Most flows are unstable...

- Intro-definitions
- 2. Rayleigh-Taylor
- 3. Rayleigh Plateau (destabilization through surface tension)
- 4. Rayleigh-Benard (convection)
- 5. Taylor Couette-Centrifugal instability
- 6. Kelvin-Helmholtz
- 7. Inflection point theorem Rayleigh! Orr sommerfeld
- 8. transient growth
- 9. Spatial growth

SPATIALLY DEVELOPING SHEAR FLOWS

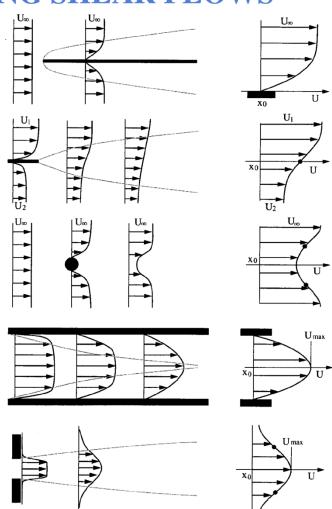
Flat plate boundary layer

Mixing layer

Cylinder wake

Plane channel flow

2D jet



Dispersion relation

2D vorticity equation

$$\left(\frac{\partial}{\partial t} + \frac{\partial \Psi}{\partial y} \frac{\partial}{\partial x} - \frac{\partial \Psi}{\partial x} \frac{\partial}{\partial y}\right) \nabla^2 \Psi = \frac{1}{Re} \nabla^4 \Psi$$

Basic flow + perturbation

$$\Psi(x,t) = \int U(y)dy + \psi(x,y,t)$$

Linear vorticity equation

$$\left(\frac{\partial}{\partial t} + U(y)\frac{\partial}{\partial x}\right)\nabla^2\psi - U''(y)\frac{\partial\psi}{\partial x} = \frac{1}{Re}\nabla^4\psi$$

Dispersion relation

$$D(k,\omega) = 0$$

Temporal approach: k is real; ω is complex Perturbation grow and decay in time!

Spatial approach: ω is real; k is complex Perturbations grow and decay in space!

Shear layer is inviscidly unstable!

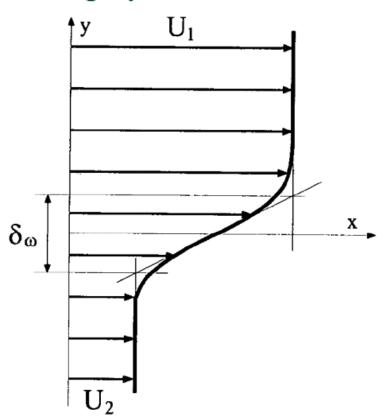
Hyperbolic tangent mixing layer

$$U(y) = \bar{U} + rac{\Delta U}{2} \, anh \left(rac{2y}{\delta_{\omega}}
ight)$$

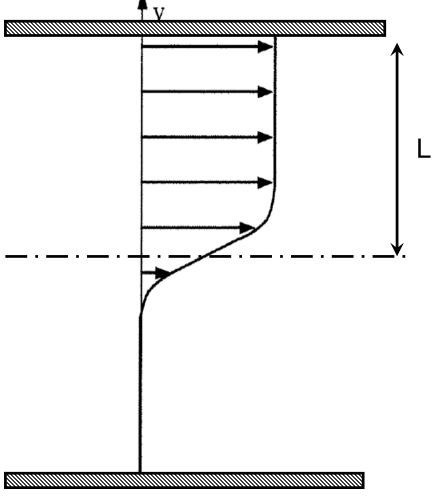
$$\delta_{\omega}(x) \equiv \frac{(U_1 - U_2)}{(dU/dy)_{
m max}}$$

Velocity ratio

$$R \equiv \frac{U_1 - U_2}{U_1 + U_2} = \frac{\Delta U}{2\bar{U}}$$



Only a necessary condition for instability! Remember: Influence of confinement



Hyperbolic tangent mixing layer

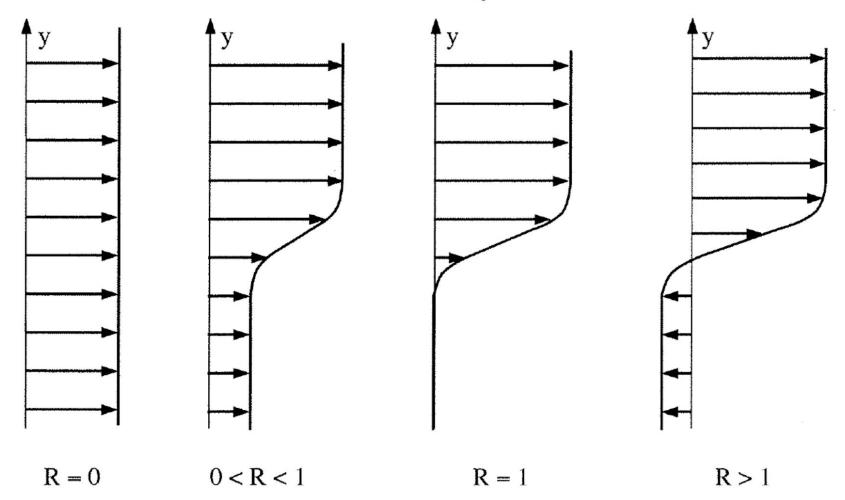
$$U(y;R) = 1 + R \tanh y$$

$$U_1(y) = \tanh y$$

Dispersion relation

$$\omega(k;R) = k + R\,\omega_1(k)$$

Effect of velocity ratio



Hyperbolic tangent mixing layer

Temporal approach

$$\omega_1(k) = i \,\omega_{1,i}(k)$$

$$\omega_i(k;R) = R \,\omega_{1,i}(k)$$

$$c_r = \omega_r/k = 1$$

Temporal approach: k is real; ω is complex

Hyperbolic tangent mixing layer

Spatial approach

$$k + R\,\omega_1(k) = \omega$$

$$R \ll 1$$

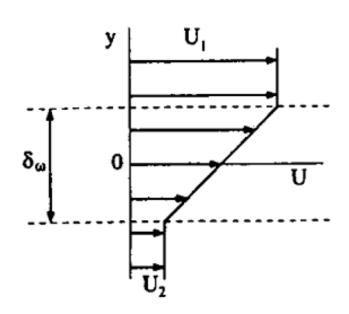
$$-k_i(\omega, R) \sim R \,\omega_{1,i}(\omega)$$

Gaster transformation

$$U(y) = \begin{cases} U_1, & y > \delta_{\omega}/2 \\ (U_1 + U_2)/2 + (U_1 - U_2)y/\delta_{\omega}, & |y| < \delta_{\omega}/2 \\ U_2, & y < -\delta_{\omega}/2 \end{cases}$$

$$\phi'' - k^2 \phi = 0$$

$$\begin{split} \phi_1(y) &= A_1 \, \mathrm{e}^{-ky}, \quad y > \delta_\omega/2 \,, \\ \phi_2(y) &= B_2 \, \mathrm{e}^{ky}, \quad y < -\delta_\omega/2 \,, \\ \phi_0(y) &= A_0 \, \mathrm{e}^{-ky} + B_0 \, \mathrm{e}^{ky}, \quad |y| < \delta_\omega/2 \end{split}$$



$$A_{1} e^{-k\delta_{\omega}/2} = A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2},$$

$$B_{2} e^{-k\delta_{\omega}/2} = A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2},$$

$$-k(U_{1} - c)A_{1} e^{-k\delta_{\omega}/2} = k(U_{1} - c)(-A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2})$$

$$-\frac{\Delta U}{\delta_{\omega}} (A_{0} e^{-k\delta_{\omega}/2} + B_{0} e^{k\delta_{\omega}/2}),$$

$$k(U_{2} - c)B_{2} e^{-k\delta_{\omega}/2} = k(U_{2} - c)(-A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2})$$

$$-\frac{\Delta U}{\delta_{\omega}} (A_{0} e^{k\delta_{\omega}/2} + B_{0} e^{-k\delta_{\omega}/2}).$$

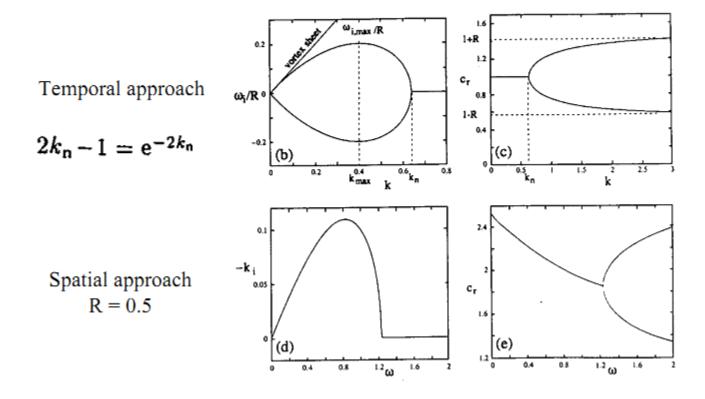
$$-\frac{\Delta U}{\delta_{\omega}} A_0 e^{-k\delta_{\omega}/2} + \left[2k(U_1 - c) - \frac{\Delta U}{\delta_{\omega}} \right] B_0 e^{k\delta_{\omega}/2} = 0$$
$$\left[2k(U_2 - c) + \frac{\Delta U}{\delta_{\omega}} \right] A_0 e^{k\delta_{\omega}/2} + \frac{\Delta U}{\delta_{\omega}} B_0 e^{-k\delta_{\omega}/2} = 0$$

$$4(k\delta_{\omega})^{2}(c-\bar{U})^{2} - \left[(k\delta_{\omega} - 1)^{2} - e^{-2k\delta_{\omega}}\right]\Delta U^{2} = 0$$

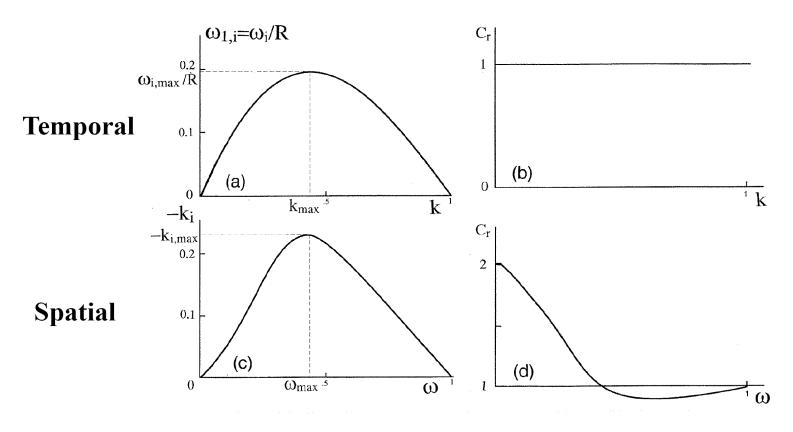
$$k\delta_{\omega} \mapsto 2k, c/\bar{U} \mapsto c$$

$$4k^{2}(c-1)^{2} - R^{2}\left[(2k-1)^{2} - e^{-4k}\right] = 0$$

$$c \equiv \frac{\omega}{k} = 1 \pm \frac{R}{2k} \left[(2k - 1)^2 - e^{-4k} \right]^{1/2}$$



Hyperbolic tangent mixing layer



Michalke (1964, 65)

Solving a spatial instability problem ex: Rayleigh equation

Back to temporal stability analysis! How to solve Rayleigh equation for real k and complex ω?

