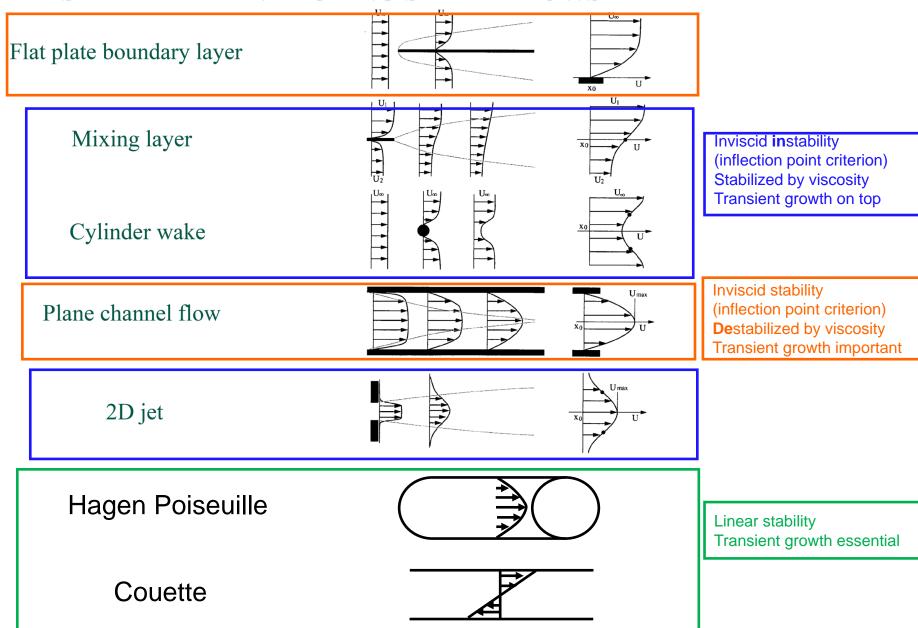
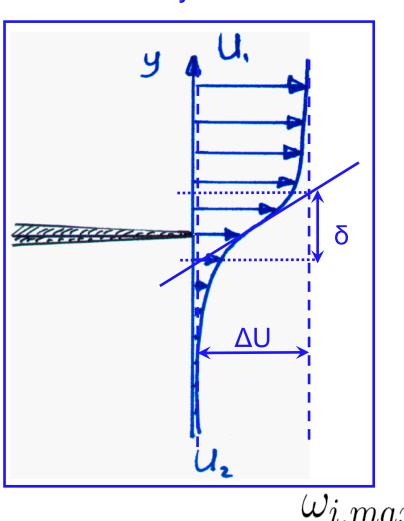
Most flows are unstable...

- Intro-definitions
- Rayleigh-Taylor
- 3. Rayleigh Plateau (destabilization through surface tension)
- 4. Rayleigh-Benard (convection)
- 5. Benard-Marangoni
- 6. Taylor Couette-Centrifugal instability
- 7. Kelvin-Helmholtz
- 8. Inflection point theorem Rayleigh, Orr sommerfeld
- 9. Orr sommerfeld, transient growth
- 10. Spatial growth

SPATIALLY DEVELOPING SHEAR FLOWS



Viscosity has limited stabilizing influence on K-H instability

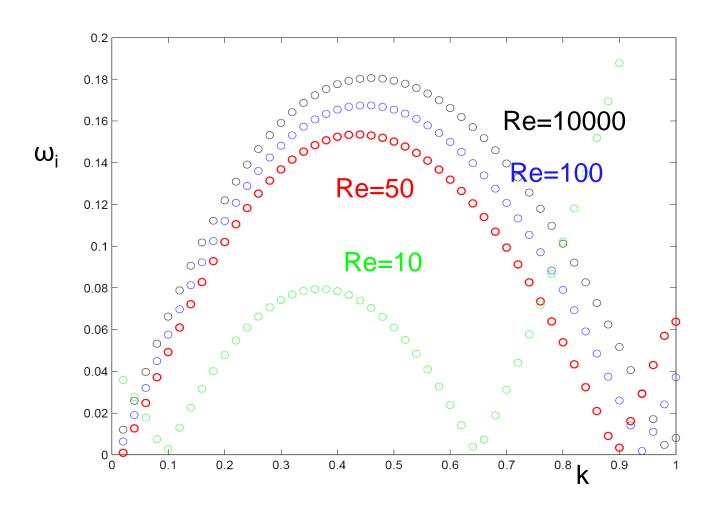


$$U_{\mathsf{B}}(y) = \tanh y$$

$$Re := \Delta U \, \delta / \nu$$

$$\frac{\delta}{\omega_{i,max}} \frac{\delta}{\Delta U} \approx \sqrt{\frac{0,2}{1 + 0/0,2Re}}$$

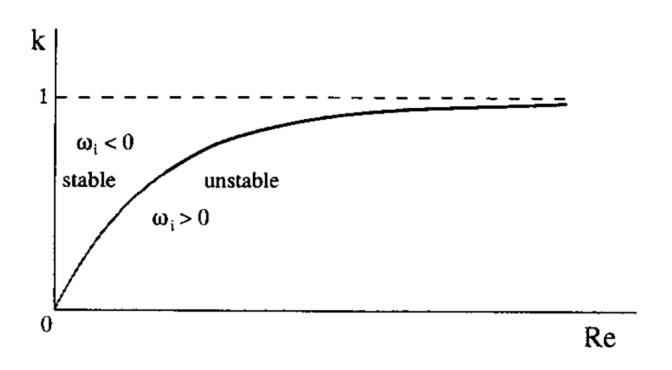
Viscosity has stabilizing influence on K-H instability



