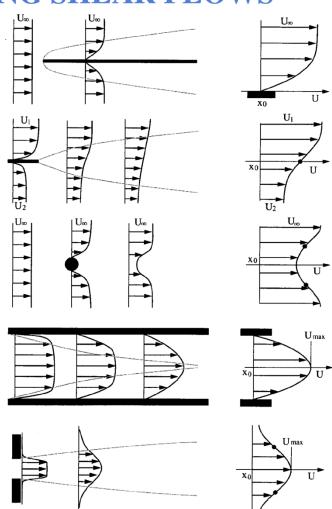
Most flows are unstable...

- 1. Intro-definitions
- Rayleigh-Taylor
- 3. Rayleigh Plateau (destabilization through surface tension)
- 4. Rayleigh-Benard (convection)
- 5. Benard-Marangoni
- 6. Taylor Couette-Centrifugal instability
- 7. Kelvin-Helmholtz
- 8. Inflection point theorem Rayleigh
- 9. Orr sommerfeld, transient growth
- 10. Spatial growth

SPATIALLY DEVELOPING SHEAR FLOWS


Flat plate boundary layer

Mixing layer

Cylinder wake

Plane channel flow

2D jet

Dispersion relation

2D vorticity equation

$$\left(\frac{\partial}{\partial t} + \frac{\partial \Psi}{\partial y} \frac{\partial}{\partial x} - \frac{\partial \Psi}{\partial x} \frac{\partial}{\partial y}\right) \nabla^2 \Psi = \frac{1}{Re} \nabla^4 \Psi$$

Basic flow + perturbation

$$\Psi(x,t) = \int U(y)dy + \psi(x,y,t)$$

Linear vorticity equation

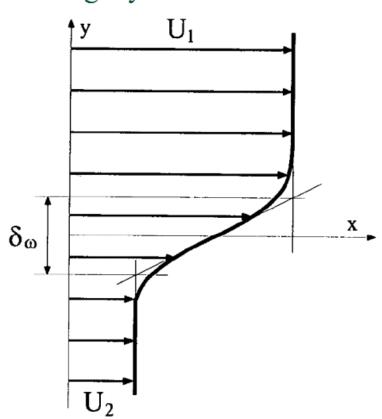
$$\left(\frac{\partial}{\partial t} + U(y)\frac{\partial}{\partial x}\right)\nabla^2\psi - U''(y)\frac{\partial\psi}{\partial x} = \frac{1}{Re}\nabla^4\psi$$

Dispersion relation

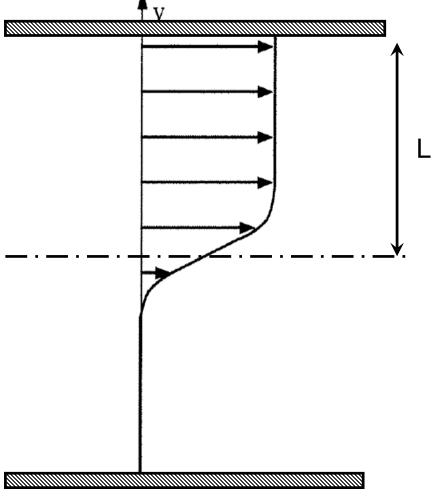
$$D(k,\omega) = 0$$

Temporal approach: k is real; ω is complex Perturbation grow and decay in time! Spatial approach: ω is real; k is complex Perturbations grow and decay in space!

Shear layer is inviscidly unstable!


Hyperbolic tangent mixing layer

$$U(y) = \bar{U} + rac{\Delta U}{2} \, anh \left(rac{2y}{\delta_{\omega}}
ight)$$