We fix k, we need to find all ω and ψ such that

$$\mathbf{k} \bigg(U \left(\frac{d^2}{dy^2} - k^2 \right) - U''(y) \bigg) \, \psi = \mathbf{\omega} \left(\frac{d^2}{dy^2} - k^2 \right) \psi$$

$$\psi(-L) = \psi(L) = 0$$

Formally,

$$\mathcal{A}\psi = c\,\mathcal{E}\psi$$

$$c=\omega/k$$

Discretize

$$\mathbf{A}\Psi = c\mathbf{E}\Psi$$

Generalized eigenvalue problem

How to solve Rayleigh equation for real k and complex ω?

Finite differences of order 1

$$\psi_1$$
 ψ_2 ψ_{N+1} ψ_{N+1} ψ_{N+1}

$$\Psi = \begin{pmatrix} \psi(y_1) \\ \psi(y_2) \\ \vdots \\ \psi(y_N) \\ \psi(y_{N+1}) \end{pmatrix} = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \\ \psi_{N+1} \end{pmatrix} \qquad \Psi'' = \begin{pmatrix} \psi''(y_1) \\ \psi''(y_2) \\ \vdots \\ \psi''(y_N) \\ \psi''(y_{N+1}) \end{pmatrix}$$

How to solve Rayleigh equation for real k and complex ω?

Finite differences

$$\begin{pmatrix} \psi_2'' \\ \psi_3'' \\ \vdots \\ \psi_{N-3}'' \\ \psi_{N-2}'' \\ \psi_{N-1}'' \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 & \dots & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & -2 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 & -2 & 1 \\ 0 & \dots & \dots & \dots & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_3 \\ \psi_4 \\ \vdots \\ \psi_{N-3} \\ \psi_{N-2} \\ \psi_{N-1} \end{pmatrix}$$

Sparse matrix but low order!

How to solve Rayleigh equation for complex k and real ω?

We fix ω , we need to find all k and ψ such that

$$\mathbf{k} \bigg(U \left(\frac{d^2}{dy^2} - k^2 \right) - U''(y) \bigg) \, \psi = \mathbf{\omega} \left(\frac{d^2}{dy^2} - k^2 \right) \psi$$

$$\psi(-L) = \psi(L) = 0$$

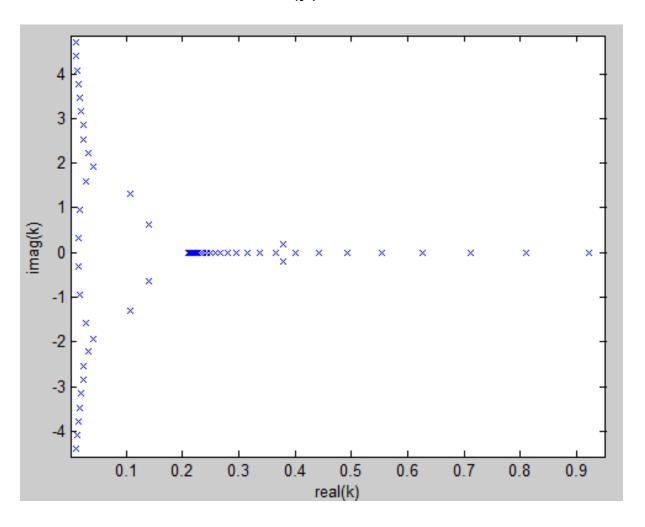
Formally,

$$(A_0(\omega,y)+kA_1(\omega,y)+k^2A_2(\omega,y)+k^3A_3(\omega,y))$$
 $\psi = 0$

Polynomial eigenvalue problem

Many more eigenvalues (for Rayleigh equation: 3 x more!)

U=1+0.9*tanh(y); ω =0.4; L=5



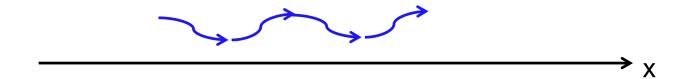
Which of these waves are unstable?

```
Im(k)<0?
Im(k)>0?
```

Recall: exp(i(kx-ωt))

The stability of a spatial wave can be only determined if one knows in which direction it propagates!

k+ waves propagate towards positive x

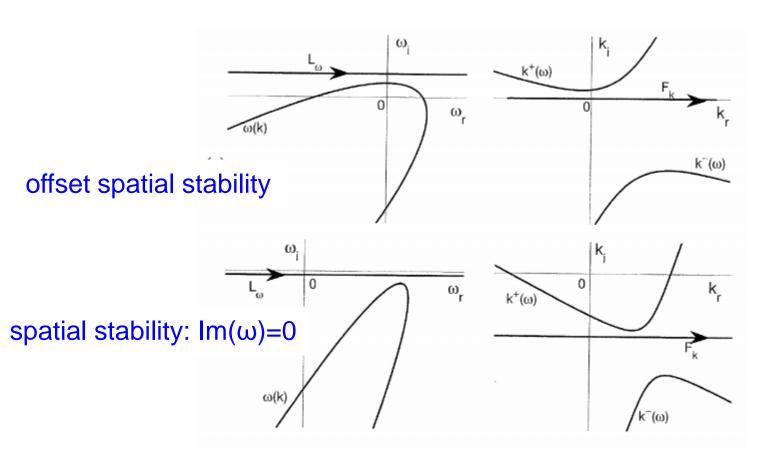


k waves propagate towards negative x

However, determining this direction of propagation is particularly difficult, except in the case of a temporally stable flow.

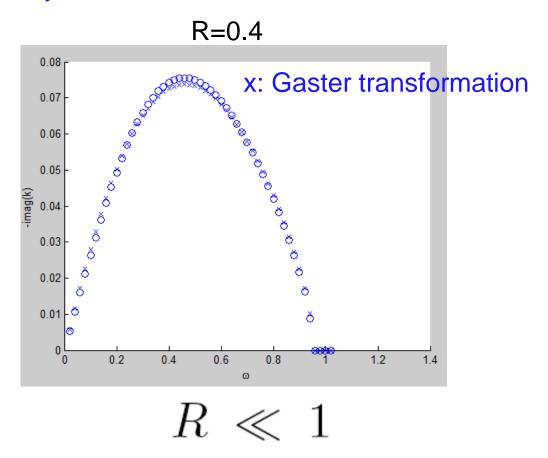
The addition of a positive imaginary offset to the frequency makes the temporal problem stable!

This separates the spatial waves into k+ and k- waves.



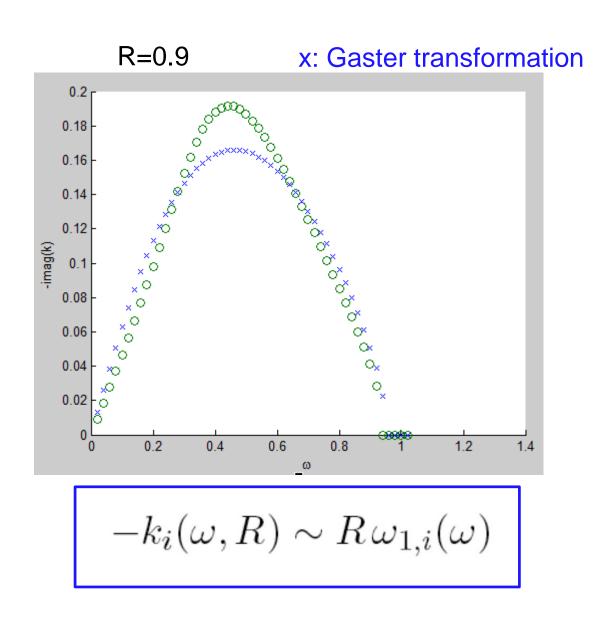
The branches are then followed by continuity

Validity of Gaster transformation?



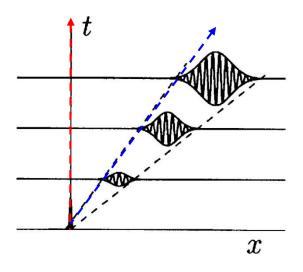
$$-k_i(\omega, R) \sim R \,\omega_{1,i}(\omega)$$

Validity of Gaster transformation?

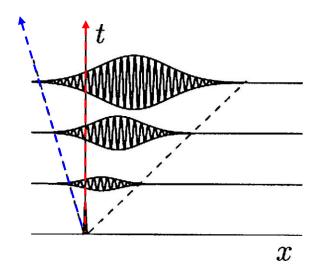


Spatio-temporal instability theory

Convective instability

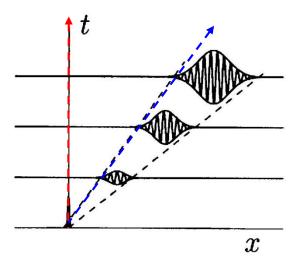


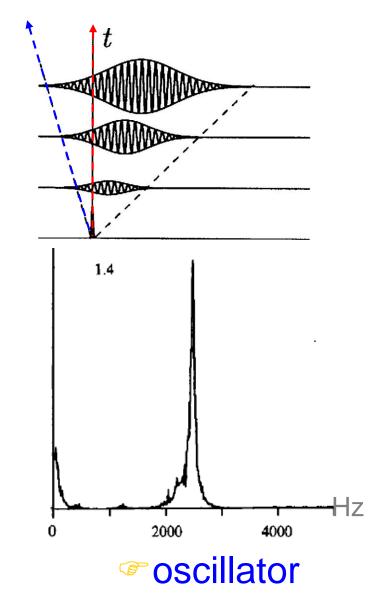
F Absolute instability

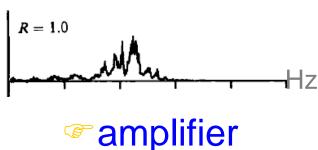


Convective instability

F Absolute instability



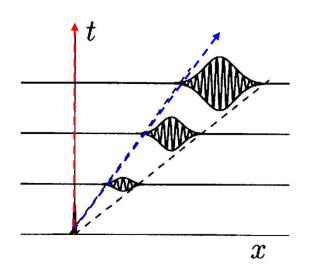


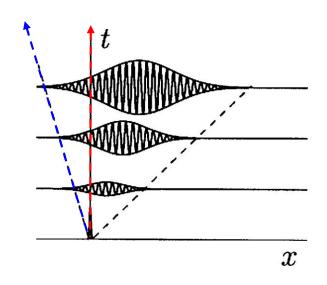


Mixing layer experiments by Strikowsky and Niccum (1991)

Spatio-temporal instability theory

Convective instability





We need to generalize the concept of group velocity since ω (and why not k) is complex

For neutral waves, the group velocity is $d\omega/dk$ Here this quantity is the derivative of a complex function with respect to a complex variable. Cauchy-Rieman conditions apply.

