The "broken line’ profile.

We want to analize the stability of a simplified model of a mixing layer. As
illustrated in the figure 1, we consider a parallel flow U = U(y)e, consisting of
three regions: two semi-infinite regions with constant velocity U = U; and U = U,
connected by a region in which U varies linearly.
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Figure 1: Broken line profile.

For simplicity, we consider a single incompressible two-dimensional (2D) fluid of
constant density p and zero viscosity. It can be easily verified that U, together with
an arbitrary constant pressure Py (or an hydrostatic pressure profile if one wants to
account for gravity) is a stationary solution of the Euler equations. To analize the
stability of U we proceed, as usual, by considering the governing equations for the
perturbed velocity U+ eu(x, y,t) and associated pressure Py+eP(x,y,t). Dropping
terms proportional to €2, one obtains that the 2D Euler equations linearised around



the base flow U = U(y)e, are
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where u and v are respectively the velocities in the x and y directions, p = P/p
is the pressure divided by the (constant) density and the explicit dependence on
x,y and t is omitted. We look for solutions such that u, v go to zero as |y| goes to
infinity.

The three equations (1) governing u, v and p can be reduced to a single vorticity
equation, which for the present base flow U(y) (of figure 1) becomes
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Question 1. We look for plane waves solutions of the form
U@, y,t) = @y)e’ ™, (4)

where £ > 0 and one should keep in mind that the solution will be given by the
real part. Replace this expression in 2 to obtain an ordinary differential equation
for ¢. Express the boundary conditions for © and v when y — +oo in terms of ¢.
We can assume in the following that U # w/k, so that the equation for ¢ becomes
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Question 2. Similar to the example shown in classes, equation 5 can now be solved
in each of the three distinct regions in which U(y) is defined (see fig. 1). Write the
corresponding solutions. For y < —§,/2 and for y > 9,/2, take into account the
boundary conditions at |y| — oo.



Question 3. In the previous question, you should have ended up with four complex
constants that should be determined through boundary conditions at y = +4,,/2,
where the derivative of U(y) is discontinuous. Two boundary conditions should be
imposed at each interface. One is given by the kinematic condition at the interface
or, equivalently, by the continuity of the vertical displacement of fluid particles.
Show that for a discontinuity at y = yo, this condition leads to
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The other boundary condition can be obtained from equation (la) after requiring
the continuity of the pressure at the interface. Show that this requirement imposes
the condition
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Question 4. Write the conditions at the two interfaces y = £4,,/2 that (6) and
(7) impose on the constants found on question 2. You should have four equations
and four constants. Reduce the system to two equations and two undetermined
constants. (Hint: The equations imposed by condition (6) allow to easily eliminate
the constants of the |y| > d,mega/2 solutions). Now you must have a system of
equations that can be written in the form
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where M is 2x2 matrix and a is a vector with the undetermined constants. Equation
(8) admits non trivial solutions for a only if M has zero determinant. Compute the
dispersion relation, i.e. show that the condition such that det(M) = 0 is
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where U = (Uy + Usy) /2 is the average velocity and AU = U; — U, is the velocity
difference.

Question 4. Find w as a function of k. Is it unstable? Plot w(k). Is there a
maximum of growth rate for some k7 Is there a minimum wavelength below which
the perturbations are no longer amplified?



