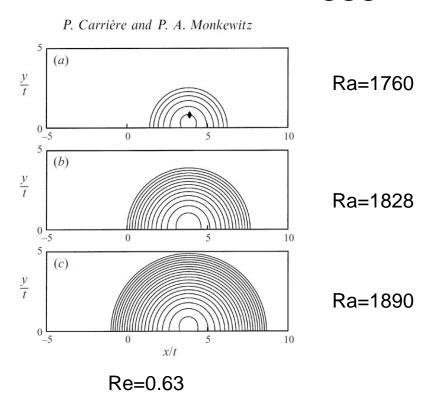




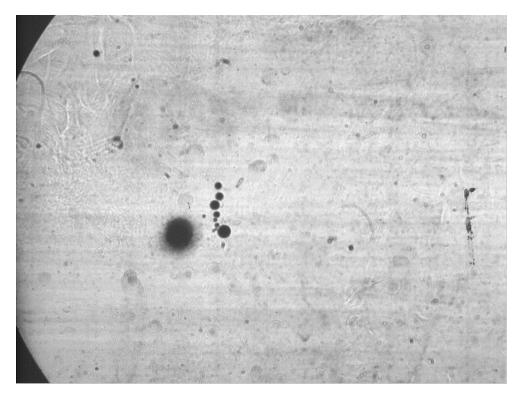


Mixing layer experiments by Strikowsky and Niccum (1991)

A/C analysis in Rayleigh-Benard Poiseuille Carrière and Monkewitz (1999)

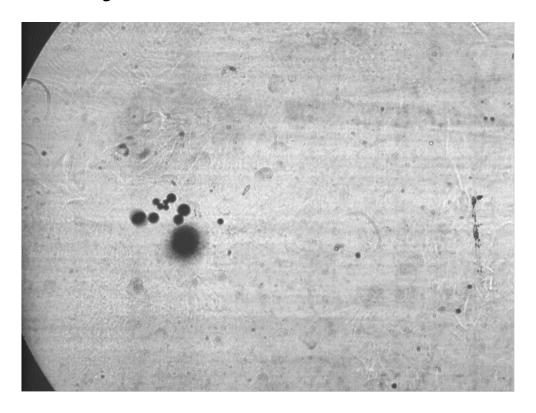


Impulse in Rayleigh-Benard Poiseuille Grandjean and Monkewitz (2009)



Ra>1707, Re=0.03

Impulse in Rayleigh-Benard Poiseuille Grandjean and Monkewitz (2009)



Ra>1707, Re=0.003

Rayleigh-Plateau

$$\omega = Uk \pm \sqrt{\frac{\gamma k^2}{\rho}} \left(k^2 - \frac{1}{R_0^2} \right) \frac{I_0'(kR)}{I_0(kR)}$$

•Unstable if there exists one ω , Im(ω)>0 at k<1/R₀

•Neutral if for all ω , Im(ω)=0 at k>1/R₀

•Stable (or damped) if for all ω , Im(ω)<0:

The flow considered is not damped, we have neglected dissipation by neglecting viscosity

Surface tension is destabilizing as a consequence of the radial curvature Surface tension is stabilizing as a consequence of the axial curvature

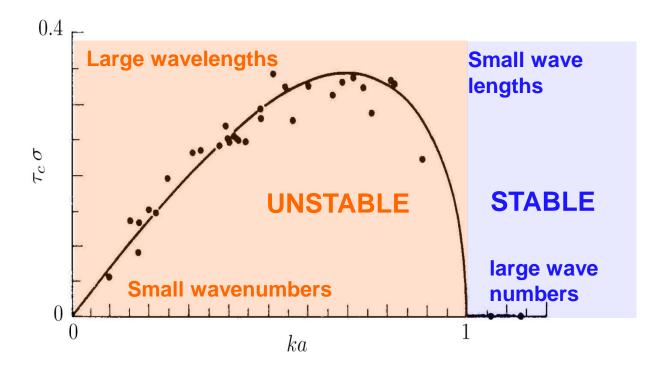


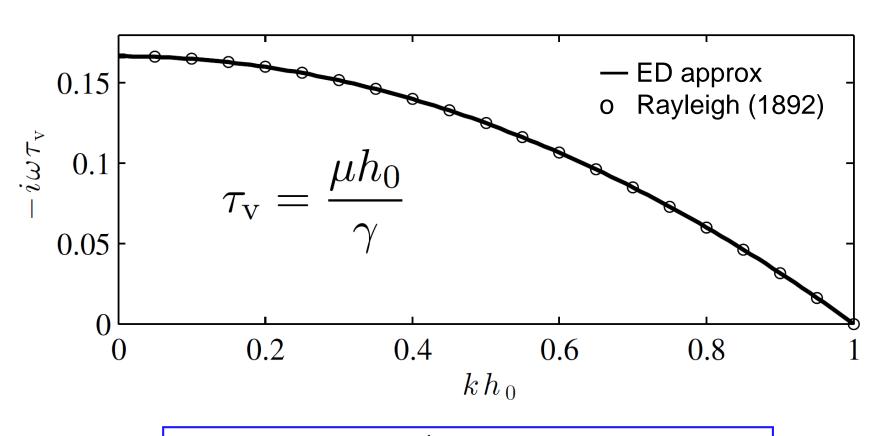
Fig. 2.10 – Taux de croissance $\tau_c \sigma$, avec $\tau_c = \sqrt{\rho a^3/\gamma}$, de l'instabilité d'un filet fluide non visqueux, et points expérimentaux. D'après (Drazin & Reid 2004).

Oh >> 1 – Viscosity dominated A very similar calculation yields (Rayleigh)

$$\omega = kU_0 + i \frac{\gamma}{2\mu R_0} \frac{(1 - (kR_0)^2)}{(kR_0)^2 (I_0(kR_0)^2 / I_1(kR_0)^2) - (1 + (kR_0)^2)}$$

$$Oh = \frac{\mu}{\sqrt{\rho \gamma R_0}}$$

Eggers and Dupont (1994) equations Oh>>



$$\omega = u_0 k + \frac{1}{6\tau_v} i \left(1 - (kh_0)^2 \right)$$

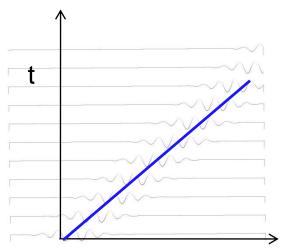
Nondimensionalize

$$\omega = \operatorname{Ca} k + \frac{i}{6}(1 - k^2)$$

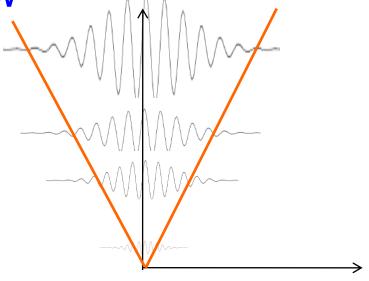
 $\mathrm{Ca} = \mu u_0/\gamma$ is the capillary number (a reduced velocity)

