#### Stability of a plane jet 1

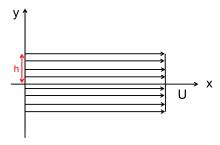
One considers a two-dimensional jet in a cartesian coordinate system (0xy)(U points in the x direction, V points in the y direction). In absence of perturbations, its width is constant and equals 2h. The flow field is given by

$$U(x,y) = 0 \quad \text{when} \quad |y| > h \tag{1}$$

$$U(x,y) = U \quad \text{when} \quad |y| < h \tag{2}$$

and

$$V(x,y) = 0 (3)$$



The pressure is assumed to be constant and uniform, equal to  $P_{\infty}$ . Further assumptions are

- The fluid is inviscid and incompressible of density  $\rho$ ,
- The flow is two-dimensional,
- The flow is assumed to be irrotational, except on the interface.
- 1. What is the potential  $\Phi(x,y)$  of the base flow?
- 2. One considers a perturbed flow. Explain why it is necessary to consider three different regions where all physical quantities are continuous, labeled from positive y towards negative y 1, 0 and 2.

$$\phi_1 = \Phi_1 + \epsilon \phi_1' \qquad (4)$$

$$\phi_0 = \Phi_0 + \epsilon \phi_0' \qquad (5)$$

$$\phi_0 = \Phi_0 + \epsilon \phi_0' \tag{5}$$

$$\phi_2 = \Phi_2 + \epsilon \phi_2' \tag{6}$$

$$p_1 = P_{\infty} + \epsilon p_1' \tag{7}$$

$$p_0 = P_{\infty} + \epsilon p_0' \tag{8}$$

$$p_2 = P_{\infty} + \epsilon p_2' \tag{9}$$

$$\eta_1 = h + \epsilon \eta_1' \tag{10}$$

$$\eta_2 = -h + \epsilon \eta_2' \tag{11}$$

where  $\epsilon \ll 1$ .

Write the equation satisfied by the velocity potential perturbation in each domain.

#### 3. Kinematic conditions

Write the impermeability conditions on the interfaces  $\eta_1$  et  $\eta_2$  at order  $\epsilon$  and obtain two relations between certain derivatives of  $\phi'_1(h)$ ,  $\phi'_0(h)$  and  $\eta'_1$ . Write two similar relations between the derivatives of  $\phi'_2(-h)$ ,  $\phi'_0(-h)$  and  $\eta'_2$ . One of the four relations is for instance

$$\frac{\partial \eta_1'}{\partial t} = \frac{\partial \phi_1'}{\partial y}(h) \tag{12}$$

4. Do the above conditions ensure continuity of tangential velocities at the interfaces?

## 5. Dynamic conditions

Write the dynamic interface conditions in h and -h, and express them using the velocity potentials. Show for instance that

$$\frac{\partial \phi_0'}{\partial t}(h) + U \frac{\partial \phi_0'}{\partial x}(h) = \frac{\partial \phi_1'}{\partial t}(h). \tag{13}$$

What famous fluid mechanics theorem do you have used?

# 6. Normal mode decomposition

We consider normal mode perturbations of real wavenumber k and complex frequency  $\omega$ 

$$\eta_1'(x,t) = E_1 \exp(i(kx - \omega t)) \tag{14}$$

$$\phi_1'(x, y, t) = \hat{\phi_1}(y) \exp(i(kx - \omega t)) \tag{15}$$

and similar relations for all useful quantities.

Determine the solution for the perturbation potential in each subdomain. In subdomain 0, a useful advice is to consider the sum of an even and odd functions.

## 7. Even perturbations

In this question, we only consider even perturbations

$$\hat{\phi_0}(-y) = \hat{\phi_0}(y) \tag{16}$$

and

$$\hat{\phi}_1(y) = \hat{\phi}_2(-y), \quad \text{for} \quad y > 0.$$
 (17)

Determine the dispersion relation and plot the real and imaginary parts of  $\omega$  as a function of k.

What is the most unstable wavenumber? Is there a cut-off wavenumber? Why?

# 8. Odd perturbations

In this question, we only consider odd perturbations

$$\hat{\phi}_0(-y) = -\hat{\phi}_0(y) \tag{18}$$

and

$$\hat{\phi}_1(y) = -\hat{\phi}_2(-y), \quad \text{pour} \quad y > 0.$$
 (19)

Determine the dispersion relation and plot the real and imaginary parts of  $\omega$  as a function of k.

What is the most unstable wavenumber? Is there a cut-off wavenumber? Why?

- 9. What is, according to this analysis, the most unstable perturbation, even or odd? The even perturbations in  $\phi$  correspond to a so-called varicose mode such that the transverse motion of the two shear layers is in phase opposition, v(x,y) = -v(x,-y). In contrast, the odd perturbations in  $\phi$  correspond to a so called sinuous mode such that the transverse motion of the two shear layers in in phase, v(x,y) = v(x,-y).
- 10. What is the physical mechanism underlying this instability? What name is often given to it?

- 11. In this question, fluid 0 is assumed to be immiscible with the surrounding fluid in domains 1 and 2, though it has the same density. We denote by  $\gamma$  the surface tension. Without determining the dispersion relation, do you expect surface tension to have a stabilizing influence or a destabilizing one?
- 12. Thanks to the matlab codes provided, explore the spatial instability properties of the sinuous and varicose modes. Do they have equal spatial growth-rates? In light of the Gaster approximation, can you interpret (no rigorous proof, just a plausible explanation) the cross-over between the most spatially amplified mode as the forcing frequency increases?