Spatio-temporal spectral analysis

Inverse Fourier Transform

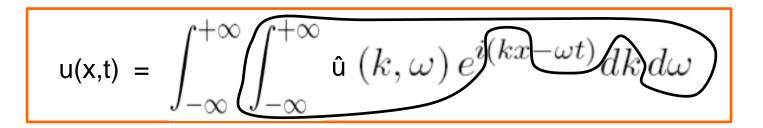
$$\mathbf{u}(\mathbf{x},\mathbf{t}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{\hat{u}} \left(k,\omega\right) e^{i(kx-\omega t)} dk \, d\omega$$

$$\hat{\mathbf{u}}(\mathbf{k},\omega) = (2\pi)^2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{u}(x,t) e^{-i(kx-\omega t)} dx dt$$

Direct Fourier Transform

Spatio-temporal spectral analysis

Inverse Fourier Transform



Use dispersion relation $\omega(k)$!

Dispersion relation

$$\omega^2 = \tanh(kH) \left(\frac{\gamma k^3}{\rho} + gk\right)$$

Capillary wavenumber: $k_c = \sqrt{
ho g/\gamma}$

Length scale: $\tilde{k}=k/k_c$

Time scale $ilde{\omega} = \omega/\sqrt{gk_c}$

One single non-dimensional parameter $H=Hk_{c}$

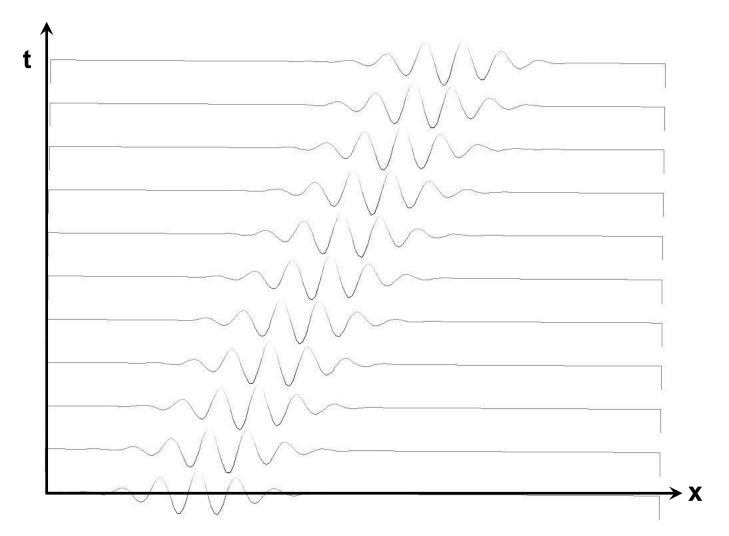
$$\tilde{\omega}^2 = \tanh(\tilde{k}\tilde{H}) \left(\tilde{k}^3 + \tilde{k} \right)$$

Dispersion relation

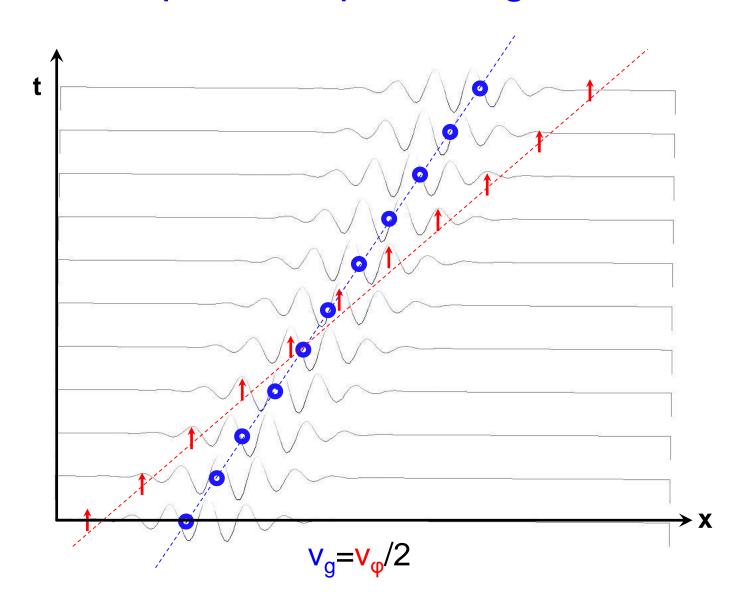
$$\tilde{\omega}^2 = \tanh(\tilde{k}\tilde{H}) \left(\tilde{k}^3 + \tilde{k}\right)$$

	gravity $\tilde{k} \ll 1$	capillary $\tilde{k}\gg 1$
shallow water		
$\tilde{k}\ll 1/\tilde{H}$	$\pm ilde{k} \ \sqrt{ ilde{H}}$	$\pm \tilde{k}^2 \sqrt{\tilde{H}}$
Deep water		
$\tilde{k}\gg 1/\tilde{H}$	$\pm\sqrt{ ilde{k}}$	$\pm ilde{k} \sqrt{ ilde{k}}$

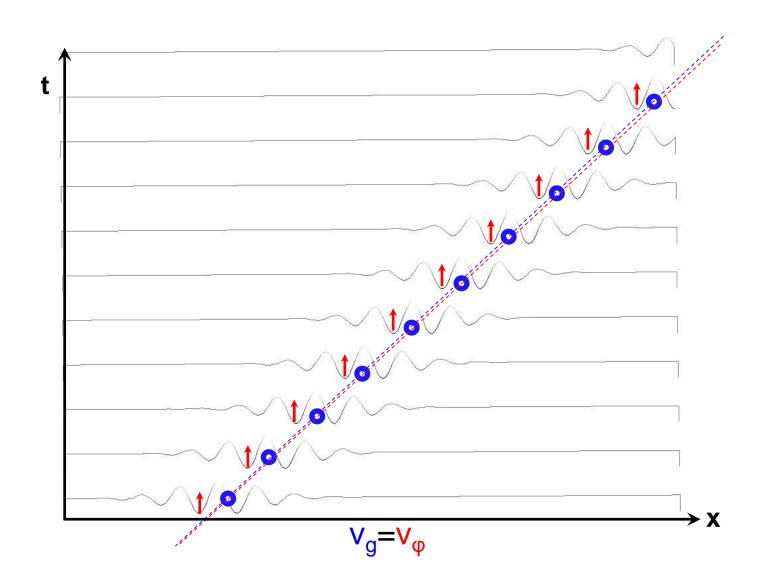
Difference between group velocity v and phase velocity c



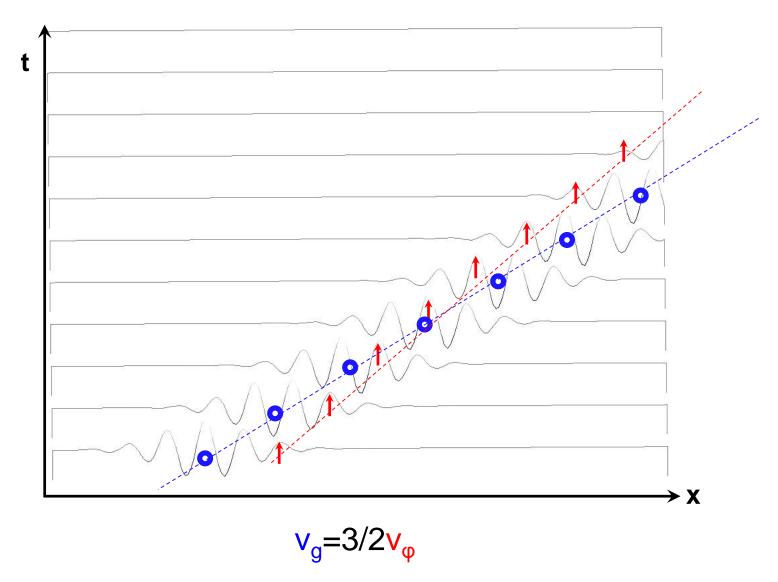
Spatio-temporel diagram



Spatio-temporal diagram



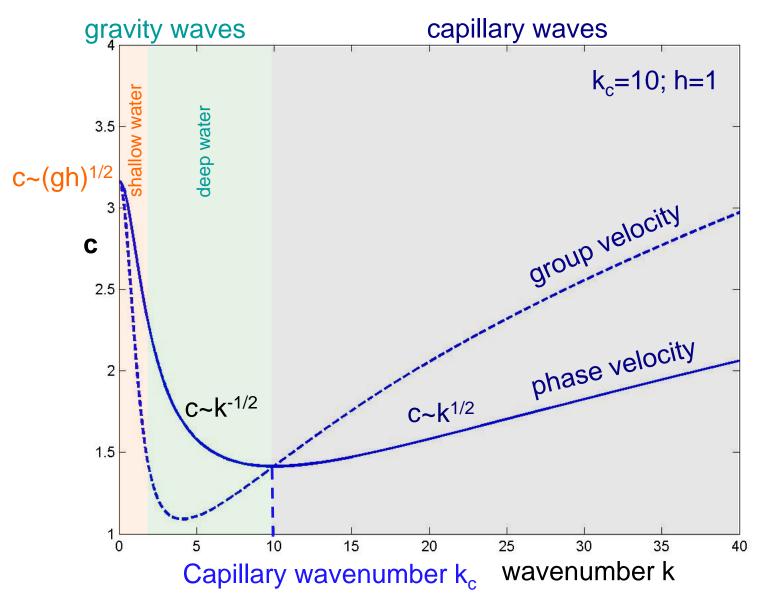
Spatio-temporal diagram



Dispersion relation

	gravity $\tilde{k} \ll 1$	capillary $ ilde{k}\gg 1$
shallow water	$\omega_{shallow/gravity} \sim \pm k \sqrt{gH}$	$\omega_{shallow/capillary} \sim \pm k^2 \sqrt{\gamma H/\rho}$
$\tilde{k} \ll 1/\tilde{H}$	$c_{shallow/gravity} \sim \pm \sqrt{gH}$	$c_{shallow/capillary} \sim \pm k \sqrt{\gamma H/\rho}$
	$v_{shallow/gravity} \sim \pm \sqrt{gH}$	$v_{shallow/capillary} \sim \pm 2k\sqrt{\gamma H/\rho}$
Deep water	$\omega_{deep/gravity} \sim \pm \sqrt{gk}$	$\omega_{deep/capillary} \sim \pm k^{3/2} \sqrt{\gamma/\rho}$
$\tilde{k} \gg 1/\tilde{H}$	$c_{deep/gravity} \sim \pm \sqrt{\frac{g}{k}}$	$c_{deep/capillary} \sim \pm k^{1/2} \sqrt{\gamma/\rho}$
	$v_{deep/gravity} \sim \pm \frac{1}{2} \sqrt{\frac{g}{k}}$	$v_{deep/capillary} \sim \pm 3/2k^{1/2}\sqrt{\gamma/\rho}$