The instability waves simultaneously travel

and grow



Non dispersive propagation at the velocity of the interface



Propagating symmetric growing wavepacket

Find k₀

$$\omega = \operatorname{Ca} k + \frac{i}{6}(1 - k^2)$$

$$\frac{\mathrm{d}\omega}{\mathrm{d}k}(k_0) = 0 \quad \Rightarrow \quad k_0 = -3i\mathrm{Ca}$$

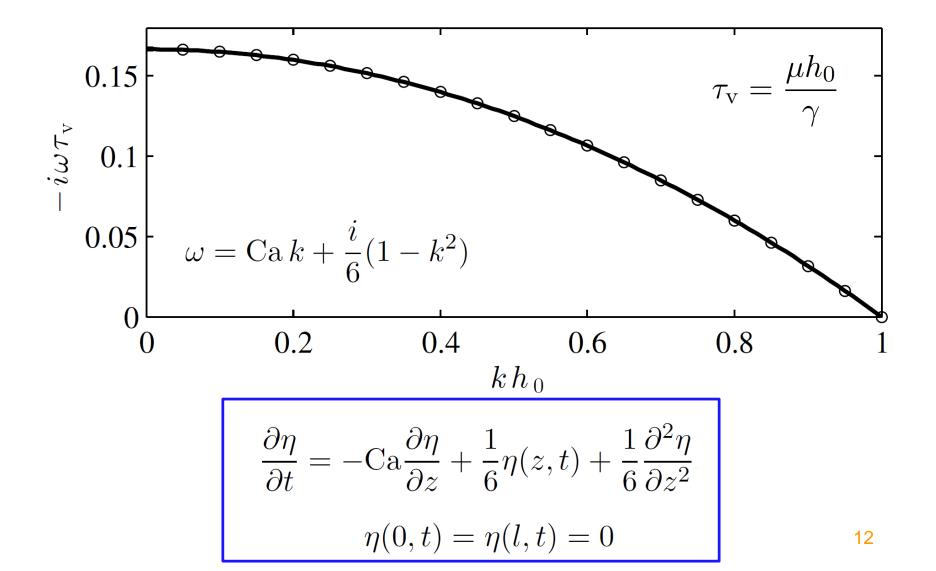
Evaluate ω_0

$$\omega_0 = \omega(k_0) = -\frac{3}{2}i\mathrm{Ca}^2 + \frac{i}{6}$$

$$Im(\omega_0) = (1-9Ca^2)/6$$

Absolute 1/3 Convective

Consider the governing equation of the viscous jet and impose boundary conditions



Find eigenmodes $\eta(x,t) = \bar{\eta}(z)e^{\lambda t}$

$$\frac{\partial \eta}{\partial t} = -\operatorname{Ca} \frac{\partial \eta}{\partial z} + \frac{1}{6} \eta(z, t) + \frac{1}{6} \frac{\partial^2 \eta}{\partial z^2}$$
$$\eta(0, t) = \eta(l, t) = 0$$

$$\left(\lambda - \frac{1}{6}\right)\bar{\eta}(z) = -\operatorname{Ca}\frac{\mathrm{d}\bar{\eta}}{\mathrm{d}z} + \frac{1}{6}\frac{\mathrm{d}^2\bar{\eta}}{\mathrm{d}z^2}$$
$$\bar{\eta}(0) = \bar{\eta}(l) = 0$$

Fundamental solutions $\bar{\eta}(z) = \hat{\eta}e^{\alpha z}$

$$\alpha^2 - 6Ca\alpha + 1 - 6\lambda = 0$$

$$\alpha_{1,2} = 3\text{Ca} \pm \frac{1}{2}\sqrt{36\text{Ca}^2 + 24\lambda - 4}$$

Fundamental solutions $\bar{\eta}(z) = \hat{\eta}e^{\alpha z}$

$$\alpha^{2} - 6\operatorname{Ca}\alpha + 1 - 6\lambda = 0$$

$$\alpha_{1,2} = 3\operatorname{Ca} \pm \frac{1}{2}\sqrt{36\operatorname{Ca}^{2} + 24\lambda - 4}$$

Impose boundary conditions

$$\begin{bmatrix} 1 & 1 \\ e^{\alpha_1 l} & e^{\alpha_2 l} \end{bmatrix} \begin{bmatrix} \hat{h}_1 \\ \hat{h}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow e^{\alpha_2 l} - e^{\alpha_1 l} = 0$$

$$\Rightarrow \alpha_1 - \alpha_2 = i \frac{2\pi m}{l}$$
 (m integer)

$$\sqrt{36\operatorname{Ca}^2 + 24\lambda_m - 4} = i\frac{2\pi m}{l}$$

Find eigenmodes $\eta(x,t) = \bar{\eta}(z)e^{\lambda t}$

$$\lambda_m = -\frac{3}{2} \text{Ca}^2 + \frac{1}{6} - \frac{m^2 \pi^2}{6l^2} = (-i\omega_0) - \frac{m^2 \pi^2}{6l^2}$$
>0 if Im(\omega_0)>0

absolute frequency $\omega(k_0)$

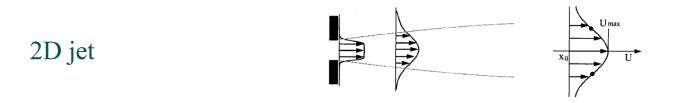
The flow including boundary conditions is **globally** unstable only if it is locally absolutely unstable

Global instability is needed when the streamwise invariance is broken

-by inlet/outlet boundary conditions



-by the nonparallelism of the flow



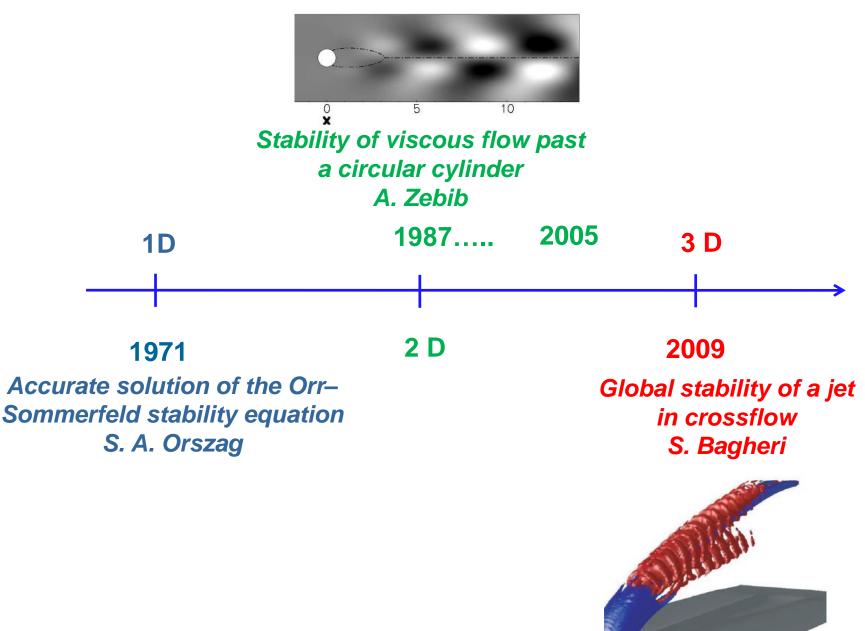
Global instability

The normal mode expansion u(y)exp(i(kx-ωt) is replaced by a global mode expansion u(x,y)exp(σt)