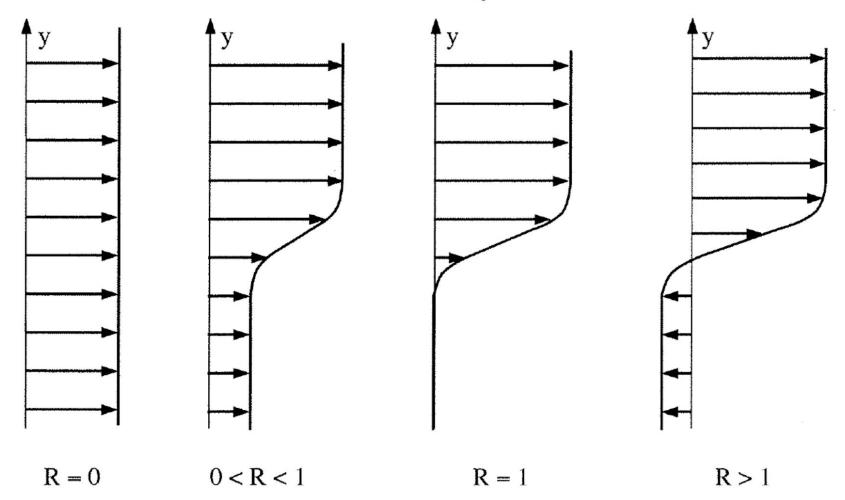

$$\delta_{\omega}(x) \equiv \frac{(U_1 - U_2)}{(dU/dy)_{
m max}}$$

Velocity ratio

$$R \equiv \frac{U_1 - U_2}{U_1 + U_2} = \frac{\Delta U}{2\bar{U}}$$

Only a necessary condition for instability! Remember: Influence of confinement

Hyperbolic tangent mixing layer


$$U(y;R) = 1 + R \tanh y$$

$$U_1(y) = \tanh y$$

Dispersion relation

$$\omega(k;R) = k + R\,\omega_1(k)$$

Effect of velocity ratio

Hyperbolic tangent mixing layer

Temporal approach

$$\omega_1(k) = i \,\omega_{1,i}(k)$$

$$\omega_i(k;R) = R \,\omega_{1,i}(k)$$

$$c_r = \omega_r/k = 1$$

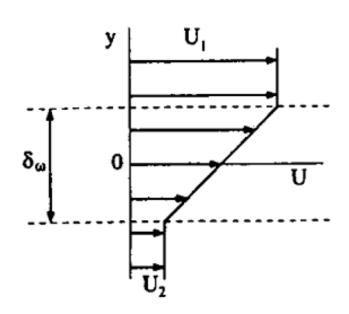
Temporal approach: k is real; ω is complex

Hyperbolic tangent mixing layer

Spatial approach

$$k + R\,\omega_1(k) = \omega$$

$$R \ll 1$$


$$-k_i(\omega, R) \sim R \,\omega_{1,i}(\omega)$$

Gaster transformation

$$U(y) = \begin{cases} U_1, & y > \delta_{\omega}/2 \\ (U_1 + U_2)/2 + (U_1 - U_2)y/\delta_{\omega}, & |y| < \delta_{\omega}/2 \\ U_2, & y < -\delta_{\omega}/2 \end{cases}$$

$$\phi'' - k^2 \phi = 0$$

$$\begin{split} \phi_1(y) &= A_1 \, \mathrm{e}^{-ky}, \quad y > \delta_\omega/2 \,, \\ \phi_2(y) &= B_2 \, \mathrm{e}^{ky}, \quad y < -\delta_\omega/2 \,, \\ \phi_0(y) &= A_0 \, \mathrm{e}^{-ky} + B_0 \, \mathrm{e}^{ky}, \quad |y| < \delta_\omega/2 \end{split}$$

$$A_{1} e^{-k\delta_{\omega}/2} = A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2},$$

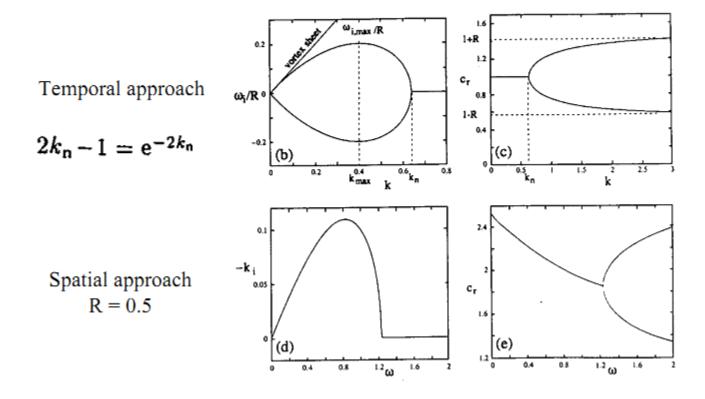
$$B_{2} e^{-k\delta_{\omega}/2} = A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2},$$

$$-k(U_{1} - c)A_{1} e^{-k\delta_{\omega}/2} = k(U_{1} - c)(-A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2})$$