Dispersion relation



Fourier transform:
$$u(x,t) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(kx - \omega(k)t)} \mathrm{d}k + c.c.$$

Carrier/enveloppe

Carrier/enveloppe:
$$u(x,t) = \frac{1}{2}A(x,t) e^{\mathrm{i}(k_0x - \omega_0t)} + c.c.$$

Fourier transform:
$$u(x,t) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(kx - \omega(k)t)} \mathrm{d}k + c.c.$$

Carrier/enveloppe:
$$u(x,t) = \frac{1}{2}A(x,t) e^{\mathrm{i}(k_0x - \omega_0 t)} + c.c.$$

Fourier transform:
$$u(x,t) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(kx - \omega(k)t)} \mathrm{d}k + c.c.$$

Carrier/enveloppe:
$$u(x,t) = \frac{1}{2}A(x,t) e^{\mathrm{i}(k_0x - \omega_0 t)} + c.c.$$

Enveloppe:

$$A(x,t) = \int_0^\infty \hat{u}(k) e^{i(k-k_0)x - i(\omega - \omega_0)t} dk.$$

Spectral analysis at time=0

Fourier transform:
$$u(x, \mathbf{0}) = \frac{1}{2} \int_0^{+\infty} \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(kx)} \mathrm{d}\mathbf{k} + \mathrm{c.c.}$$

 $\hat{u}(k)$ is given by Fourier transform at time t=0

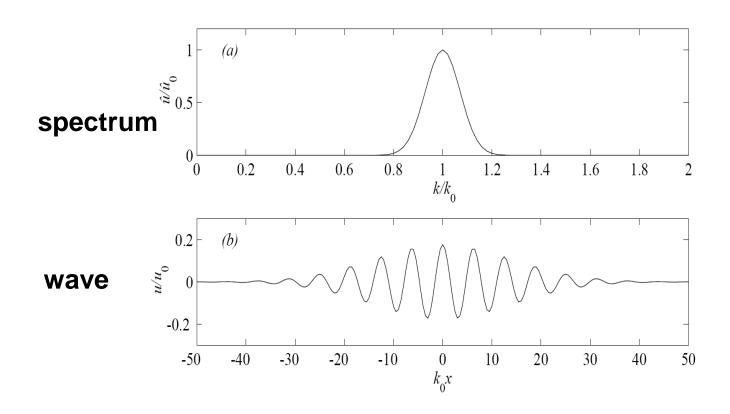
Enveloppe:

$$A(x, \mathbf{0}) = \int_0^\infty \hat{u}(k) e^{\mathbf{i}(k - k_0)x} d\mathbf{k} + \text{c.c.}$$

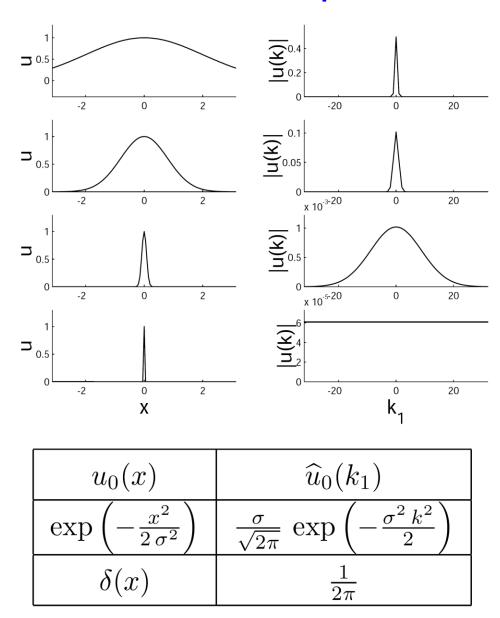
Gaussian spectrum:
$$\hat{u}(k) = u_0 e^{-\sigma^2 (k - k_0)^2}$$

Initial enveloppe:
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{x^2}{4\sigma^2}}$$

Gaussian spectrum



Gaussian wavepackets



Initial enveloppe :
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{x^2}{4\sigma^2}}$$

Gaussian spectrum:
$$\hat{u}(k) = u_0 e^{-\sigma^2 (k - k_0)^2}$$

Initial enveloppe :
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{x^2}{4\sigma^2}}$$

Gaussian spectrum:
$$\hat{u}(k) = u_0 e^{-\sigma^2 (k - k_0)^2}$$

Evolution of enveloppe :
$$A(x,t) = \int_0^\infty \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(k-k_0)x - \mathrm{i}(\omega - \omega_0)t} \mathrm{d}k.$$

Initial enveloppe :
$$A(x,0) = \frac{u_0\sqrt{\pi}}{2\sigma} \, \mathrm{e}^{-\frac{x^2}{4\sigma^2}}$$

Gaussian spectrum: $\hat{u}(k) = u_0 e^{-\sigma^2 (k - k_0)^2}$

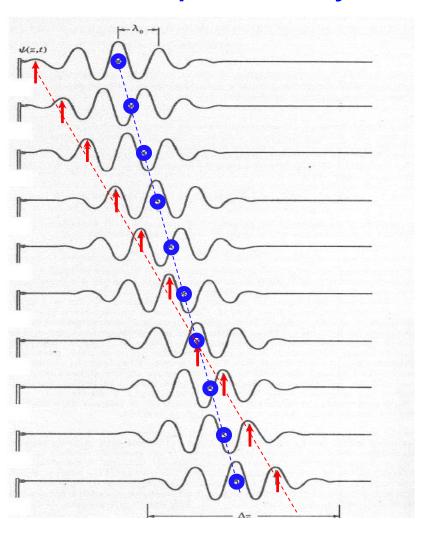
Evolution of enveloppe :
$$A(x,t) = \int_0^\infty \hat{u}(k) \, \mathrm{e}^{\mathrm{i}(k-k_0)x - \mathrm{i}(\omega - \omega_0)t} \mathrm{d}k.$$

Definition group velocity
$$\omega - \omega_0 = c_g(k-k_0), \qquad c_g = \frac{\partial \omega}{\partial k}(k_0)$$

Definition of group velocity
$$\omega - \omega_0 = c_g(k - k_0),$$
 $c_g = \frac{\partial \omega}{\partial k}(k_0)$

$$A(x,t) = \frac{u_0\sqrt{\pi}}{2\sigma} e^{-\frac{(x-c_g t)^2}{4\sigma^2}}$$

Group velocity



Wavepacket

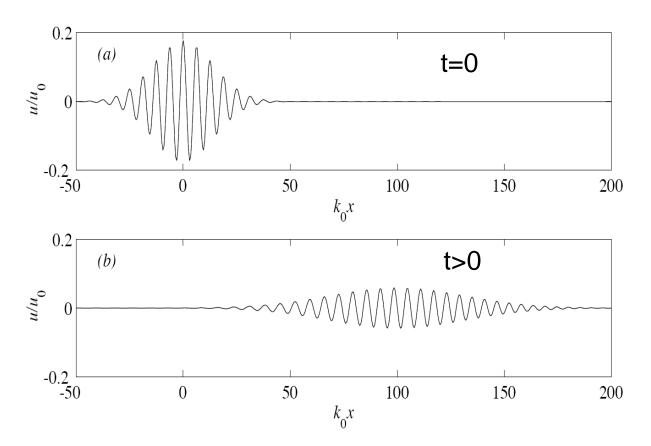
Higher order development

$$\omega - \omega_0 = c_g(k - k_0) + \frac{\omega_0''}{2}(k - k_0)^2$$

$$c_g = \frac{\partial \omega}{\partial k}(k_0), \qquad \omega_0'' = \frac{\partial^2 \omega}{\partial k^2}(k_0)$$

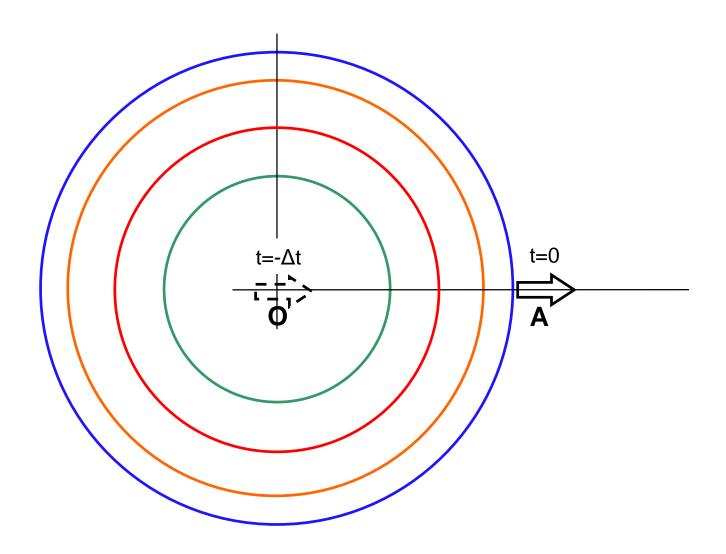
$$A(x,t) = \frac{u_0}{2} \sqrt{\frac{\pi}{\sigma^2 + \frac{1}{2}i\omega_0''t}} \exp\left(-\frac{(x - c_g t)^2}{4(\sigma^2 + \frac{1}{2}i\omega_0''t)}\right)$$