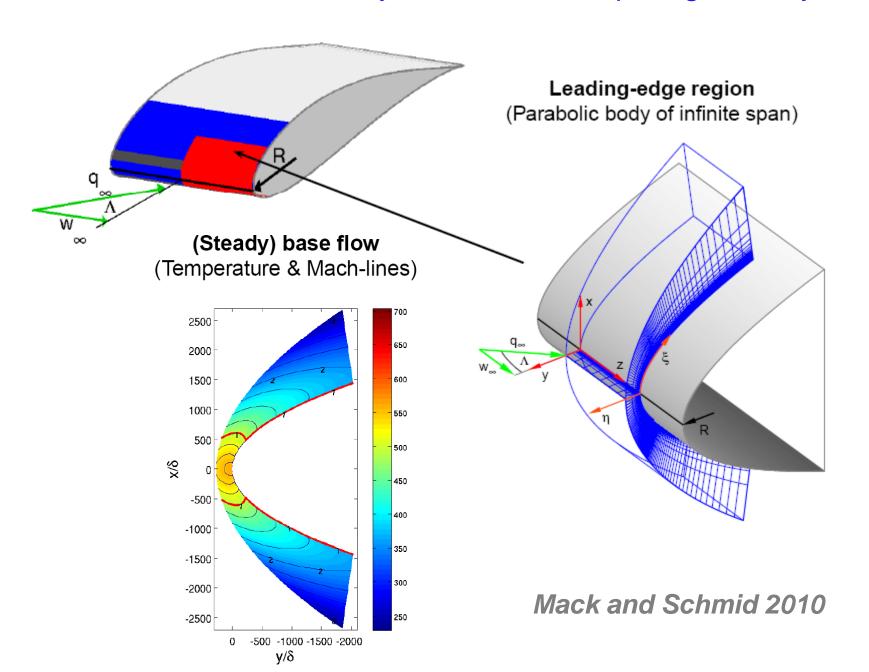
The dispersion relation $\omega(k)$ is replaced by a set of global eigenvalues σ

Most often, a necessary condition for global inst. $\sigma_r > 0$ is not temporal instability $\exists k \ \omega_i(k) > 0$ But rather that of absolute instability $\omega_{\cap i}(k_{\cap}) > 0$

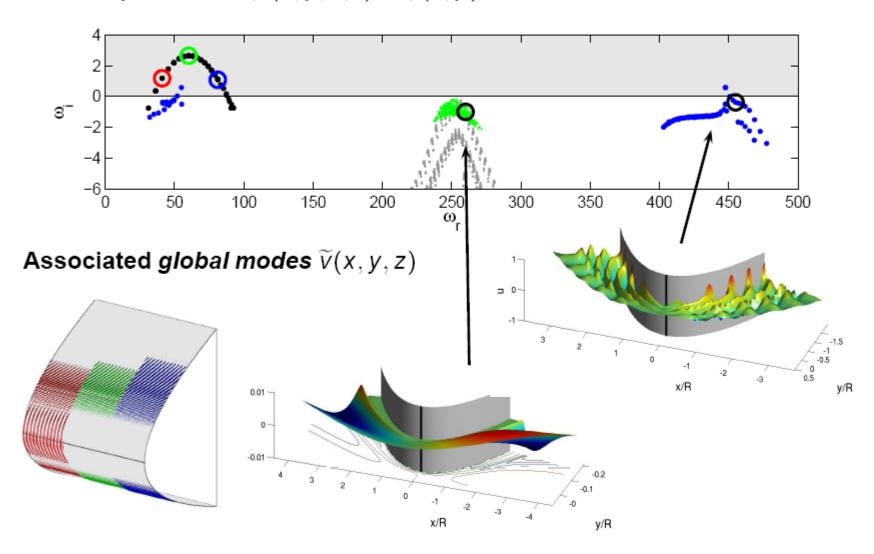
Global linear instability of flows



Global linear instability of flows in complex geometry

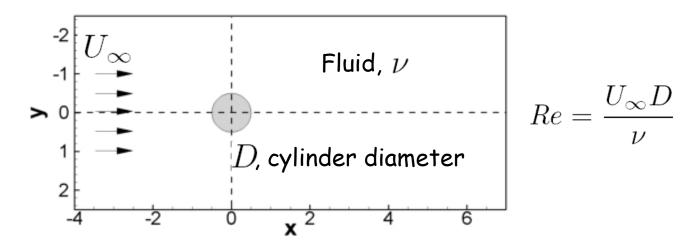


Global spectrum: $\phi'(x, y, z, t) = \widetilde{\phi}(x, y) e^{i(\beta z - \omega t)}$ with $\omega = \omega_r + i\omega_i$



Mack and Schmid 2010

Wake behind cylinder flow



Incompressible 2D flow described by

Navier-Stokes equations

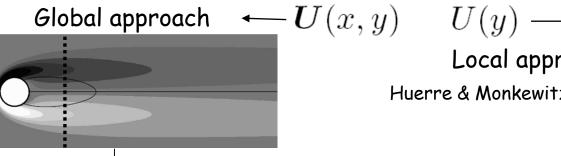
$$\partial_t \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{u} = -\boldsymbol{\nabla} p + Re^{-1} \boldsymbol{\nabla}^2 \boldsymbol{u},$$