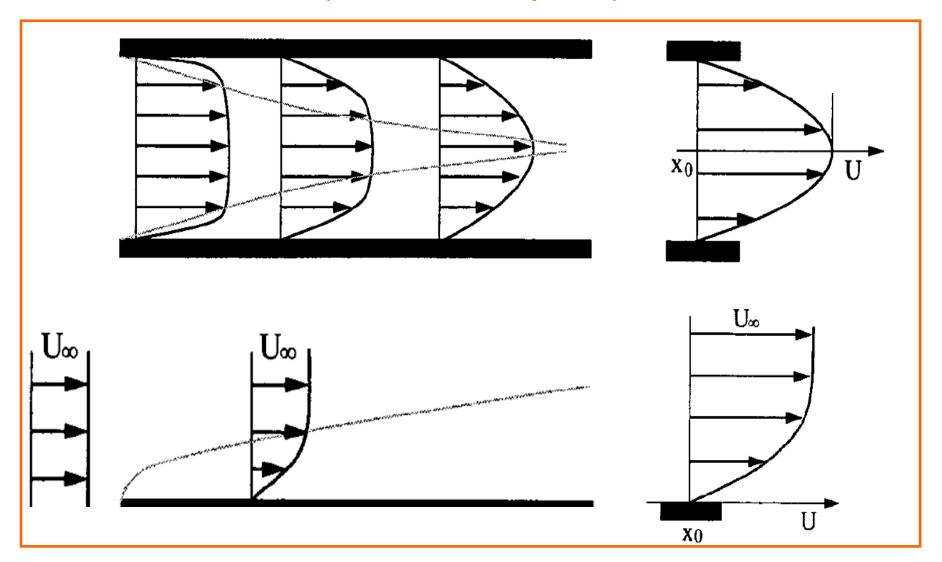
PARALLEL FLOW CONCEPTS

Viscous instabilities

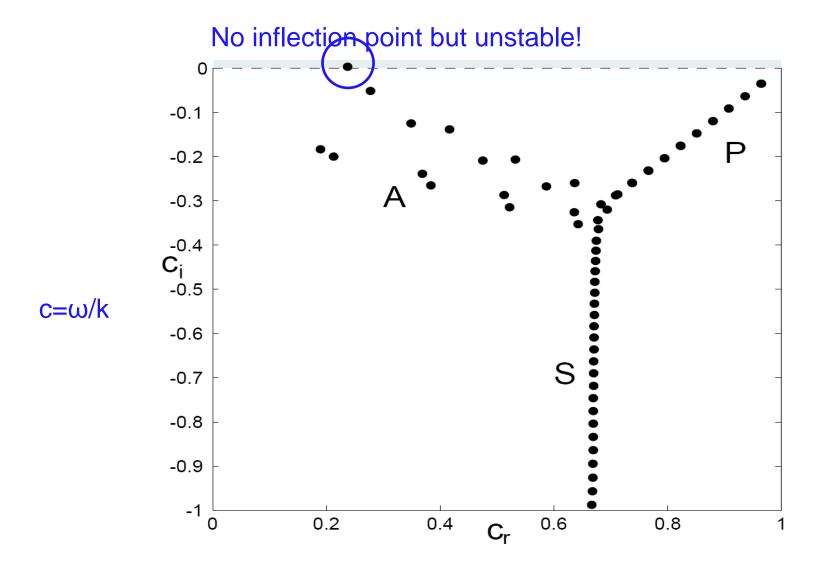
Hyperbolic tangent mixing layer



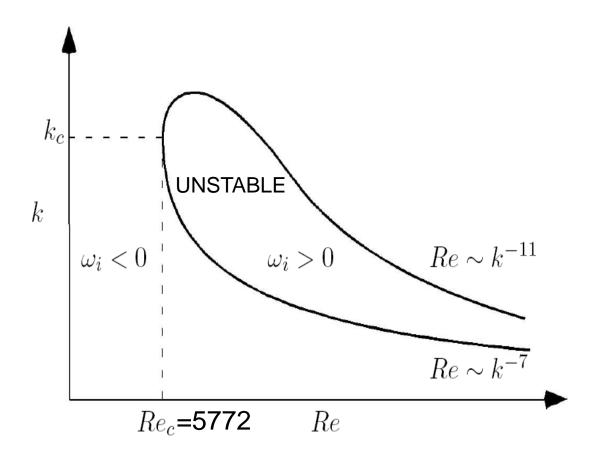
What about inviscidly stable flows (no inflexion point)?



Plane poiseuille flow; Re=10000; α =1, β =0

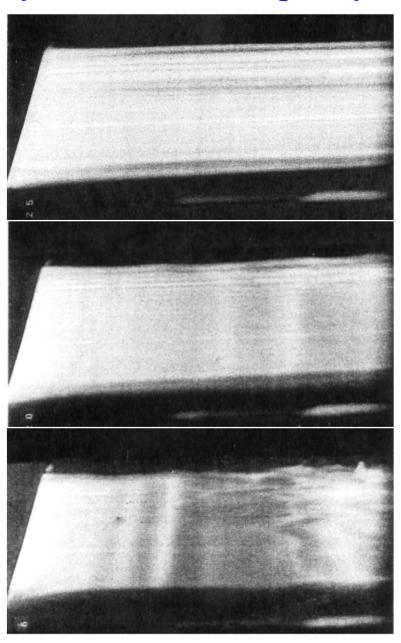


Neutral curve for plane poiseuille flow



- Allure de la courbe de stabilité marginale dans le plan Re-k pour l'écoulement de Poiseuille plan.

Boundary layer at increasing Reynolds number



Boundary layers are destabilized by viscosity Reynolds Orr equation

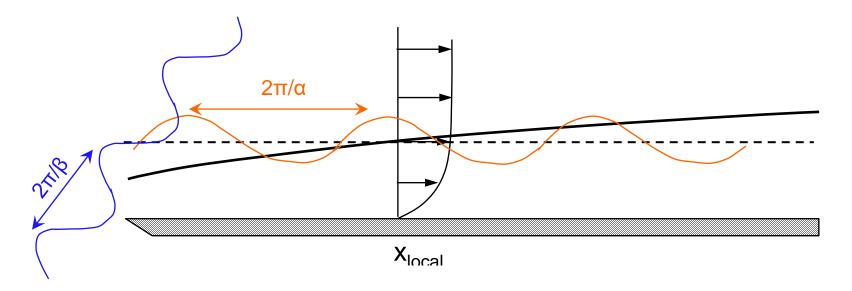
Perturbation kinetic energy: $e_c = \frac{1}{2}(u^2 + v^2 + w^2)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{y_1}^{y_2} \langle e_c \rangle \mathrm{d}y = \left(\int_{y_1}^{y_2} \partial_y \overline{U} \tau_{xy} \mathrm{d}y \right) - \frac{1}{Re} \int_{y_1}^{y_2} \langle \boldsymbol{\omega}.\boldsymbol{\omega} \rangle \mathrm{d}y$$