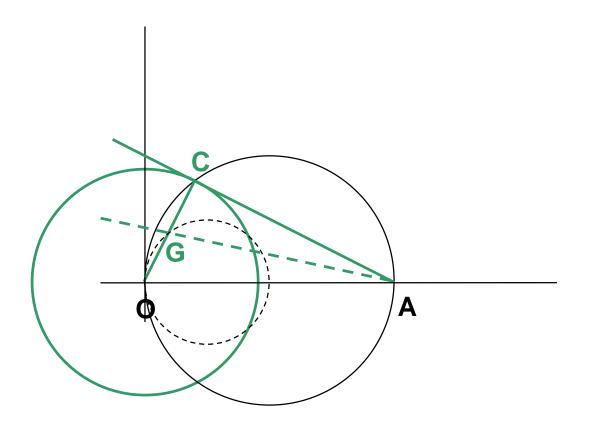
Wave packet dispersion

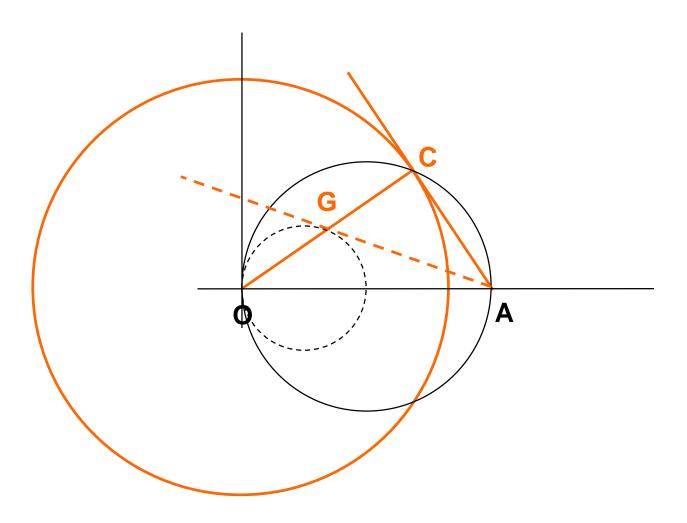


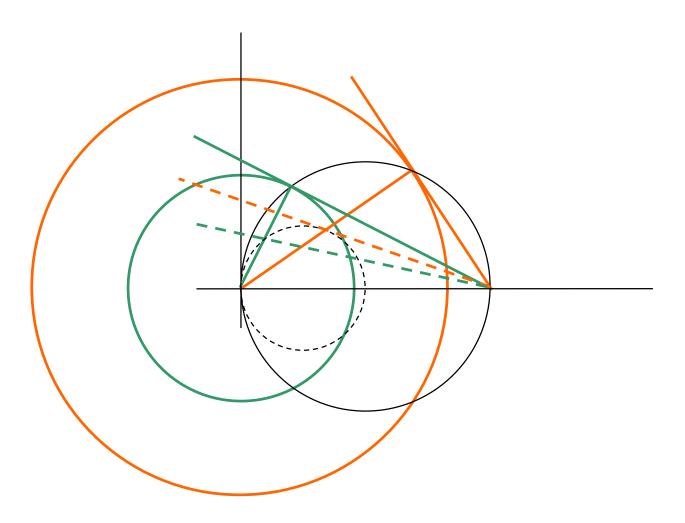
Onde correspondant à l'enveloppe pour $\sigma^{-1}k_0 = 0,1$ et $\omega_0'' = 4c_g/k_0$: (a), instant initial t = 0; (b), $c_g t = 100/k_0$.

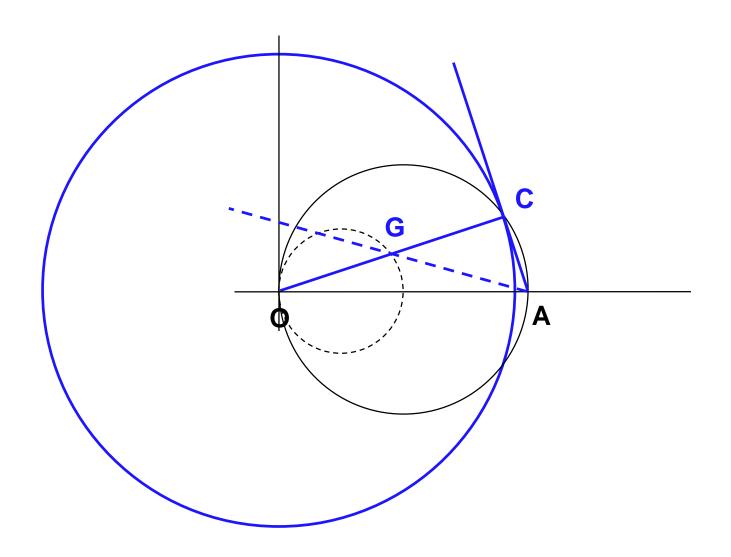
Kelvin's wake

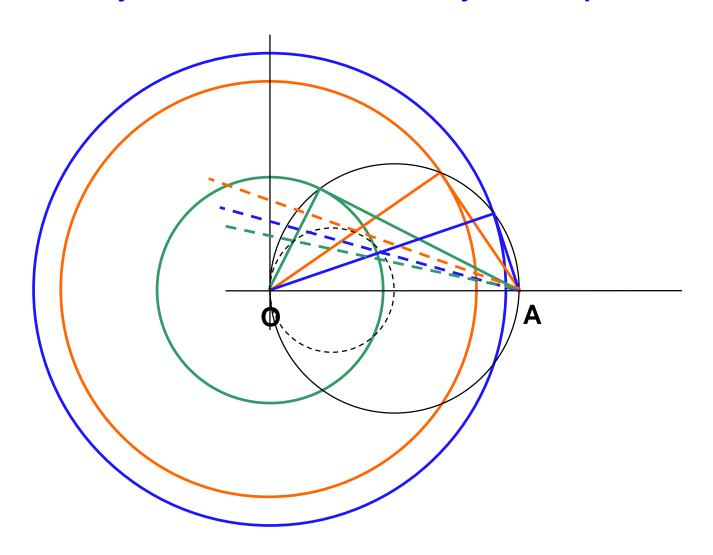


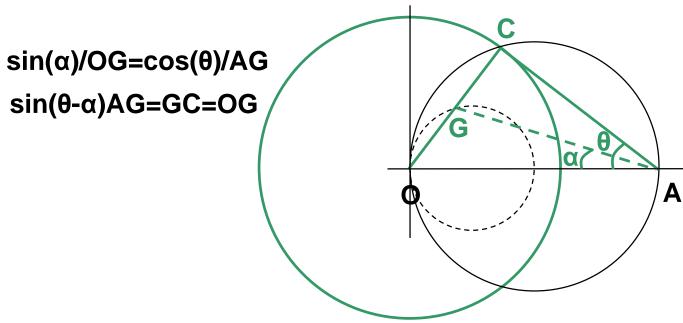




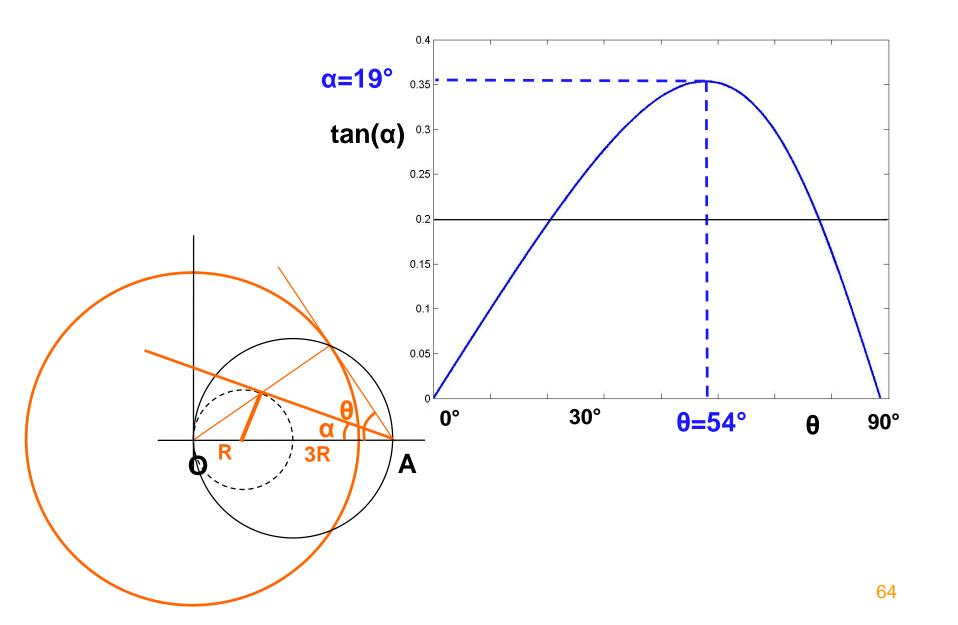


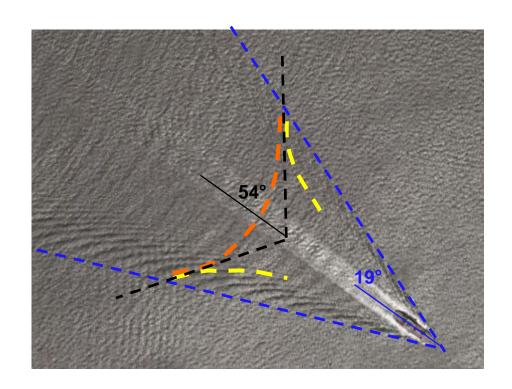


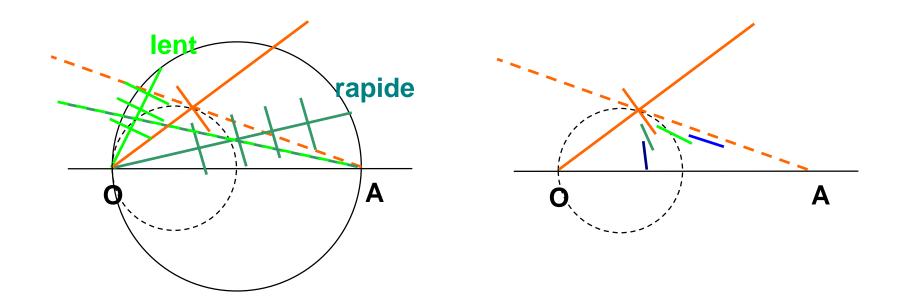




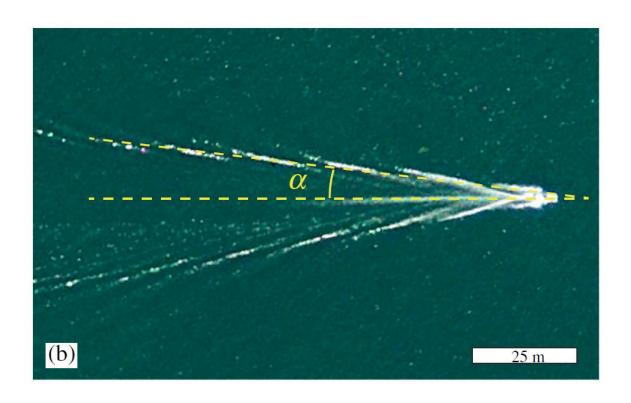
- \Rightarrow sin(α)=cos(θ)sin(θ - α)
- $\Rightarrow \sin(\alpha) = \cos(\theta)(\sin(\theta)\cos(\alpha) + \cos(\theta)\sin(\alpha))$
- \Rightarrow tan(α)=cos(θ)sin(θ)/(1+cos²(θ))