 $\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$

Stability analysis

$$(oldsymbol{u},p)=(oldsymbol{U},P)+(oldsymbol{u}^{'},p^{'})$$
 Perturbations –

Stationary base flow

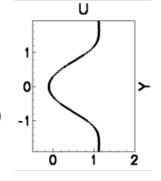


$$-U(x,y)$$

$$U(y)$$
 ———

Local approach

Huerre & Monkewitz (1990) -1



Base flow equations

$$\nabla U \cdot U = -\nabla P + Re^{-1}\nabla^2 U,$$

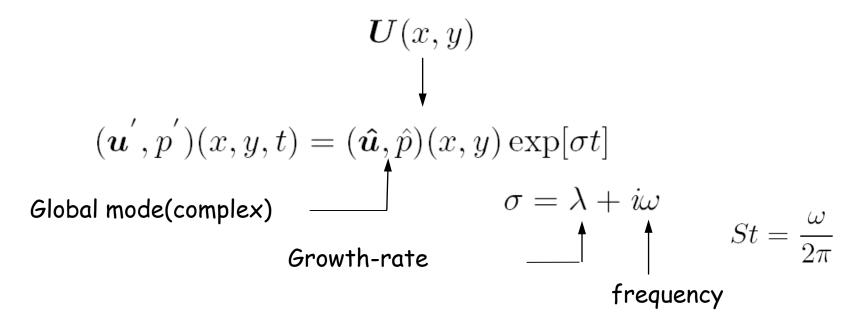
$$\nabla \cdot U = 0$$

Zebib, Jackson (1987)

Linearized perturbation equations

$$\partial_{t}\boldsymbol{u}' + \boldsymbol{\nabla}\boldsymbol{U} \cdot \boldsymbol{u}' + \boldsymbol{\nabla}\boldsymbol{u}' \cdot \boldsymbol{U} + \boldsymbol{\nabla}\boldsymbol{u}' \cdot \boldsymbol{U}' = -\boldsymbol{\nabla}p' + Re^{-1}\boldsymbol{\nabla}^{2}\boldsymbol{u}',$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u}' = 0$$

Analyse de stabilité globale



Global stability equations

$$\sigma \hat{\mathbf{u}} + \nabla \hat{\mathbf{u}} \cdot \mathbf{U} + \nabla \mathbf{U} \cdot \hat{\mathbf{u}} = -\nabla \hat{p} + Re^{-1} \nabla^2 \hat{\mathbf{u}},$$
$$\nabla \cdot \hat{\mathbf{u}} = 0,$$

Global stability analysis solvers

For a given value of Re , numerically solve

non linear equations,

$$\nabla U \cdot U = -\nabla P + Re^{-1} \nabla^2 U,$$

(Newton method)

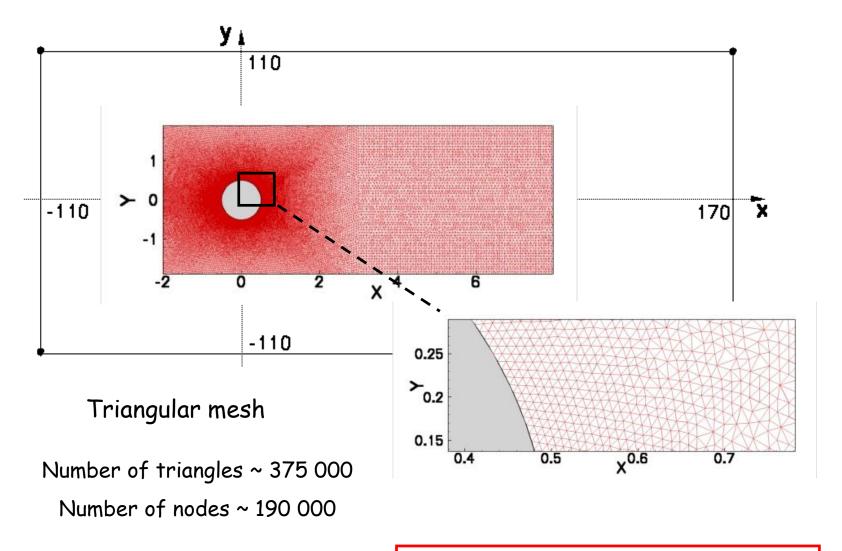
· Eigenvalue problem

$$\sigma \hat{\boldsymbol{u}} + \nabla \hat{\boldsymbol{u}} \cdot \boldsymbol{U} + \nabla \boldsymbol{U} \cdot \hat{\boldsymbol{u}} = -\nabla \hat{p} + Re^{-1} \nabla^2 \hat{\boldsymbol{u}},$$

(Krylov-Arnoldi method)

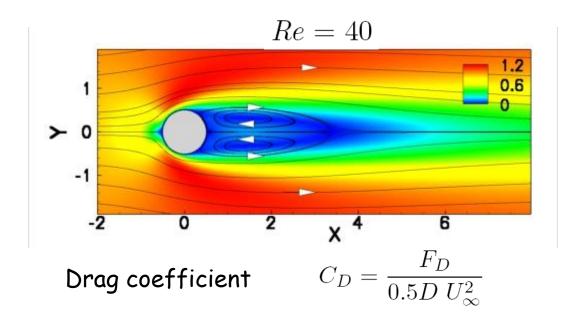
Spatial discretization = finite element methods
(FreeFem++ freeware)

Computational model and mesh



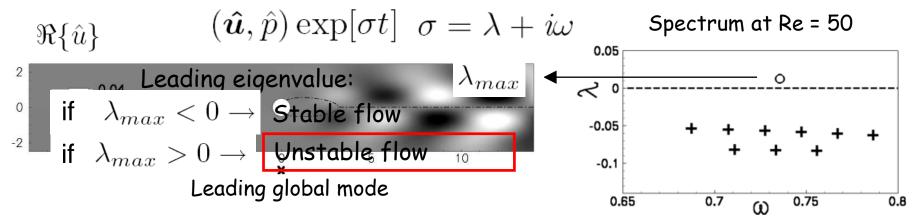
Taylor-Hood finite elements (P2,P2,P1) \rightarrow number of degrees of freedom~ 1.6 106

Base flow

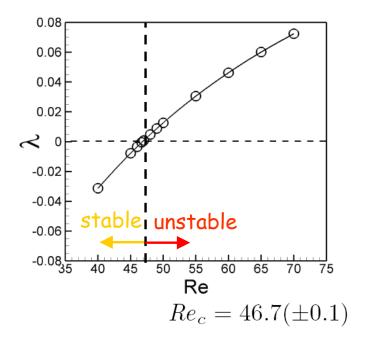


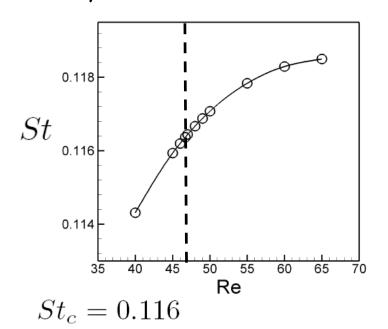
C_D	Re = 20	Re = 40
Dennis & Chang (1970)	2.05	1.52
Fornberg (1980)	2.00	1.50
Ye et al. (1999)	2.03	1.52
Giannetti & Luchini (2007)	2.05	1.54
Marquet et al. (2008)	2.00	1.50