Production term

Dissipation term

Local parallel flow approximation

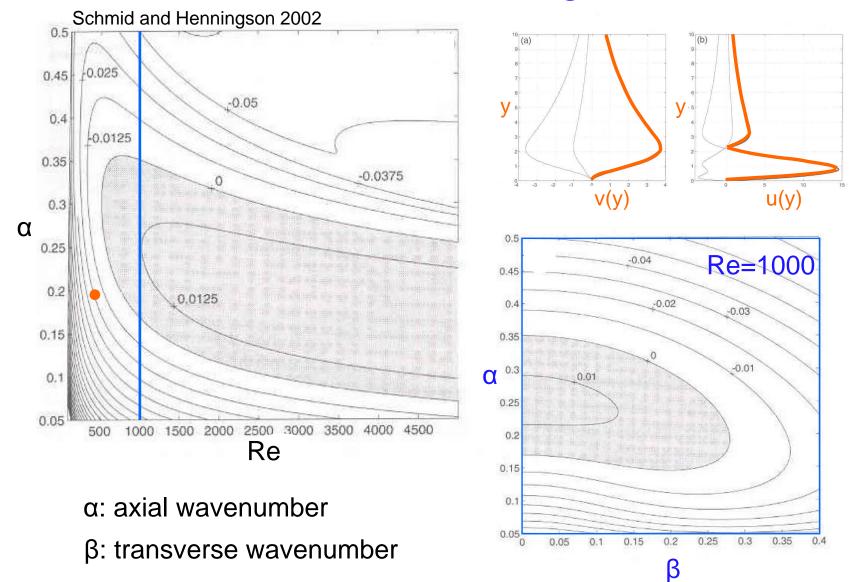


$$(\mathbf{u}, p) = (\mathbf{u}(y), p(y)) e^{\sigma t + i(\alpha x + \beta z)}$$

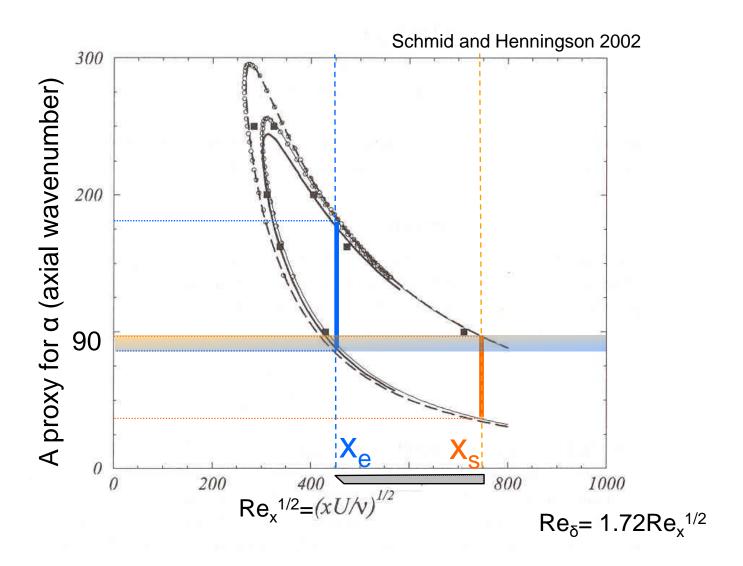
⇒Orr-Sommerfeld-Squire equation

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{U}(y)\nabla \mathbf{u} + \mathbf{u}\nabla \mathbf{U}(y) = -\nabla p + \frac{1}{Re}\nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

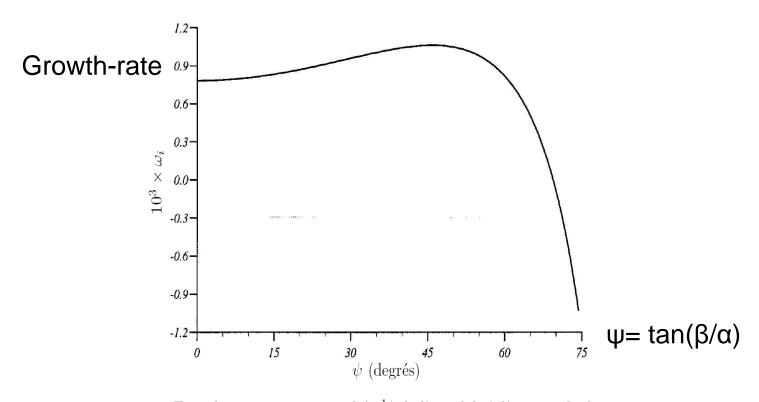
Tollmien Schlichting waves



Neutral curve



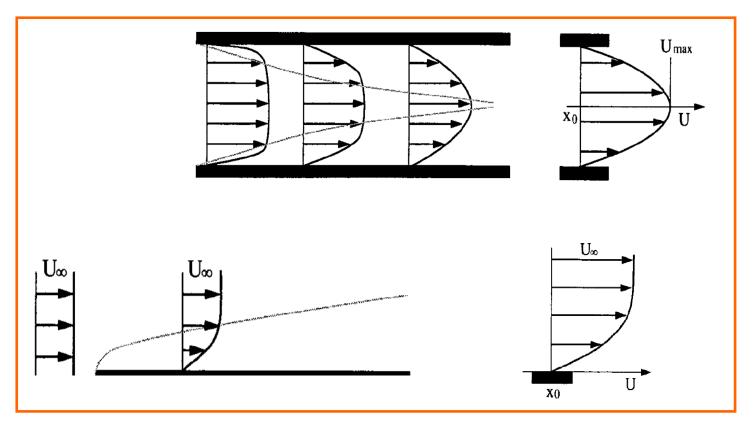
Boundary layer at $Re_{\delta} = 1500$



Taux de croissance temporel (s⁻¹) de l'instabilité d'une couche limite, en fonction de l'angle ψ de la perturbation avec la direction de l'écoulement de base. $R_{\delta 1} = 1500, \ \omega \nu / U_{\infty}^2 = 0, 3 \times 10^{-4} \ (calcul G. Casalis, ONERA).$

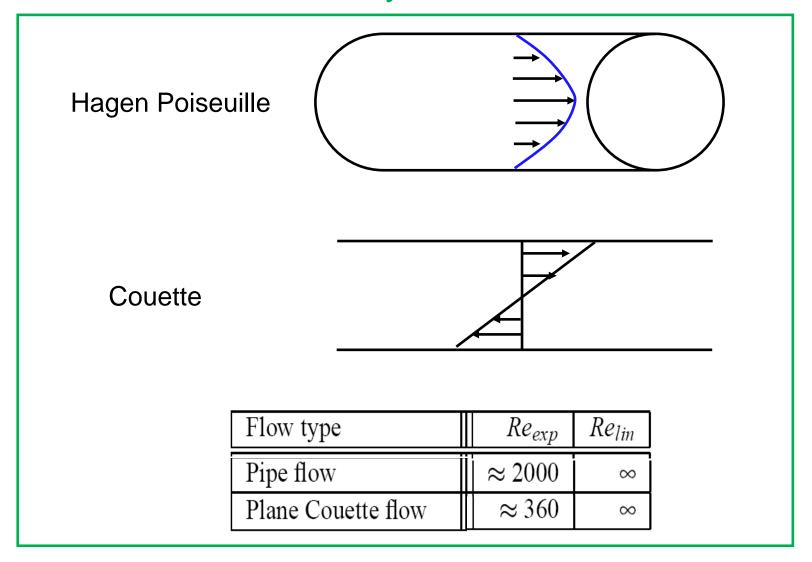
The most unstable perturbation is oblique!