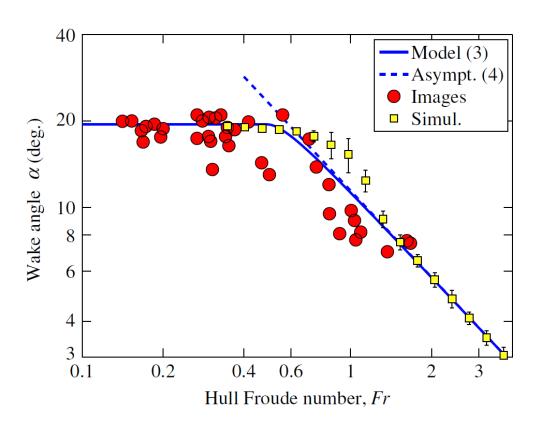


But observations show



Moisy and Rabaud 2013

But observations show

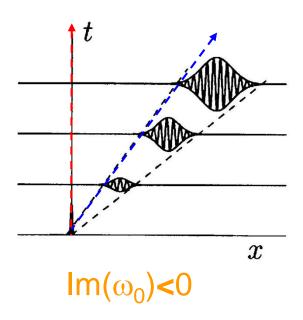


Moisy and Rabaud 2013

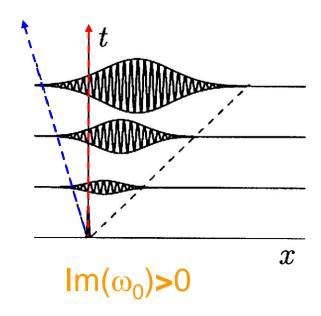
Generalization: Spatio-temporal instability theory

First find the zero group velocity wave: $d\omega/dk=0 \Rightarrow (k_0,\omega_0)$ and consider the sign of $Im(\omega_0)$

Convective instability

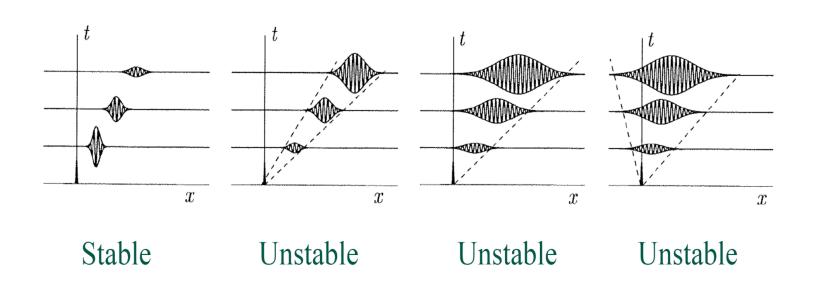


F Absolute instability



LINEAR IMPULSE RESPONSE: ABSOLUTE/CONVECTIVE INSTABILITY

Green's function or impulse response



Briggs (1964) Bers (1983) Huerre and Monkewitz (1985)

LINEAR IMPULSE RESPONSE: ABSOLUTE/CONVECTIVE INSTABILITY

Linearly stable flow

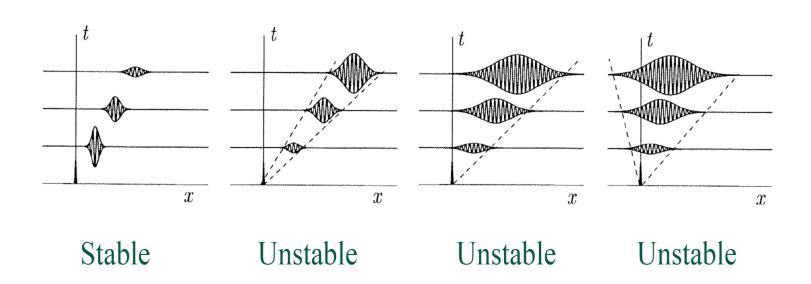
$$\lim_{t\to\infty}G(x,t)=0 \qquad \text{along all rays x/t = const.}$$

Linearly unstable flow

$$\lim_{t\to\infty}G(x,t)=\infty \qquad \text{along at least one ray x/t = const.}$$

LINEAR IMPULSE RESPONSE: ABSOLUTE/CONVECTIVE INSTABILITY

Green's function or impulse response



Briggs (1964) Bers (1983)

Huerre and Monkewitz (1985)

LINEAR IMPULSE RESPONSE: ABSOLUTE/CONVECTIVE INSTABILITY

Convectively unstable flow

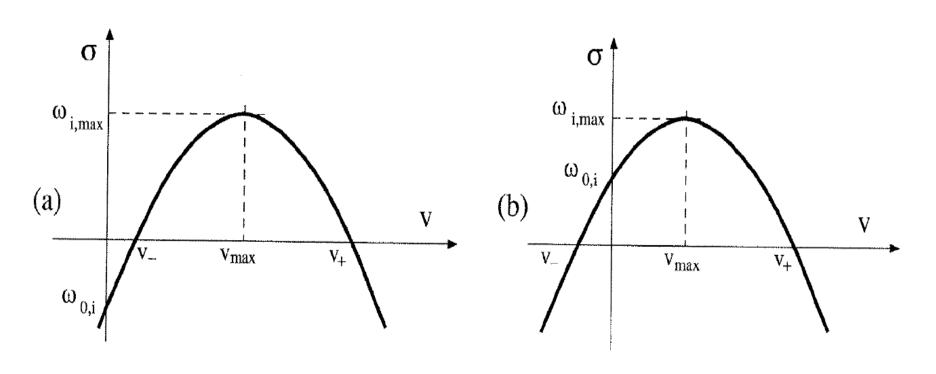
$$\lim_{t \to \infty} G(x, t) = 0 \qquad \text{along the ray x/t} = 0$$

Absolutely unstable flow

$$\lim_{t\to\infty}G(x,t)=\infty \qquad \qquad \text{along the ray x/t}=0$$

ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU CRITERION

Temporal growth rate « at velocity v »



Convective instability

Absolute instability

ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU CRITERION

Important notions

Absolute wavenumber k_0 and frequency $\omega_0 = \omega(k_0)$ observed along ray v = 0, i.e. for a stationary observer, defined by

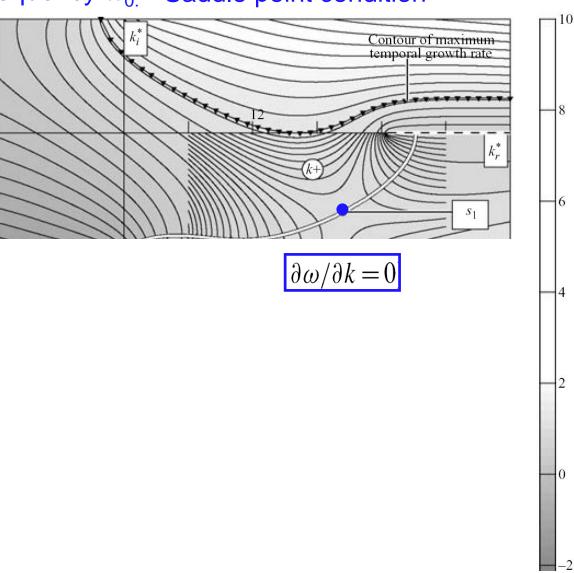
$$\frac{\partial \omega}{\partial k}(k_0) = 0$$

Absolute growth rate is

$$\sigma(0) = \omega_{0,i}$$

Isovaleurs de ω_i

Absolute frequency $\omega_{0:}$ Saddle point condition



ANALYSIS IN COMPLEX FOURIER SPACE: AU/CU CRITERION

Instability criteria

$$\omega_{i,max} < 0$$

linearly stable

$$\omega_{i,max} > 0$$

linearly unstable

$$\omega_{0,i} < 0$$

convectively unstable

$$\omega_{0,i} > 0$$

absolutely unstable

Hyperbolic tangent mixing layer

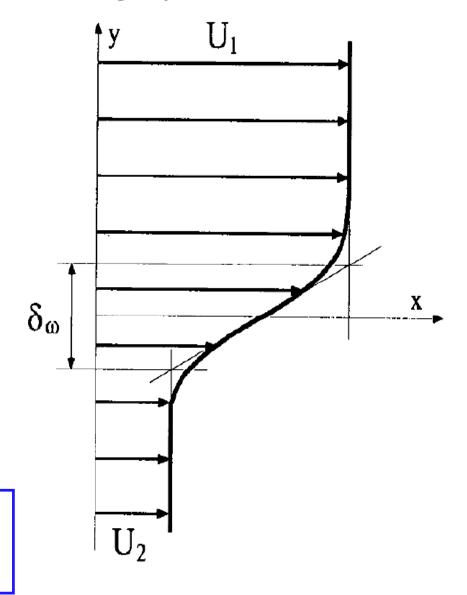
$$U(y) = \bar{U} + \frac{\Delta U}{2} \tanh\left(\frac{2y}{\delta_{\omega}}\right)$$