Valeur propre et mode global dominants



Evolution as a function of the Reynolds number



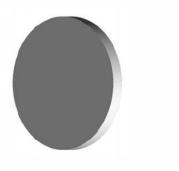


To keep im mind

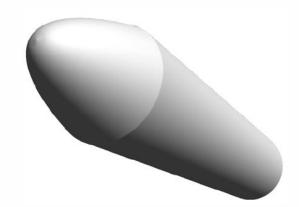
Global stability analysis= Nonlinear problem (base flow) + Eigenvalue problem

Prototype flows

Axisymmetric wakes







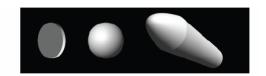
Disk

Sphere

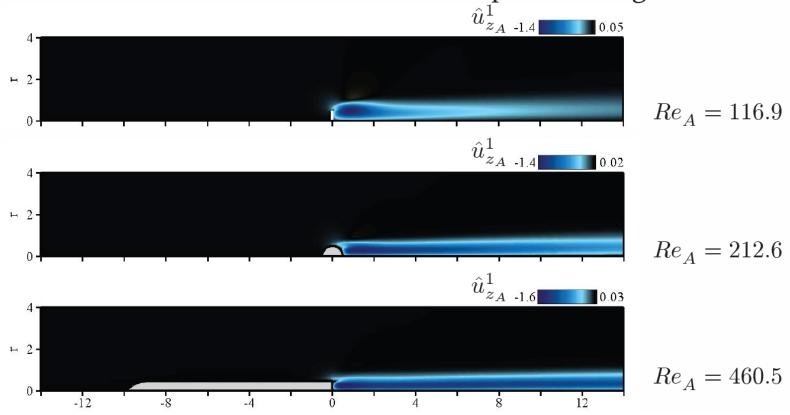
Blunt base

Meliga et al. 2008,2009,2010

Leading global modes

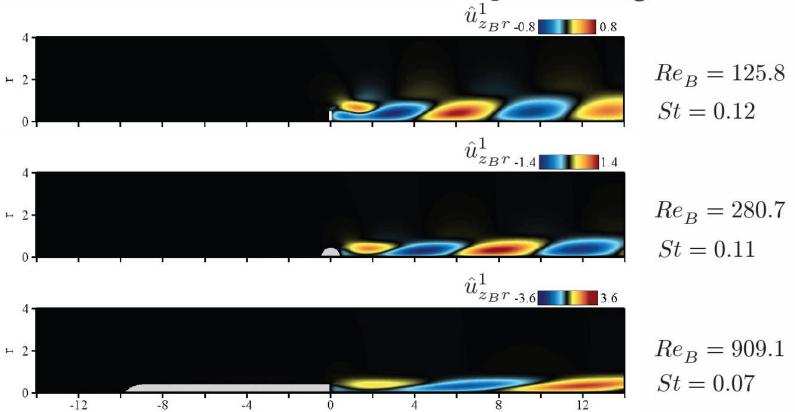


Same bifurcation sequence for all prototype flows, in the INCOMPRESSIBLE & compressible regimes

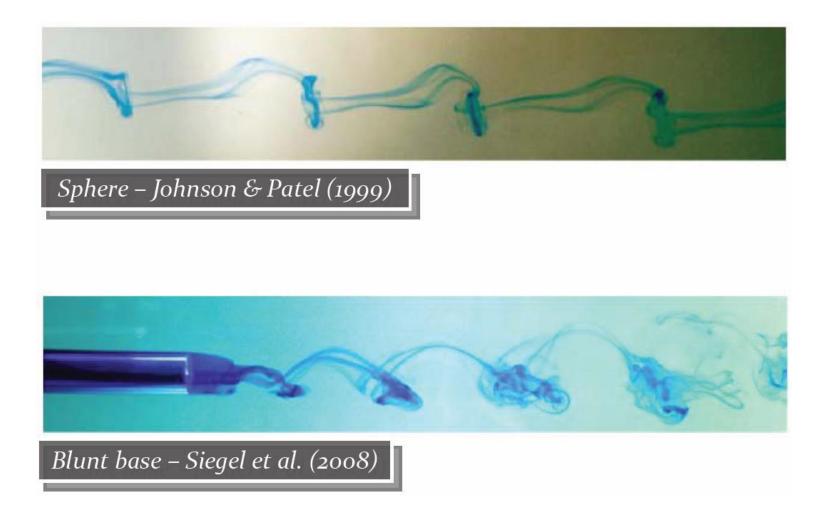


Leading global modes

Same bifurcation sequence for all prototype flows, in the INCOMPRESSIBLE & compressible regimes



How do these theoretical considerations compare with experiments

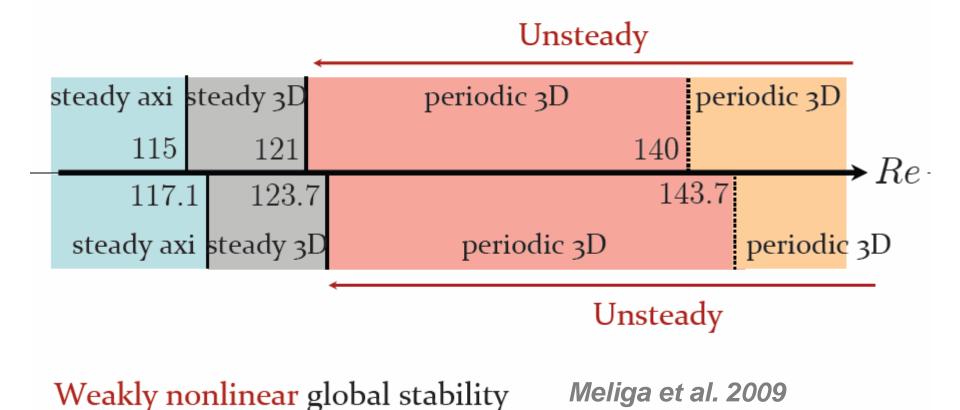


Remarkable predictions of successive symmetry breakings and thresholds

Direct numerical simulation of the 3D flow

Fabre et al. (2008)