Transient flow is very important in these linearly unstable flows

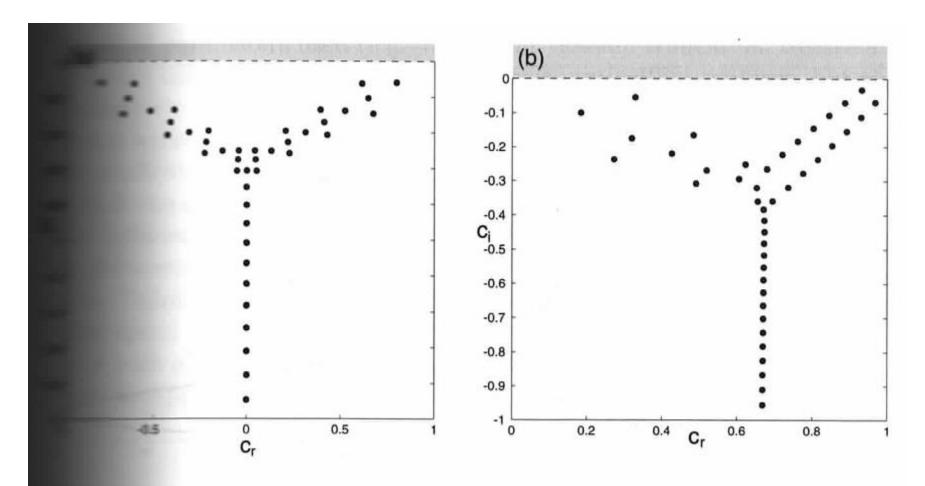


Flow type		Re_{exp}	Re_{lin}
Plane Poiseuille flow	ľ	≈ 1000	5772

Linearly stable flows



Transient growth mechanisms are essential to explain experimental observations



3.3. Spectrum of plane Couette and pipe flow. (a) Plane Couette flow $\mathbf{L} \mathbf{B} = 1$, Re = 1000; (b) Pipe flow for $\alpha = 1$, n = 1, Re = 5000.

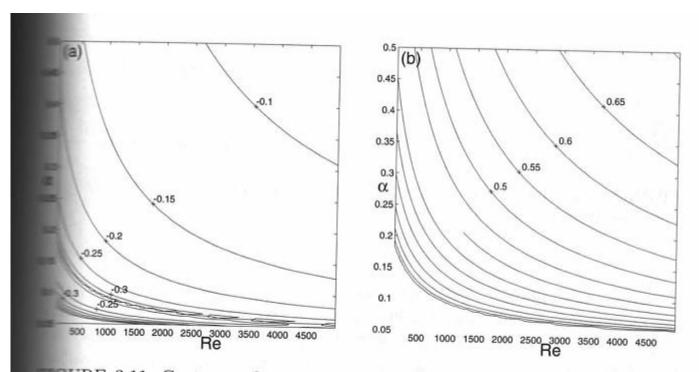


FIGURE 3.11. Contours of constant growth rate (a) and phase speed (b) for time Couette flow.

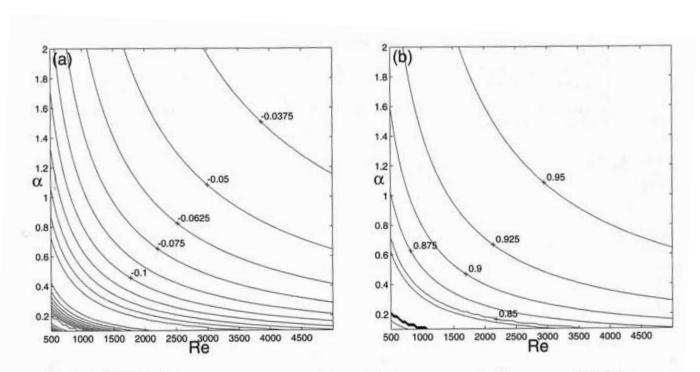
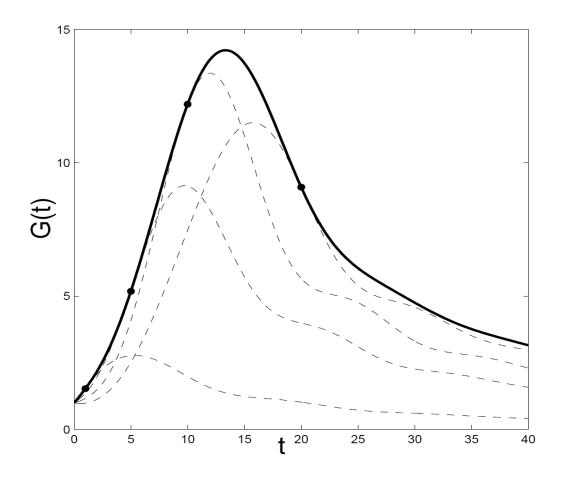


FIGURE 3.12. Contours of constant growth rate (a) and phase speed (b) for pipe Poiseuille flow.

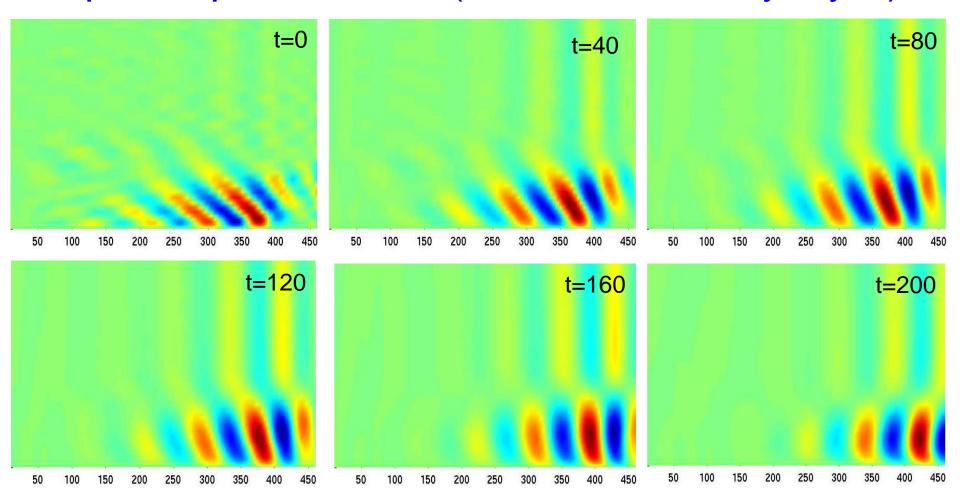
Orr mechanism (2D)