$$\delta_{\omega}(x) \equiv \frac{(U_1 - U_2)}{(dU/dy)_{ ext{max}}}$$

Velocity ratio

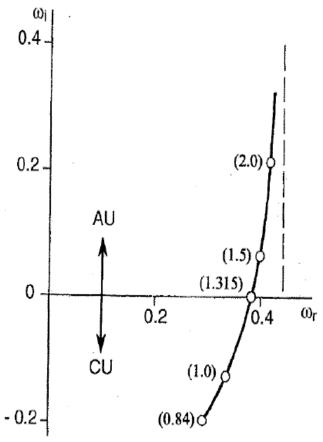
$$R \equiv \frac{U_1 - U_2}{U_1 + U_2} = \frac{\Delta U}{2\bar{U}}$$

$$U(y;R) = 1 + R \tanh y$$

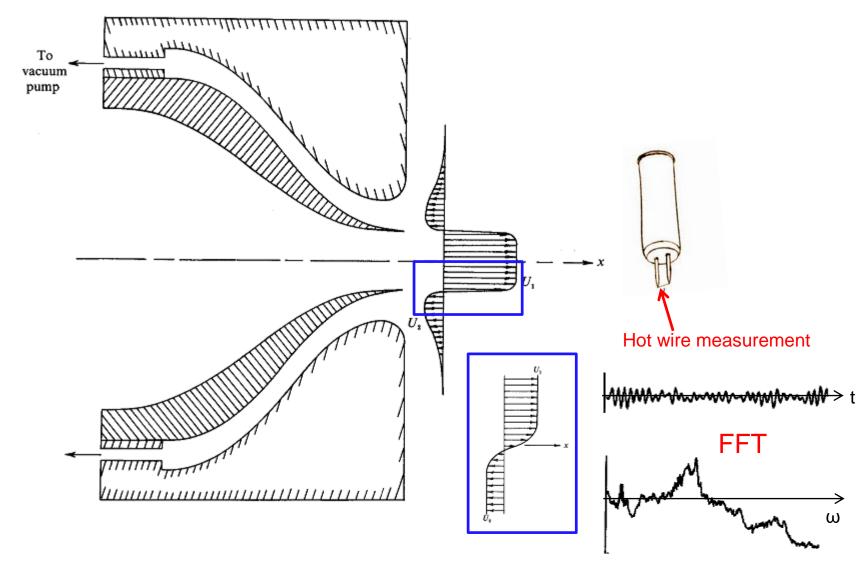


APPLICATION TO MIXING LAYERS

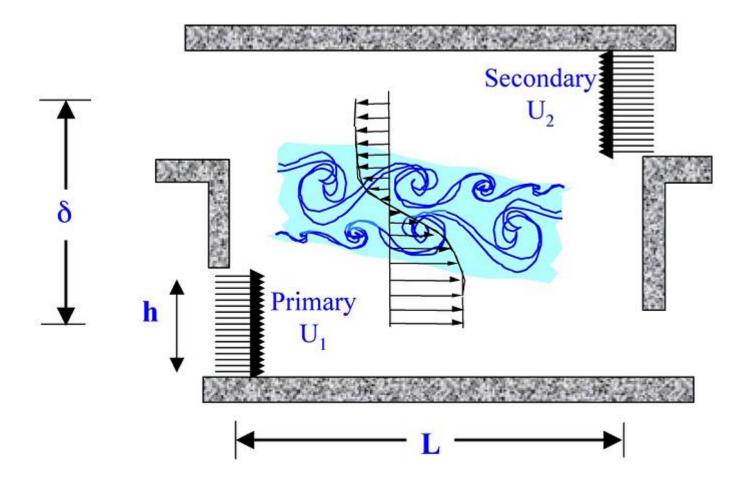
Locus of complex absolute frequency



H.&Monkewitz (1985)

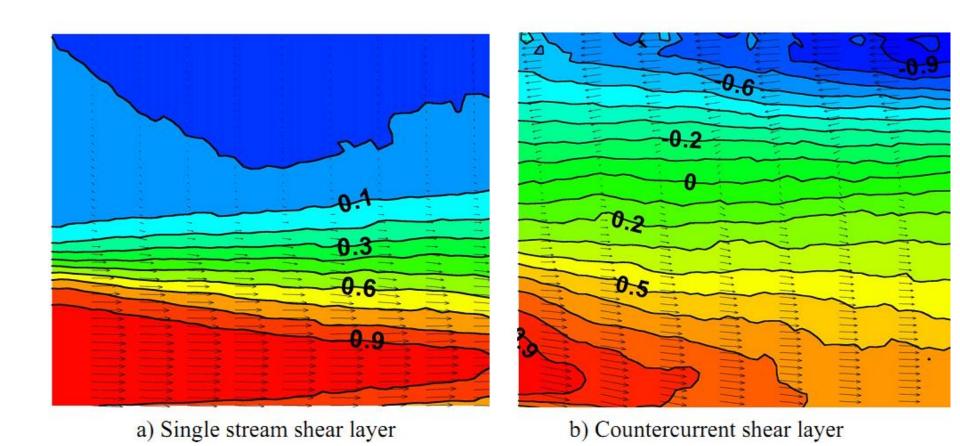


Influence of coutercurrent shear on turbulence level



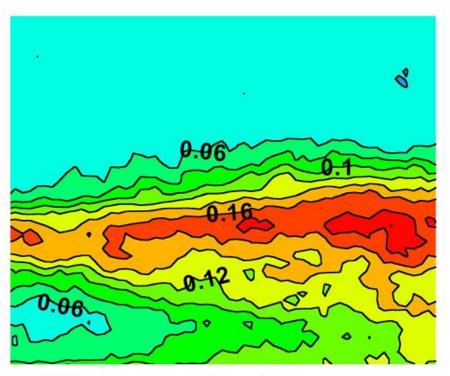
Influence of coutercurrent shear on turbulence level

Base flow

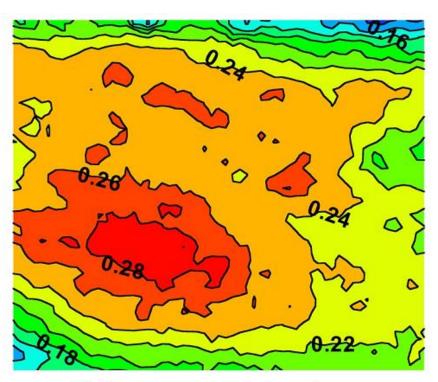


Influence of coutercurrent shear on turbulence level

Turbulence intensity

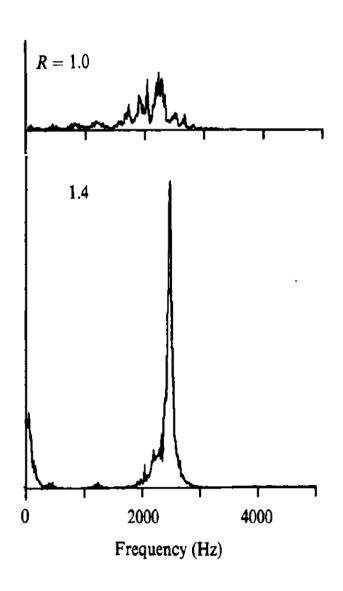


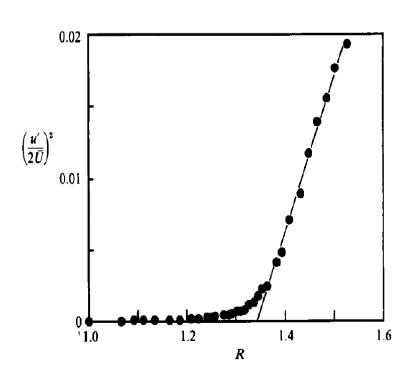
a) Single-stream shear layer



b) Countercurrent shear layer

THE MIXING LAYER: SHIFT TO OSCILLATOR!



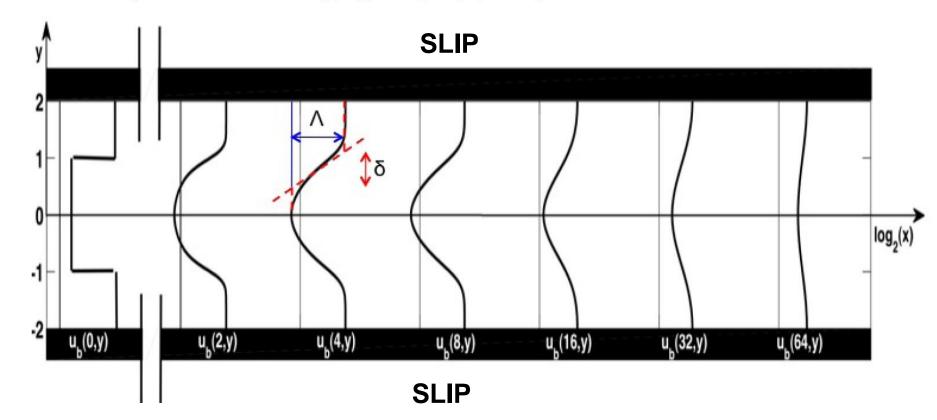


Strykowski & Niccum (1991)

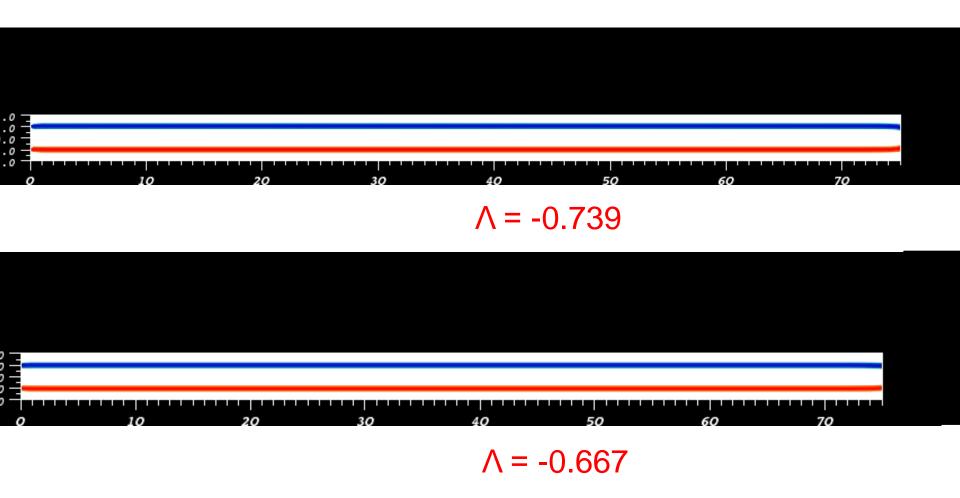
Direct Numerical Simulations with top-hat profile at inlet