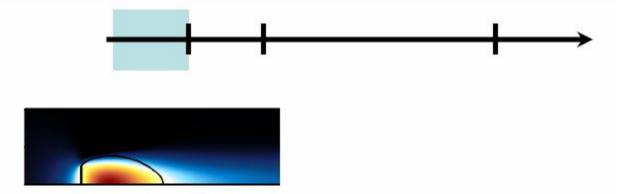
Meliga et al. 2009



33

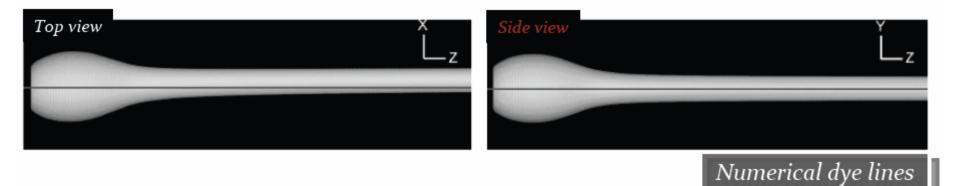
Stable solutions

• Steady axi



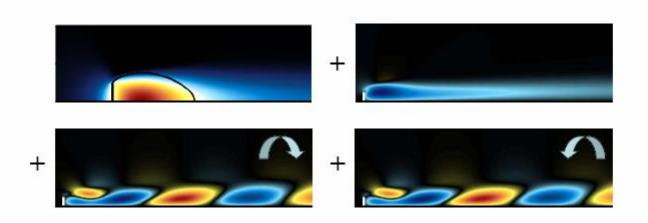
Stable solutions

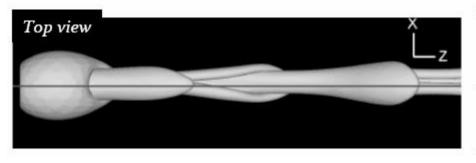
• Steady 3D + planar sym.



Stable solutions

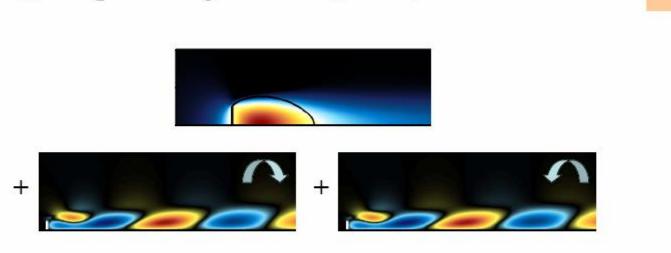
• Periodic 3D, no sym.

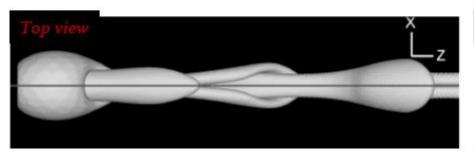


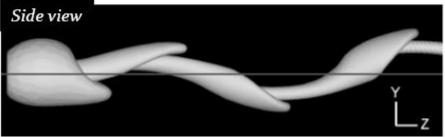


Stable solutions

• Periodic 3D + planar sym.







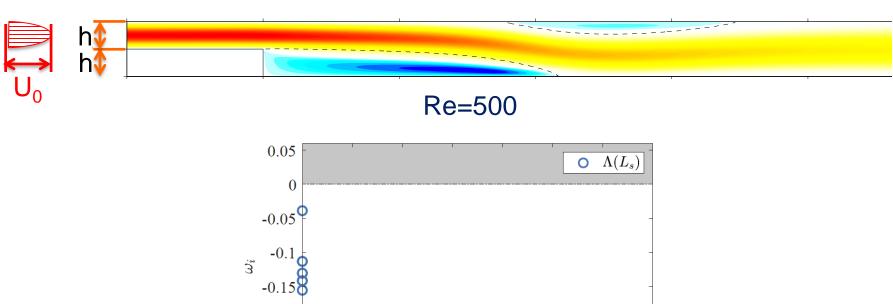
What about globally stable flows but locally unstable flows?

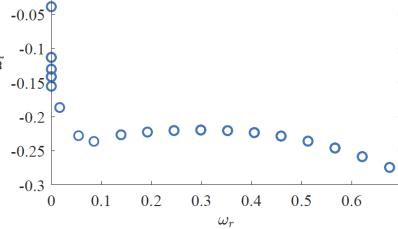
Amplifier flows

Linearly globally stable

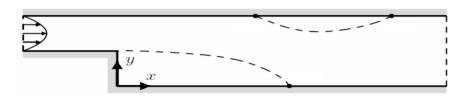
Amplification of external disturbances, irrespective of the eigenfrequency spectrum Selective but broad band response

Examples: Jets, Separated boundary layers,...





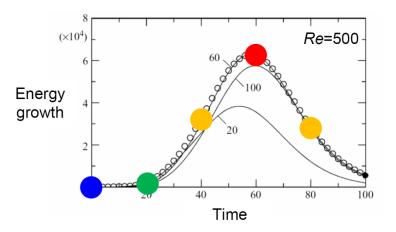
Amplifier flows



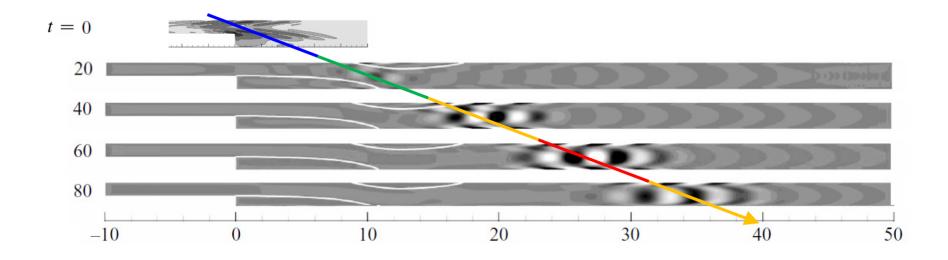
Response to initial disturbance
Response to sustained harmonic forcing
Response to stochastic forcing

Large transient growth

[Blackburn, Barkley & Sherwin, 2008]



Growth in space & time: optimal perturbations amplified while convected downstream



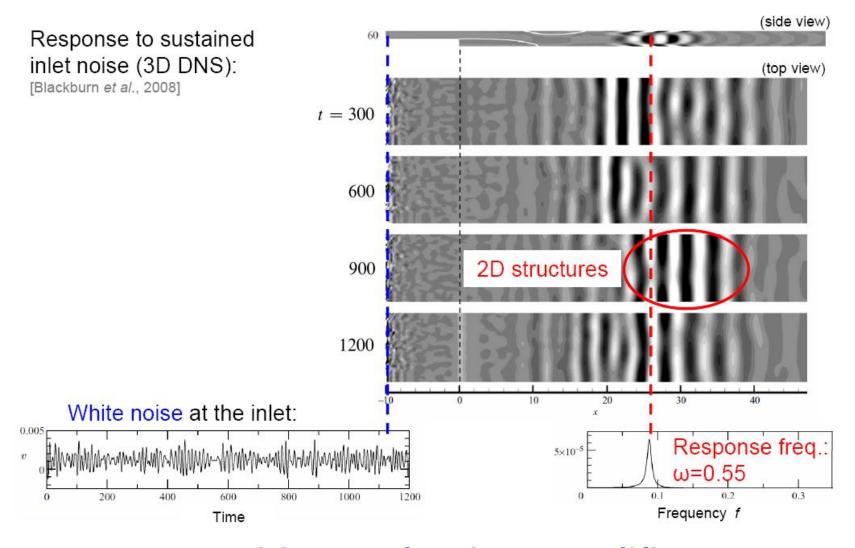
Backward facing step flow

$$\frac{\partial \mathbf{u}}{\partial t} = L\mathbf{u} + \mathbf{f}, \qquad \underline{\mathbf{u}(0) \neq \mathbf{0}} \qquad \text{and} \qquad LL^{\dagger} \neq L^{\dagger}L$$