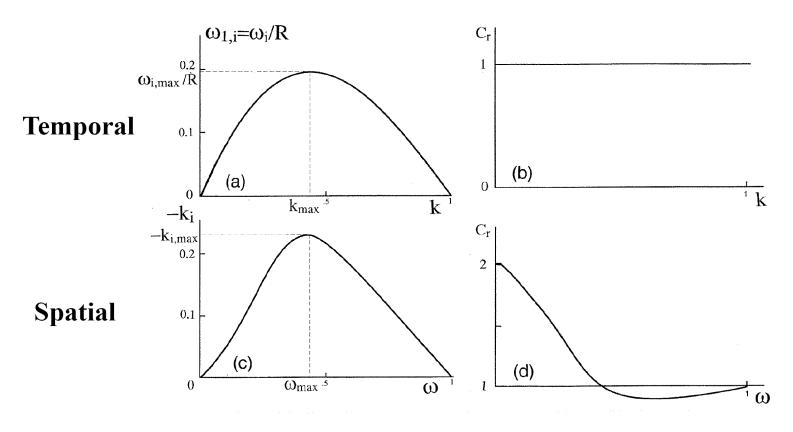
$$-\frac{\Delta U}{\delta_{\omega}} (A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2}),$$

$$k(U_{2} - c)B_{2} e^{-k\delta_{\omega}/2} = k(U_{2} - c)(-A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2})$$

$$-\frac{\Delta U}{\delta_{\omega}} (A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2}).$$


$$-\frac{\Delta U}{\delta_{\omega}} A_0 e^{-k\delta_{\omega}/2} + \left[2k(U_1 - c) - \frac{\Delta U}{\delta_{\omega}} \right] B_0 e^{k\delta_{\omega}/2} = 0$$
$$\left[2k(U_2 - c) + \frac{\Delta U}{\delta_{\omega}} \right] A_0 e^{k\delta_{\omega}/2} + \frac{\Delta U}{\delta_{\omega}} B_0 e^{-k\delta_{\omega}/2} = 0$$

$$4(k\delta_{\omega})^{2}(c-\bar{U})^{2} - \left[(k\delta_{\omega} - 1)^{2} - e^{-2k\delta_{\omega}}\right]\Delta U^{2} = 0$$


$$k\delta_{\omega} \mapsto 2k, c/\bar{U} \mapsto c$$

$$4k^{2}(c-1)^{2} - R^{2}\left[(2k-1)^{2} - e^{-4k}\right] = 0$$

$$c \equiv \frac{\omega}{k} = 1 \pm \frac{R}{2k} \left[(2k - 1)^2 - e^{-4k} \right]^{1/2}$$

Hyperbolic tangent mixing layer

Michalke (1964, 65)

Solving a spatial instability problem ex: Rayleigh equation

Back to temporal stability analysis! How to solve Rayleigh equation for real k and complex ω?

We fix k, we need to find all ω and ψ such that

$$\mathbf{k} \bigg(U \left(\frac{d^2}{dy^2} - k^2 \right) - U''(y) \bigg) \, \psi = \mathbf{\omega} \left(\frac{d^2}{dy^2} - k^2 \right) \psi$$

$$\psi(-L) = \psi(L) = 0$$

Formally,

$$\mathcal{A}\psi = c\,\mathcal{E}\psi$$

 $c=\omega/k$

Discretize

$$\mathbf{A}\Psi = c\mathbf{E}\Psi$$

Generalized eigenvalue problem

How to solve Rayleigh equation for real k and complex ω?

Finite differences of order 1

$$\psi_1$$
 ψ_2 ψ_{N+1} ψ_{N+1} ψ_{N+1}

$$\Psi = \begin{pmatrix} \psi(y_1) \\ \psi(y_2) \\ \vdots \\ \psi(y_N) \\ \psi(y_{N+1}) \end{pmatrix} = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \\ \psi_{N+1} \end{pmatrix} \qquad \Psi'' = \begin{pmatrix} \psi''(y_1) \\ \psi''(y_2) \\ \vdots \\ \psi''(y_N) \\ \psi''(y_{N+1}) \end{pmatrix}$$

How to solve Rayleigh equation for real k and complex ω?

Finite differences

$$\begin{pmatrix} \psi_2'' \\ \psi_3'' \\ \vdots \\ \psi_{N-3}'' \\ \psi_{N-2}'' \\ \psi_{N-1}'' \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 & \dots & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & -2 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 & -2 & 1 \\ 0 & \dots & \dots & \dots & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_3 \\ \psi_4 \\ \vdots \\ \psi_{N-3} \\ \psi_{N-2} \\ \psi_{N-1} \end{pmatrix}$$

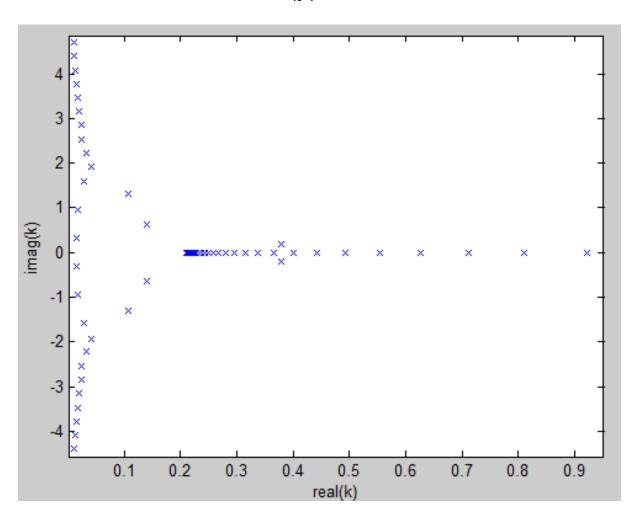
Sparse matrix but low order!