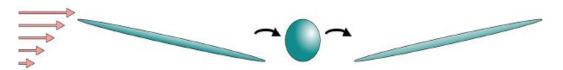
Amplification G(t) for Poiseuille flow with Re = 1000, α = 1 (solid line)

« By-pass transition »

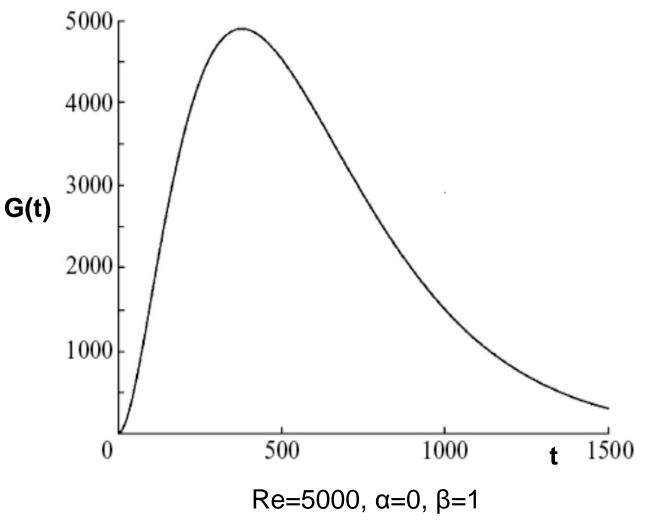
Optimal perturbation (here in boundary layer)



Orr mechanism



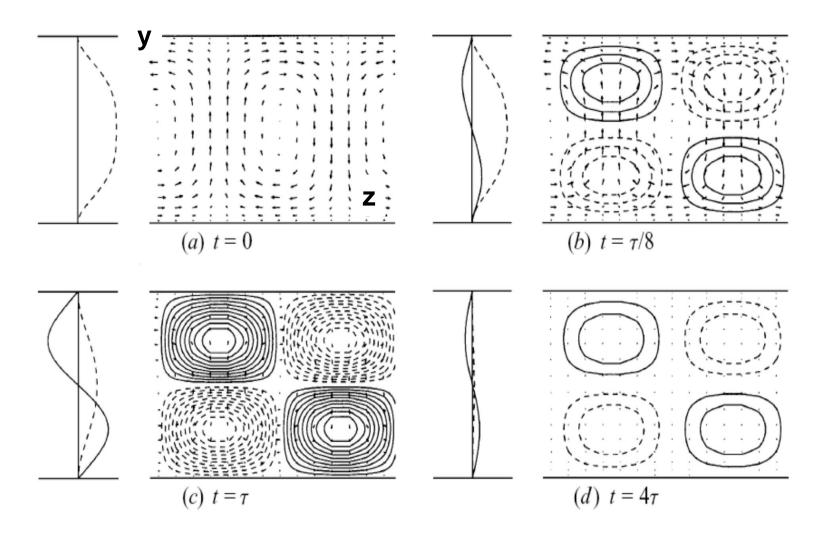
Plane Poiseuille flow Lift-up mechanism (3D)



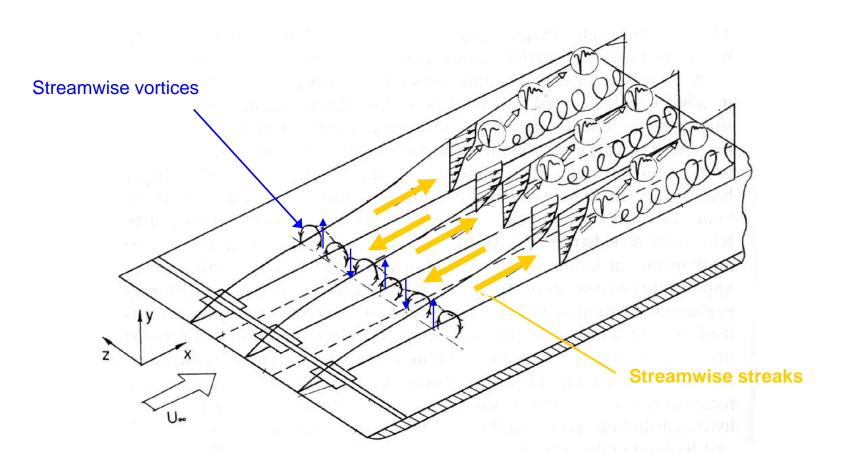
« By-pass transition »

Lift-up mechanisms

Optimal transformation of vortices into streaks



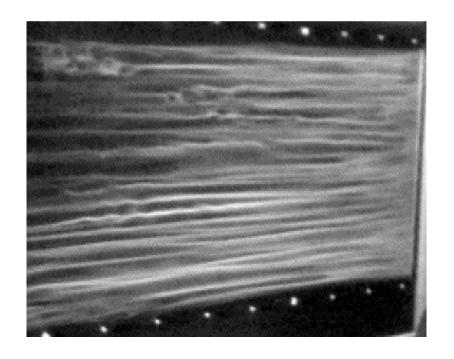
Lift-up mechanism



Schmid & Henningson.(2001)

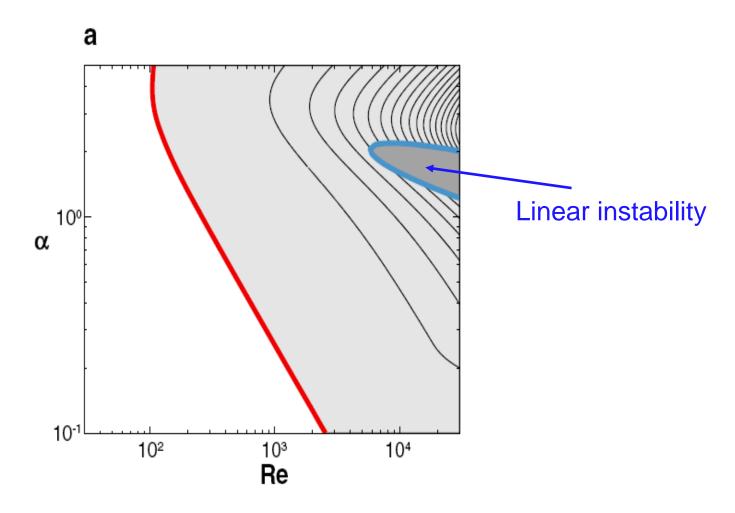
Lift-up mechanism

Optimal transformation of vortices into streaks



Alfredson & Matsubara (1996), streaky structures in the boudary layer

Isolines of maximum transient amplification β=0



« By-pass transition »

Plane Poiseuille Couette Pipe Boundary layer

$G_{\rm max}$ (10 ⁻³)	t_{max}	α	β
$0.20~\mathrm{Re}^2$	$0.076~\mathrm{Re}$	0	2.04
$1.18~\mathrm{Re}^2$	$0.117~\mathrm{Re}$	35/Re	1.6
$0.07~\mathrm{Re}^2$	$0.048~\mathrm{Re}$	0	1
$1.50~\mathrm{Re}^2$	$0.778 \mathrm{\ Re}$	0	0.65

Most flows are unstable...