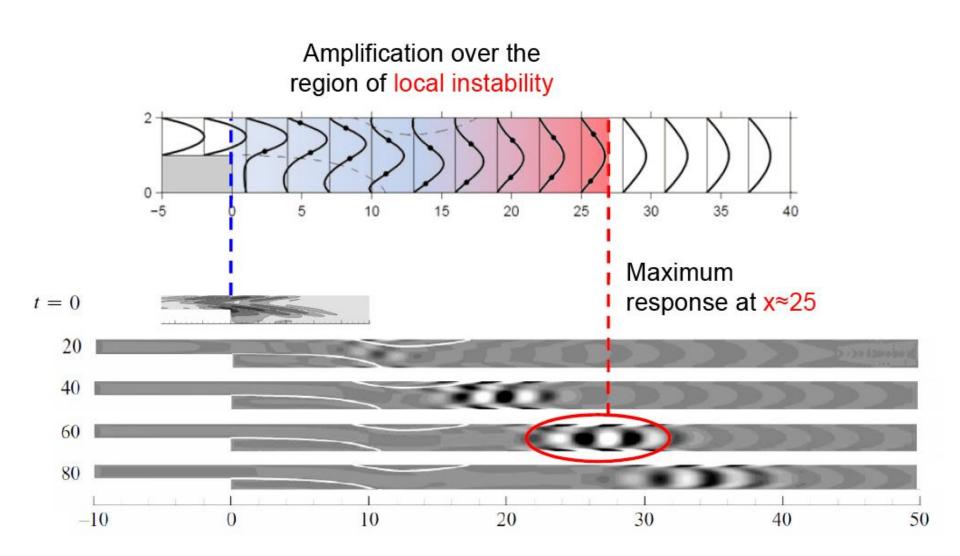
Transient growth:



Response to white noise



The global transient growth is due to the local spatial growth



The global transient growth is due to the local spatial growth

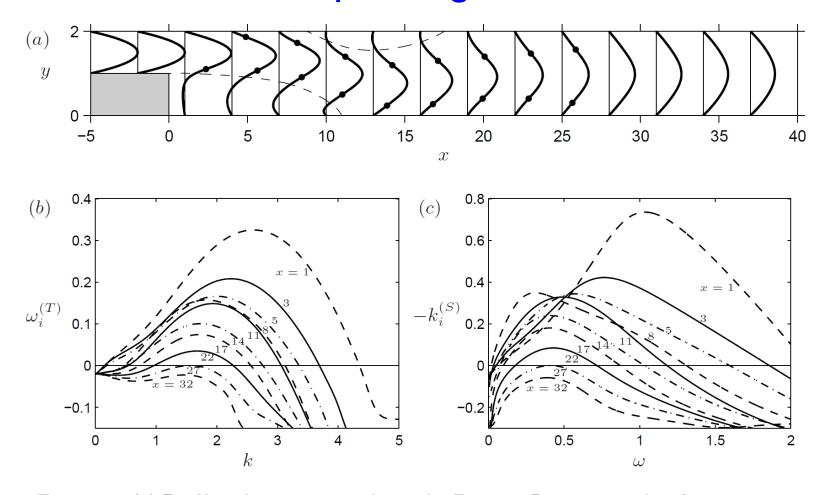
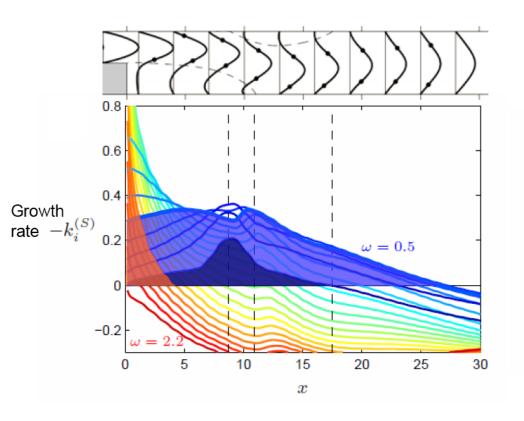


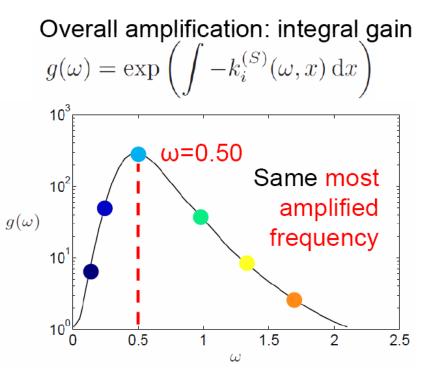
FIGURE 7. (a) Profiles of streamwise velocity for $\Gamma = 0.5$, Re = 500, with inflexion points shown as dots. (b) Temporal and (c) spatial growth rates obtained from local stability analysis.

Method 1: weakly non parallel spatial stability analysis

Parallel flow: $\mathbf{u}'(x, y, t) = \mathbf{u}(y) e^{i(kx - \omega t)}$

Spatial analysis $\omega \in \mathbb{R}, k \in \mathbb{C}$





Nonlinear problem (base flow)

$$\nabla \cdot \mathbf{U}_b = 0,$$

$$\mathbf{U}_b \cdot \nabla \mathbf{U}_b + \nabla P_b - Re^{-1} \nabla^2 \mathbf{U}_b = \mathbf{0},$$

+ linear perturbation

$$\nabla \cdot \mathbf{u}' = 0,$$

$$\partial_t \mathbf{u}' + \nabla \mathbf{u}' \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u}' + \nabla p' - Re^{-1} \nabla^2 \mathbf{u}' = \mathbf{F}$$

Nonlinear problem (base flow)

$$oldsymbol{
abla} \cdot oldsymbol{
abla} \mathbf{U}_b \cdot oldsymbol{
abla} \mathbf{U}_b \cdot oldsymbol{
abla} \mathbf{U}_b + oldsymbol{
abla} P_b - Re^{-1} oldsymbol{
abla}^2 \mathbf{U}_b = \mathbf{0}_b$$
+ linear perturbation

$$\nabla \cdot \mathbf{u}' = 0,$$

$$\partial_t \mathbf{u}' + \nabla \mathbf{u}' \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u}' + \nabla p' - Re^{-1} \nabla^2 \mathbf{u}' = \mathbf{F}$$

for harmonic forcing $\mathbf{F}(t) = \mathbf{f}e^{i\omega t}$

look for solution $(\mathbf{u}', p')(\mathbf{x}, t) = (\mathbf{u}, p)(\mathbf{x}) e^{i\omega t}$

harmonic forcing

$$\nabla \cdot \mathbf{u} = 0,$$

$$i\omega \mathbf{u} + \nabla \mathbf{u} \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u} + \nabla p - Re^{-1} \nabla^2 \mathbf{u} = \mathbf{f}$$