Viscous diffusion → Non-parallel flow

- \bullet $\delta = (U_{max} U_{min})/(|dU/dy|_{max})$

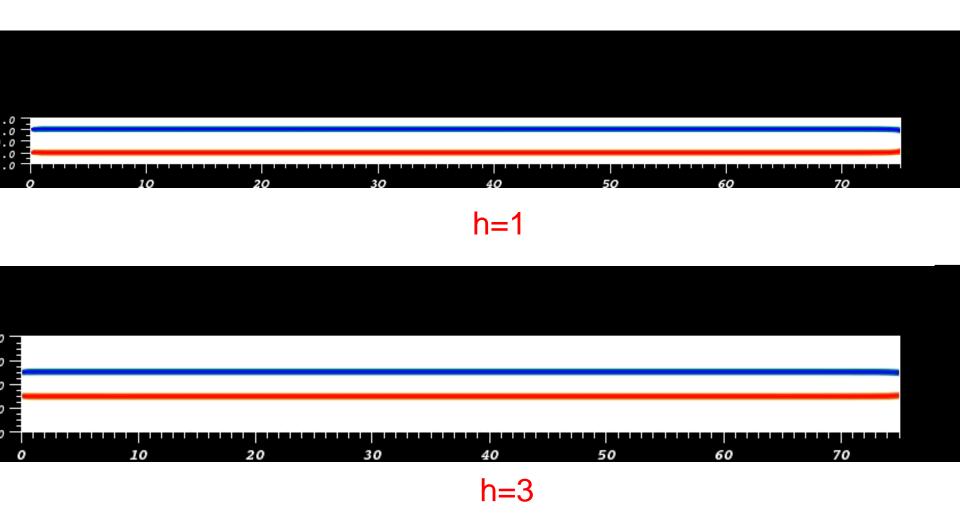


Vorticity field: Re = 100, h = 1



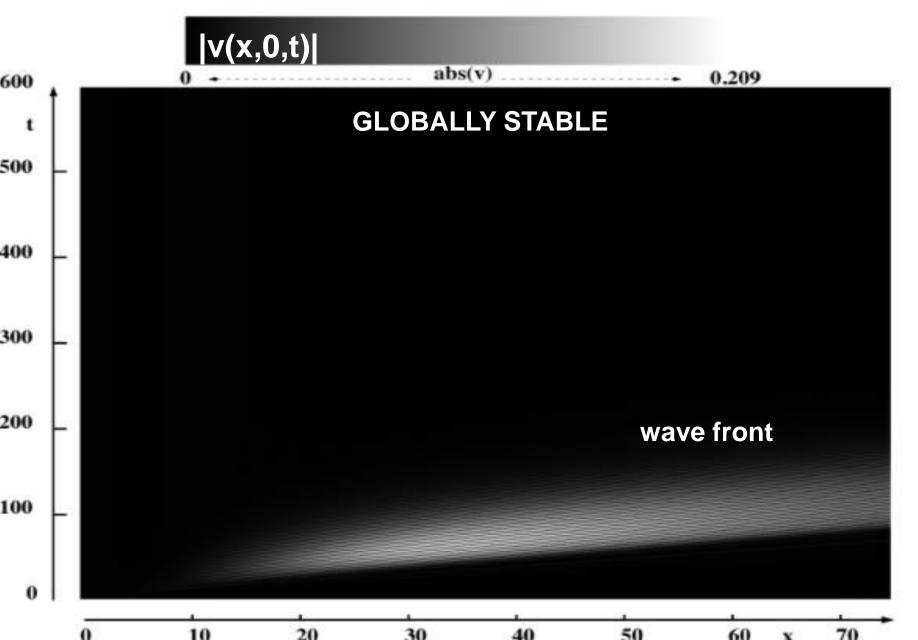
An increase in Λ (more coflow) advects the perturbation

Vorticity field: Re = 100, Λ = -0.739

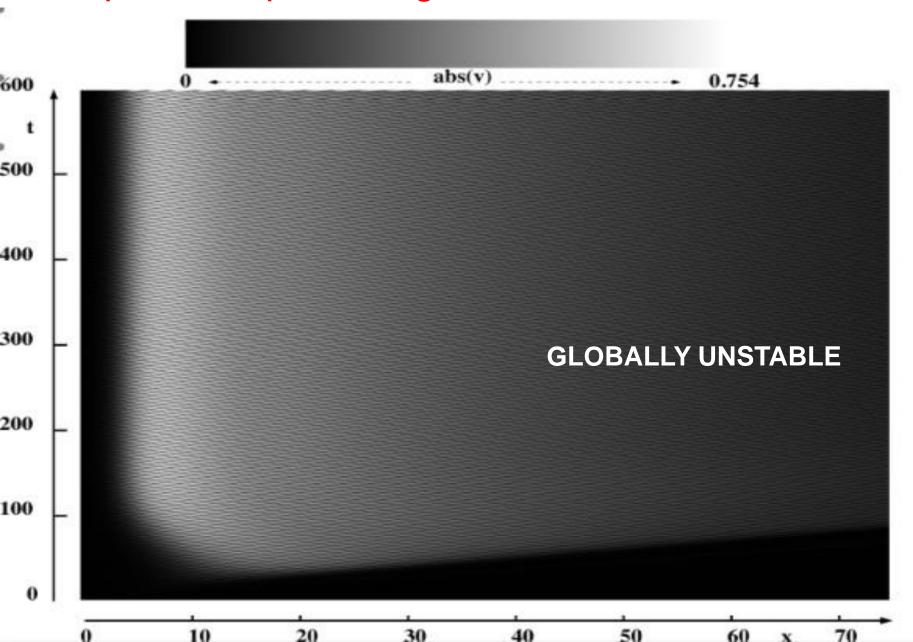


Destabilizing influence of confinement!

Spatio-temporal diagram, h=1 and Λ = -0.667



Spatio-temporal diagram, h=1 and Λ = -0.739



THE BLUFF BODY WAKE: A TYPICAL FLOW OSCILLATOR

Re = 140 Periodic flow

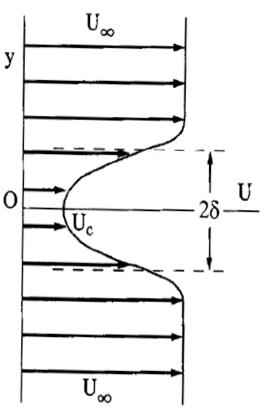
Taneda (1982)

ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL WAKES

Family of wake profiles

$$U(y) = U_{\infty} + (U_c - U_{\infty}) U_1 \left(\frac{y}{\delta}; N\right)$$

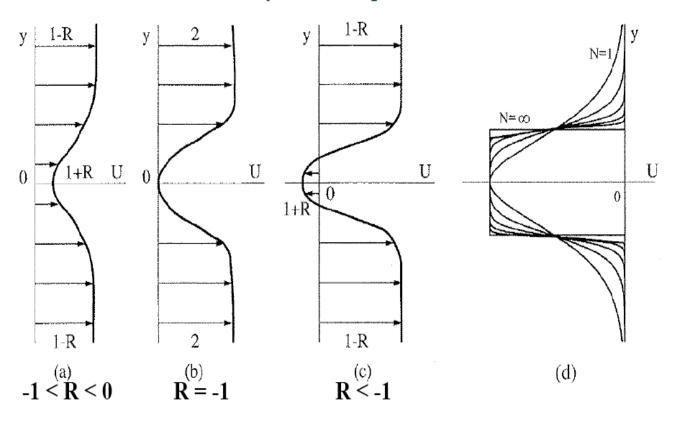
$$U_1(\xi; N) = [1 + \sinh^{2N} \{\xi \sinh^{-1}(1)\}]^{-1}$$



Monkewitz (1988)

ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL WAKES

Family of wake profiles



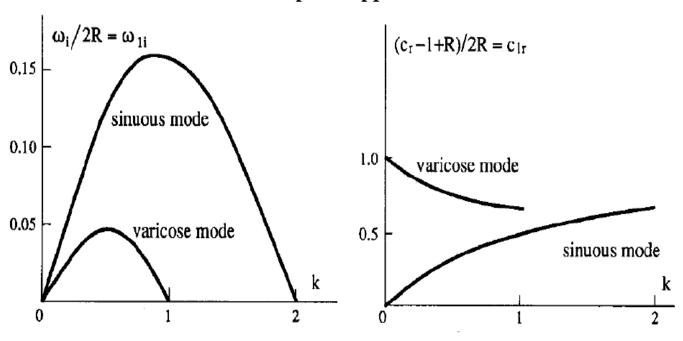
Effect of velocity ratio R

Effect of N

ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL 2D PARALLEL FLOW CONCEPTS

 $\operatorname{sech}^2 y$ wake

Temporal approach

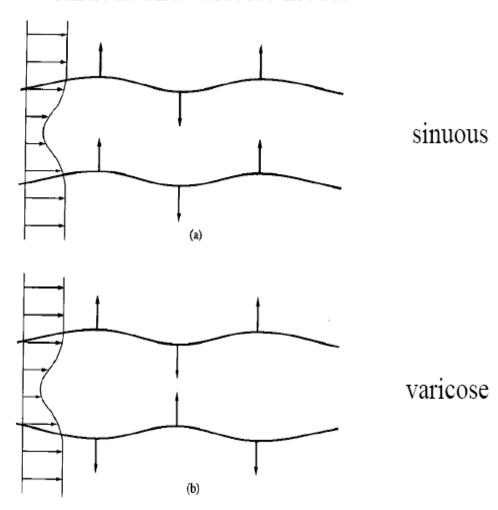


Betchov & Criminale (1966)

2D PARALLEL FLOW CONCEPTS

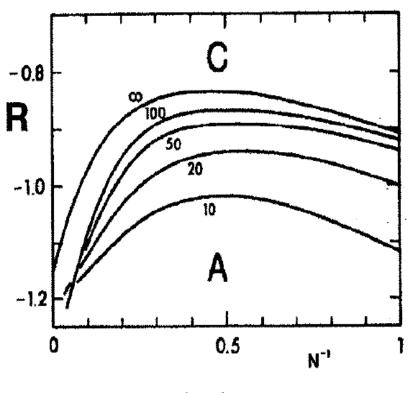
 $\operatorname{sech}^2 y$ wake

Sinuous and varicose modes



ABSOLUTE/CONVECTIVE INSTABILITY IN PARALLEL WAKES

Effect of steepness, velocity ratio and Reynolds number



Monkewitz (1988)

LOCAL INSTABILITY BEHAVIOR OF CYLINDER WAKE

Convective instability

Absolute instability