- Intro-definitions
- Rayleigh-Taylor
- Rayleigh Plateau (destabilization through surface tension)
- 4. Rayleigh-Benard (convection)
- 5. Benard-Marangoni
- 6. Taylor Couette-Centrifugal instability
- 7. Kelvin-Helmholtz
- 8. Inflection point theorem Rayleigh, Orr sommerfeld
- 9. Orr sommerfeld, transient growth
- 10. Spatial growth

2D PARALLEL FLOW CONCEPTS

Dispersion relation

2D vorticity equation

$$\left(\frac{\partial}{\partial t} + \frac{\partial \Psi}{\partial y} \frac{\partial}{\partial x} - \frac{\partial \Psi}{\partial x} \frac{\partial}{\partial y}\right) \nabla^2 \Psi = \frac{1}{Re} \nabla^4 \Psi$$

Basic flow + perturbation

$$\Psi(x,t) = \int U(y)dy + \psi(x,y,t)$$

Linear vorticity equation

$$\left(\frac{\partial}{\partial t} + U(y)\frac{\partial}{\partial x}\right)\nabla^2\psi - U''(y)\frac{\partial\psi}{\partial x} = \frac{1}{Re}\nabla^4\psi$$

Dispersion relation

$$D(k,\omega) = 0$$

Temporal approach: k is real; ω is complex Perturbation grow and decay in time!

Spatial approach: ω is real; k is complex Perturbations grow and decay in space!

Shear layer is inviscidly unstable!

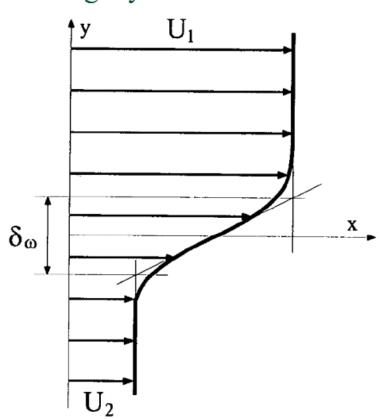
Hyperbolic tangent mixing layer

$$U(y) = \bar{U} + rac{\Delta U}{2} \, anh \left(rac{2y}{\delta_{\omega}}
ight)$$

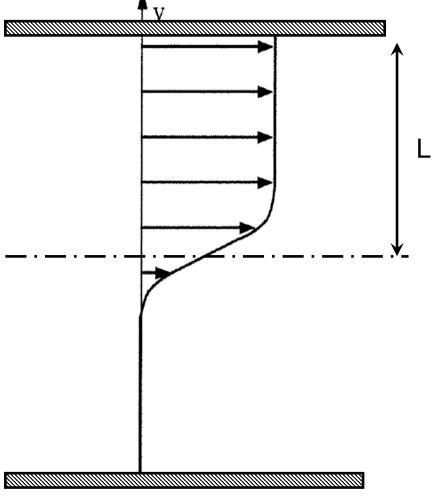
$$\delta_{\omega}(x) \equiv \frac{(U_1 - U_2)}{(dU/dy)_{\max}}$$

Velocity ratio

$$R \equiv \frac{U_1 - U_2}{U_1 + U_2} = \frac{\Delta U}{2\bar{U}}$$



Only a necessary condition for instability! Remember: Influence of confinement



2D PARALLEL FLOW CONCEPTS

Hyperbolic tangent mixing layer

$$U(y;R) = 1 + R \tanh y$$

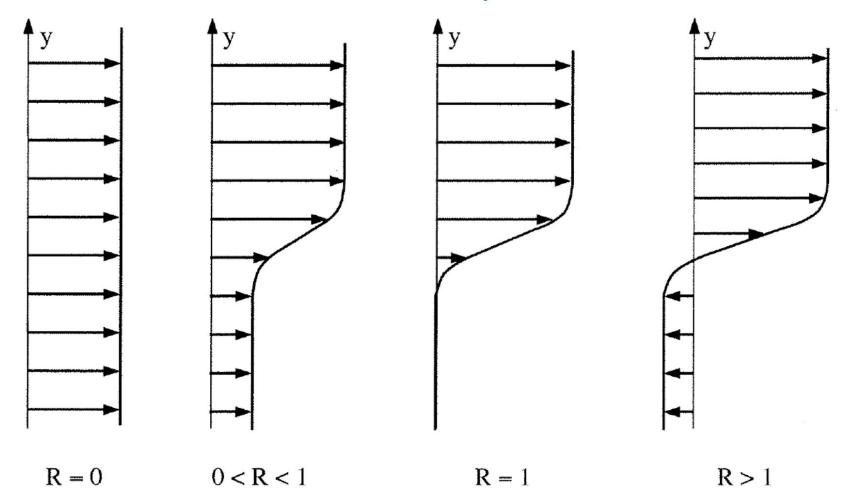
$$U_1(y) = \tanh y$$

Dispersion relation

$$\omega(k;R) = k + R\,\omega_1(k)$$

PARALLEL FLOW CONCEPTS

Effect of velocity ratio



2D PARALLEL FLOW CONCEPTS

Hyperbolic tangent mixing layer

Temporal approach

$$\omega_1(k) = i \,\omega_{1,i}(k)$$

$$\omega_i(k;R) = R \,\omega_{1,i}(k)$$

$$c_r = \omega_r/k = 1$$

Temporal approach: k is real; ω is complex

2D PARALLEL FLOW CONCEPTS

Hyperbolic tangent mixing layer

Spatial approach

$$k + R \omega_1(k) = \omega$$

$$R \ll 1$$

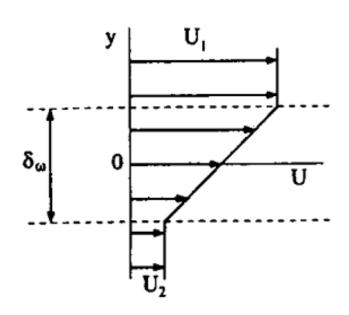
$$-k_i(\omega, R) \sim R \,\omega_{1,i}(\omega)$$