Resolvent operator (transfer function)

$$\mathbf{u} = \mathcal{R}(\omega)\mathbf{f}$$

harmonic forcing

$$\nabla \cdot \mathbf{u} = 0,$$

$$i\omega \mathbf{u} + \nabla \mathbf{u} \cdot \mathbf{U}_b + \nabla \mathbf{U}_b \cdot \mathbf{u} + \nabla p - Re^{-1} \nabla^2 \mathbf{u} = \mathbf{f}$$

Resolvent operator (transfer function)

$$\mathbf{u} = \mathcal{R}(\omega)\mathbf{f}$$

Harmonic gain

$$G^{2}(\omega) = \frac{||\mathbf{u}||^{2}}{||\mathbf{f}||^{2}} = \frac{(\mathcal{R}\mathbf{f} \mid \mathcal{R}\mathbf{f})}{(\mathbf{f} \mid \mathbf{f})} = \frac{(\mathcal{R}^{\dagger}\mathcal{R}\mathbf{f} \mid \mathbf{f})}{(\mathbf{f} \mid \mathbf{f})}$$
₄₉

Optimal response to harmonic forcing

$$\frac{\partial \mathbf{u}}{\partial t} = L\mathbf{u} + \mathbf{f}$$

insert:
$$f(x,t) = \hat{f}(x)e^{i\omega_o t} + c.c$$
$$u(x,t) = \hat{u}(x)e^{i\omega_o t} + c.c$$

to obtain:
$$\hat{\boldsymbol{u}} = (i\omega_o I - L)^{-1} \hat{\boldsymbol{f}} = R(i\omega_o) \hat{\boldsymbol{f}}$$

$$G(i\omega_o) = \max_{\widehat{f}} \frac{\|\widehat{\boldsymbol{u}}\|}{\|\widehat{f}\|} = \|R(i\omega_o)\| = \frac{1}{\epsilon_o}$$
 under the scalar product $\langle \widehat{\boldsymbol{u}}_a | \widehat{\boldsymbol{u}}_b \rangle = \int_{\Omega} \widehat{\boldsymbol{u}}_a^H \widehat{\boldsymbol{u}}_b d\Omega$

$$\langle \widehat{u}_a | \widehat{u}_b \rangle = \int_{\Omega} \widehat{u}_a^H \widehat{u}_b d\Omega$$

Singular value decomposition:

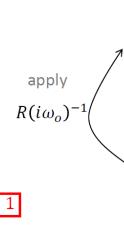
$$R(i\omega_o)^{-1} \ \hat{\boldsymbol{u}}_o = \epsilon_o \hat{\boldsymbol{f}}_o$$

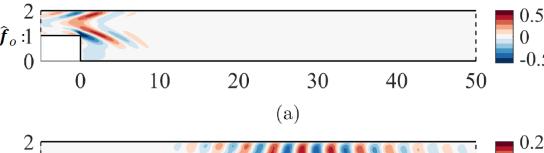
With normalization

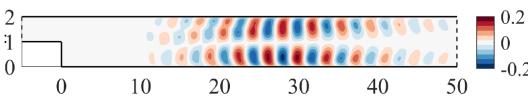
$$\langle \hat{\boldsymbol{u}}_o | \hat{\boldsymbol{u}}_o \rangle = \| \hat{\boldsymbol{u}}_o \|^2 = 1$$

 $\| \hat{\boldsymbol{f}}_o \| = 1$

Strong nonnormality: $\epsilon_o \ll 1$







Optimal response to harmonic forcing

Bounds of resolvent norm

Diagonalize the system matrix L

$$L = S\Lambda S^{-1}$$

Eigenvalue decomposition

S: Column eigenvector

 Λ : Diagonal eigenvalues

$$\frac{1}{dist\{i\omega,\Lambda\}} \le ||(i\omega - L)^{-1}|| = \frac{1}{||S(i\omega - \Lambda)^{-1}S^{-1}||} \le \kappa(S)\frac{1}{dist\{i\omega,\Lambda\}}$$

$$\kappa(S) \gg 1$$

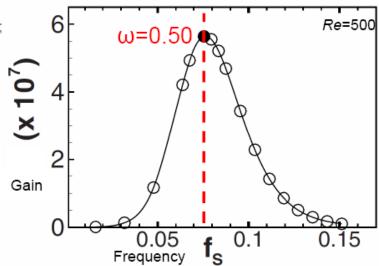
Non-Normal system: upper and lower bound differ

we can have a pseudo-resonance Strong amplification also far from system eigenfrequency

Optimal harmonic gain [Marquet &Sipp, 2010;

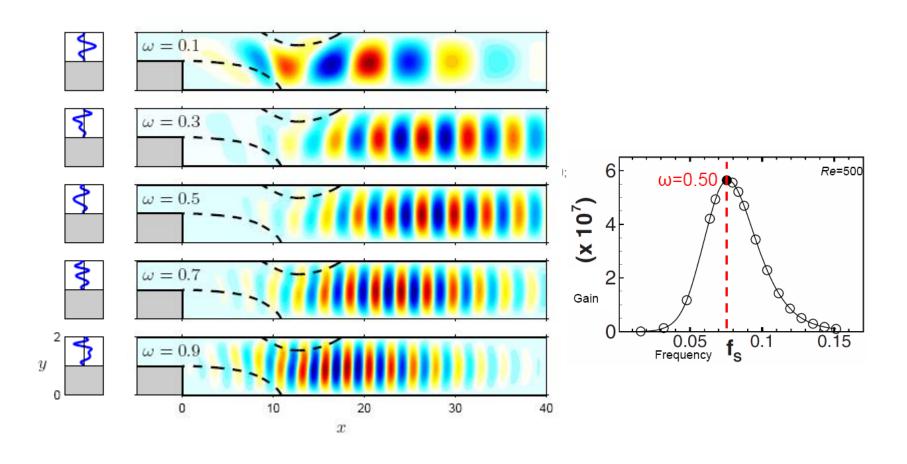
Marquet et al., 2010, priv. comm.].

same preferred frequency, large gain



Optimal forcing

and optimal response very similar to transient growth:



Local weakly non parallel spatial stability analysis v.s. global resolvent analysis