How to solve Rayleigh equation for complex k and real ω?

We fix ω , we need to find all k and ψ such that

$$\mathbf{k} \bigg(U \left(\frac{d^2}{dy^2} - k^2 \right) - U''(y) \bigg) \, \psi = \mathbf{\omega} \left(\frac{d^2}{dy^2} - k^2 \right) \psi$$

$$\psi(-L) = \psi(L) = 0$$

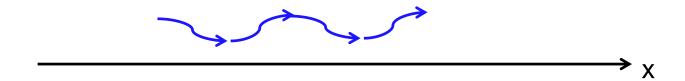

Formally,

$$(A_0(\omega,y)+kA_1(\omega,y)+k^2A_2(\omega,y)+k^3A_3(\omega,y))$$
 $\psi = 0$

Polynomial eigenvalue problem

Many more eigenvalues (for Rayleigh equation: 3 x more!)

U=1+0.9*tanh(y); ω =0.4; L=5

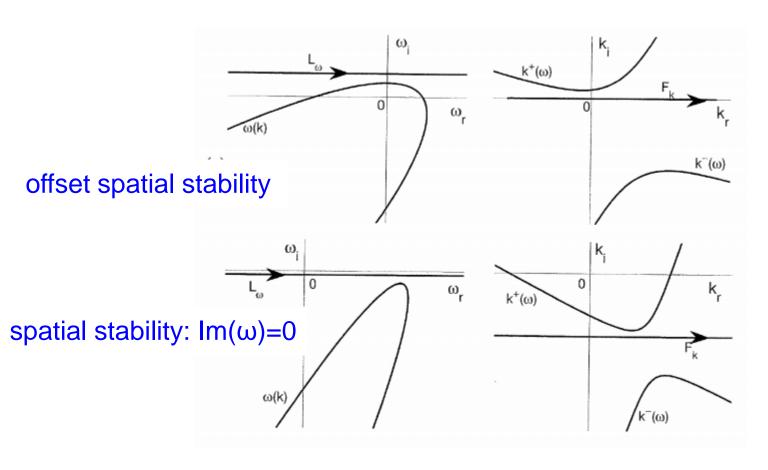

Which of these waves are unstable?

```
Im(k)<0?
Im(k)>0?
```

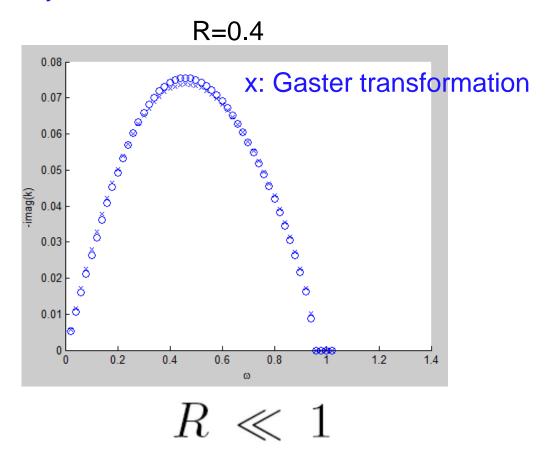
Recall: exp(i(kx-ωt))

The stability of a spatial wave can be only determined if one knows in which direction it propagates!