Gaster transformation

$$U(y) = \begin{cases} U_1, & y > \delta_{\omega}/2 \\ (U_1 + U_2)/2 + (U_1 - U_2)y/\delta_{\omega}, & |y| < \delta_{\omega}/2 \\ U_2, & y < -\delta_{\omega}/2 \end{cases}$$

$$\phi'' - k^2 \phi = 0$$

$$\begin{split} \phi_1(y) &= A_1 \, \mathrm{e}^{-ky}, \quad y > \delta_\omega/2 \,, \\ \phi_2(y) &= B_2 \, \mathrm{e}^{ky}, \quad y < -\delta_\omega/2 \,, \\ \phi_0(y) &= A_0 \, \mathrm{e}^{-ky} + B_0 \, \mathrm{e}^{ky}, \quad |y| < \delta_\omega/2 \end{split}$$



$$A_{1} e^{-k\delta_{\omega}/2} = A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2},$$

$$B_{2} e^{-k\delta_{\omega}/2} = A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2},$$

$$-k(U_{1} - c)A_{1} e^{-k\delta_{\omega}/2} = k(U_{1} - c)(-A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2})$$

$$-\frac{\Delta U}{\delta_{\omega}} (A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2}),$$

$$k(U_{2} - c)B_{2} e^{-k\delta_{\omega}/2} = k(U_{2} - c)(-A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2})$$

$$-\frac{\Delta U}{\delta_{\omega}} (A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2}).$$

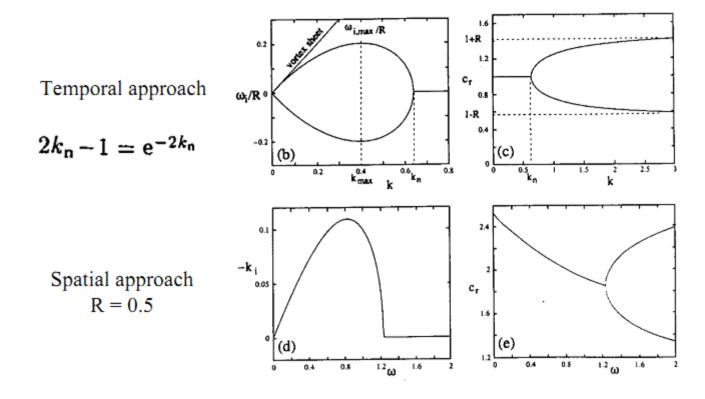
$$-\frac{\Delta U}{\delta_{\omega}} A_0 e^{-k\delta_{\omega}/2} + \left[2k(U_1 - c) - \frac{\Delta U}{\delta_{\omega}} \right] B_0 e^{k\delta_{\omega}/2} = 0$$
$$\left[2k(U_2 - c) + \frac{\Delta U}{\delta_{\omega}} \right] A_0 e^{k\delta_{\omega}/2} + \frac{\Delta U}{\delta_{\omega}} B_0 e^{-k\delta_{\omega}/2} = 0$$

$$4(k\delta_{\omega})^{2}(c-\bar{U})^{2} - \left[(k\delta_{\omega} - 1)^{2} - e^{-2k\delta_{\omega}}\right] \Delta U^{2} = 0$$

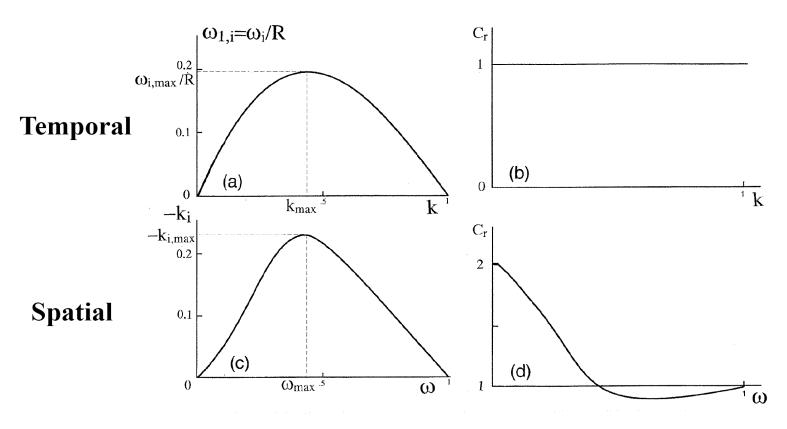
$$k\delta_{\omega} \mapsto 2k, c/\bar{U} \mapsto c$$

$$4k^{2}(c-1)^{2} - R^{2}\left[(2k-1)^{2} - e^{-4k}\right] = 0$$

$$c \equiv \frac{\omega}{k} = 1 \pm \frac{R}{2k} \left[(2k - 1)^2 - e^{-4k} \right]^{1/2}$$



Hyperbolic tangent mixing layer



Michalke (1964, 65)

Solving a spatial instability problem ex: Rayleigh equation

Back to temporal stability analysis! How to solve Rayleigh equation for real k and complex ω?

We fix k, we need to find all ω and ψ such that

$$\mathbf{k} \bigg(U \left(\frac{d^2}{dy^2} - k^2 \right) - U''(y) \bigg) \, \psi = \mathbf{\omega} \left(\frac{d^2}{dy^2} - k^2 \right) \psi$$

$$\psi(-L) = \psi(L) = 0$$

Formally,

$$\mathcal{A}\psi = c\,\mathcal{E}\psi$$

 $c=\omega/k$

Discretize

$$\mathbf{A}\Psi = c\mathbf{E}\Psi$$

Generalized eigenvalue problem

How to solve Rayleigh equation for real k and complex ω?

Finite differences of order 1

$$\Psi = \begin{pmatrix} \psi_1 & \psi_2 & \psi_{N+1} \\ \psi_1 & y_2 & y_{N+1} \end{pmatrix}$$

$$\Psi = \begin{pmatrix} \psi(y_1) \\ \psi(y_2) \\ \vdots \\ \psi(y_N) \\ \psi(y_{N+1}) \end{pmatrix} = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \\ \psi_{N+1} \end{pmatrix}$$

$$\Psi'' = \begin{pmatrix} \psi''(y_1) \\ \psi''(y_2) \\ \vdots \\ \psi''(y_N) \\ \psi''(y_{N+1}) \end{pmatrix}$$

How to solve Rayleigh equation for real k and complex ω?