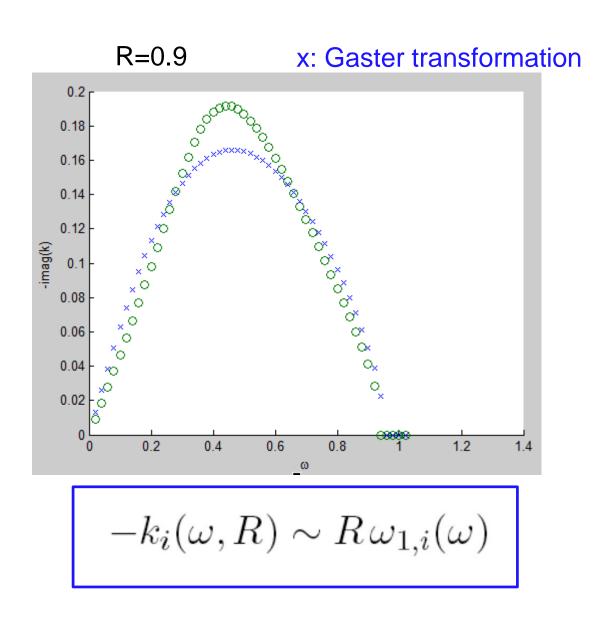
k+ waves propagate towards positive x


k waves propagate towards negative x

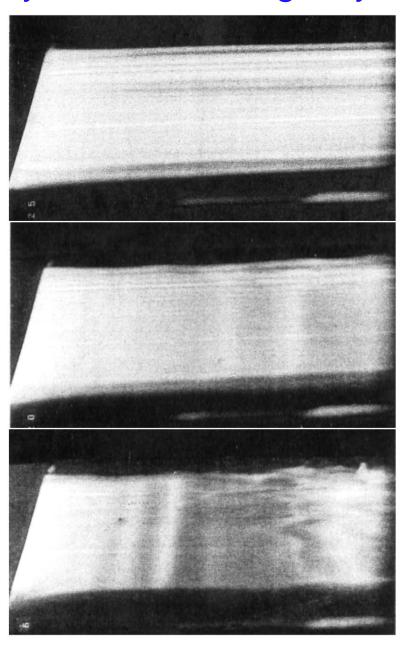
However, determining this direction of propagation is particularly difficult, except in the case of a temporally stable flow.


The addition of a positive imaginary offset to the frequency makes the temporal problem stable!

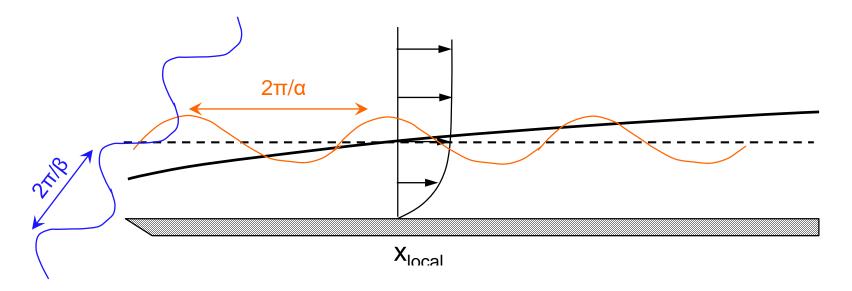
This separates the spatial waves into k+ and k- waves.


The branches are then followed by continuity

Validity of Gaster transformation?

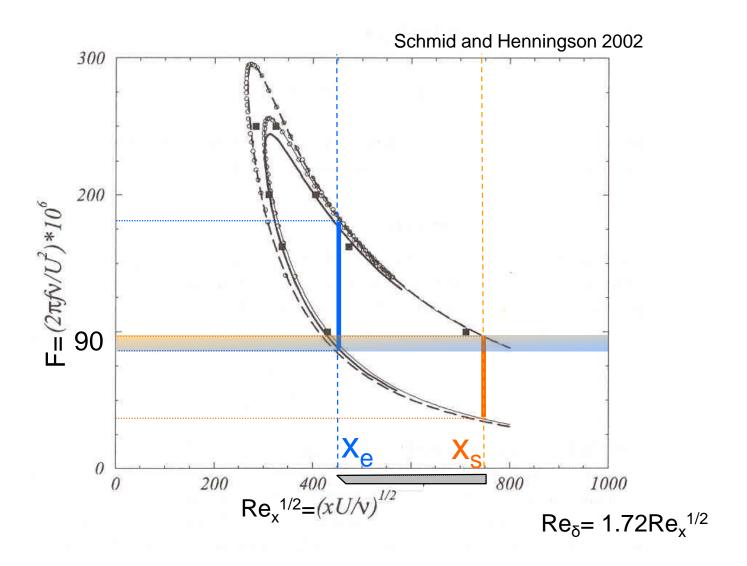


$$-k_i(\omega, R) \sim R \,\omega_{1,i}(\omega)$$


Validity of Gaster transformation?

Boundary layer at increasing Reynolds number

Local parallel flow approximation



$$(\mathbf{u}, p) = (\mathbf{u}(y), p(y)) e^{\sigma t + i(\alpha x + \beta z)}$$

⇒ Orr-Sommerfeld-Squire equation

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{U}(y)\nabla \mathbf{u} + \mathbf{u}\nabla \mathbf{U}(y) = -\nabla p + \frac{1}{Re}\nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Neutral curve