Finite differences

$$\begin{pmatrix} \psi_2'' \\ \psi_3'' \\ \psi_4'' \\ \vdots \\ \psi_{N-3}'' \\ \psi_{N-2}'' \\ \psi_{N-1}'' \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 & \dots & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & -2 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 & -2 & 1 \\ 0 & \dots & \dots & \dots & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_3 \\ \psi_4 \\ \vdots \\ \psi_{N-3} \\ \psi_{N-2} \\ \psi_{N-1} \end{pmatrix}$$

Sparse matrix but low order!

How to solve Rayleigh equation for complex k and real ω?

We fix ω , we need to find all k and ψ such that

$$\mathbf{k} \bigg(U \left(\frac{d^2}{dy^2} - k^2 \right) - U''(y) \bigg) \, \psi = \mathbf{\omega} \left(\frac{d^2}{dy^2} - k^2 \right) \psi$$

$$\psi(-L) = \psi(L) = 0$$

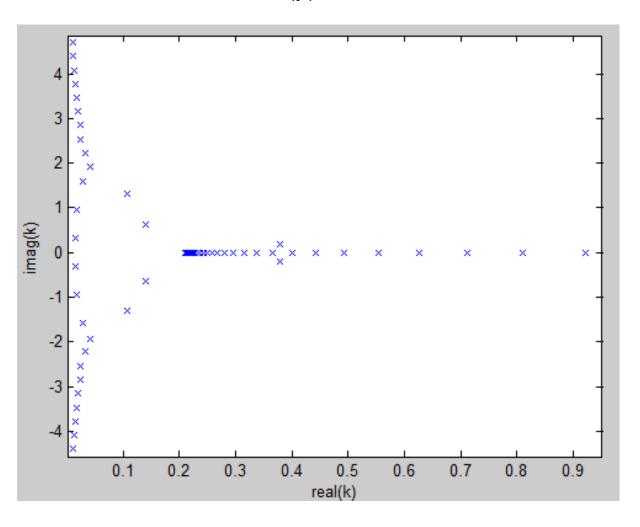
Formally,

$$(A_0(\omega,y)+kA_1(\omega,y)+k^2A_2(\omega,y)+k^3A_3(\omega,y))$$
 $\psi = 0$

Polynomial eigenvalue problem

Many more eigenvalues (for Rayleigh equation: 3 x more!)

U=1+0.9*tanh(y); ω =0.4; L=5



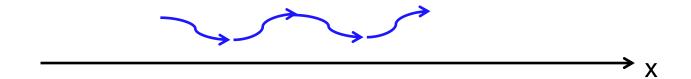
Which of these waves are unstable?

```
Im(k)<0?
Im(k)>0?
```

Recall: exp(i(kx-ωt))

The stability of a spatial wave can be only determined if one knows in which direction it propagates!

k+ waves propagate towards positive x

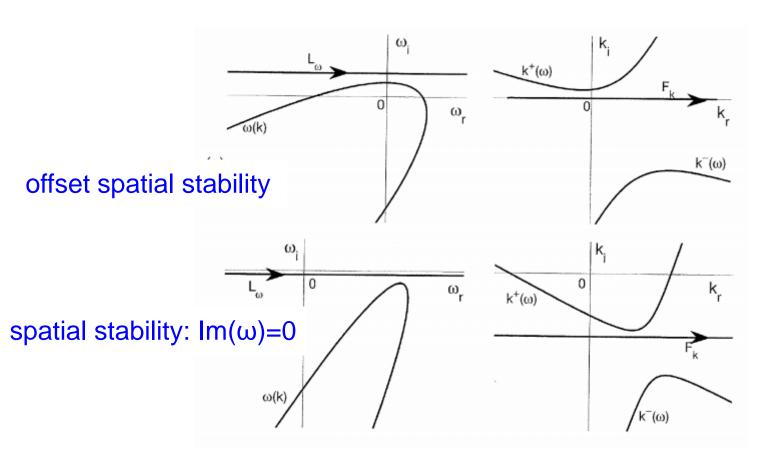


k waves propagate towards negative x

However, determining this direction of propagation is particularly difficult, except in the case of a temporally stable flow.

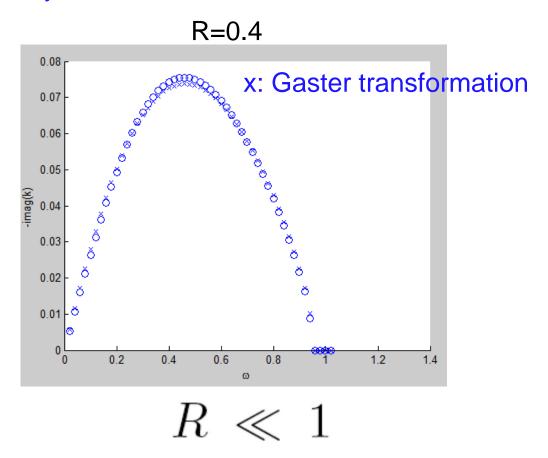
The addition of a positive imaginary offset to the frequency makes the temporal problem stable!

This separates the spatial waves into k+ and k- waves.



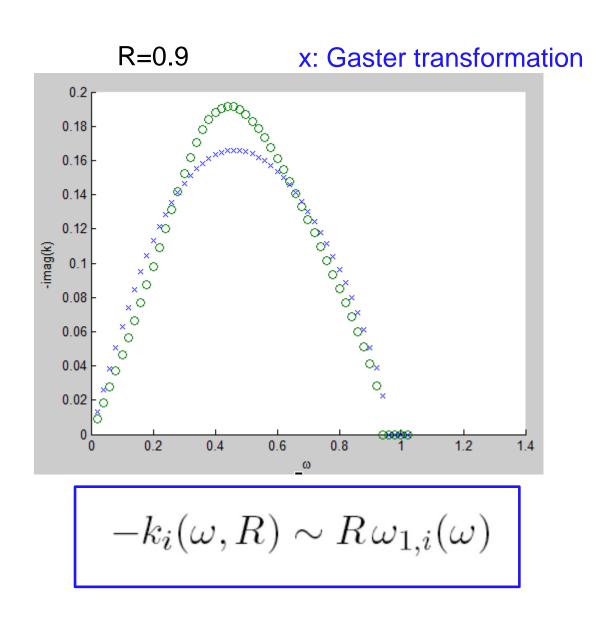
The branches are then followed by continuity

Validity of Gaster transformation?



$$-k_i(\omega, R) \sim R \,\omega_{1,i}(\omega)$$

Validity of Gaster transformation?



Neutral curve

