
ME466- Instability
22nd of January 2016

11h30-13h15

The objective of this exercise is to analyze the Bénard-Marangoni instability.

Figure 1 – Fluid layer heaten from below

We consider a layer of depth d of liquid of density ρ, kinematic viscosity ν, dynamic
viscosity µ = ρν in a gravitational field g = −gez. We follow Boussinesq hypothesis and
assume that ρ, µ (and therefore ν) are temperature indepedent in all internal stresses
and accelerations. While the density is assumed to vary linearly with temperature ρ =
ρ(b)−α(T−T (b)) at first, surface tension and interface deformations are initially neglected.
They are then progressively introduced. The base temperature profile (the base flow) is
given by

T = T (b) +
T (a) − T (b)

d
z, (1)

where z = 0 is set at the bottom plate. The heat diffusivity of the fluid is designated by
κ.

Part I : Instability in presence of a free surface

– 1. [1pts]

What is the name of the instability of a layer of fluid heated from below and cooled
from above ?

– [2. 1pts]

What is the physical mechanism that drives the instability ?

– [3. 1pts]
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Using the following nondimensionalization,

length d (2)

time d2

κ (3)

pressure ρκ2

d2
(4)

temperature κν
αgd3

(5)

what is the natural velocity scale ?

– [4. 1pts]

After some manipulations, we have shown in class that linearized equations around
the base flow can be formulated for two unknowns only (the vertical velocity per-
turbation u′z and the temperature fluctuation T ′) (you are NOT supposed to de-
monstrate them)

∂∆u′z
∂t

= Pr∆2u′z + Pr∆‖T
′, (6)

∂T ′

∂t
= Rau′z + ∆T ′, (7)

where ∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
and ∆‖ = ∂2

∂x2
+ ∂2

∂y2
and where Ra = αgd3(T (b)−T (a))

κν and
Pr = ν

κ .
A normal mode decomposition exploiting the invariance of the base flow with x,
y and t exp(i(kxx + kyy − ωt) is then introduced with kx and ky the horizontal
wave-numbers and ω the frequency. Noting k2 = k2x + k2y, D = d

dz and using the hat
(̂ ) to designate z-dependent variables, this yields

−iω(D2 − k2)ûz = Pr(D4 − 2k2D2 + k4)ûz − Prk2T̂ , (8)

−iωT̂ = Raûz + (D2 − k2)T̂ , (9)

For a perturbation with kx = 4π/h, ky = 0 and ω = 1, what are the corresponding
wavelengths in x and y and temporal period ?

– 5. [1pts]

When considering a free surface at the top boundary (in contrast to the two situa-
tions analyzed in class), both the temperature boundary condition and the dyna-
mic/kinematic boundary condition have to be changed at the upper interface. Let
us first focus on the dynamic/kinematic boundary condition.
In class, we have considered two pairs of boundary conditions on the upper and lo-
wer surfaces, free-stress on both sides and no-slip on both sides. Let us now consider
the situation of mixed boundary conditions. We impose no slip at the bottom wall
and free-stress at the upper one. Do you expect the instability threshold to differ if
no-slip is enforced at the upper boundary and free-stress at the bottom one ? Why ?

– 6. [1pts]

The code used in class has been reported here. It computes the growth-rate ωi as a
function of the Rayleigh number and the perturbation wavenumber k.
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1. Pr=1; % Prandtl number

2. Ra=669; % Rayleigh number

%% Finite-difference operators:

%% n=1 is z=0+dz and n=N is z=1-dz

3. N=80; %number interior points

4. dz=1/(N+1); % grid size

5. Z=zeros(N); % zero matrix

6. I=eye(N); % identity matrix

% Second derivative operator

7. D2=-2*eye(N);

8. D2=full(spdiags(ones(N),1,D2));

9. D2=full(spdiags(ones(N),-1,D2));

10. D2=D2/dz^2;

% Fourth derivative operator

11. D4=6*eye(N);

12. D4=full(spdiags(-4*ones(N),1,D4));

13. D4=full(spdiags(-4*ones(N),-1,D4));

14. D4=full(spdiags(ones(N),2,D4));

15. D4=full(spdiags(ones(N),-2,D4));

%% Boundary conditions

%%rigid

16. D4(1,1)=7;

17. D4(N,N)=7;

%%stress free

%18. D4(1,1)=5;

%19. D4(N,N)=5;

20. D4=D4/dz^4;

%% Eigenvalue problem: s M phi = L phi

% [ D^2-k^2 I ; Z ] [uz’] [Pr(D^2-k^2 I)^2 ; -Pr k^2 I ] [uz’]

% s | | | | = | | | |

% [ Z ; I ] [th’] [ Ra I ; D^2-k^2 I ] [th’]

21. kk=[0:0.01:10]; % all k-values

% iterate overa ll k-values
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22. for ik=1:length(kk)

23. k=kk(ik);

24. M=[[D2-k^2*I Z];[Z I ]]; % define L operator

25. L=[[Pr*(D4-2*k^2*D2+k^4*I) -Pr*k^2*I];[Ra*I D2-k^2*I]]; % define M operator

26. eiv=eig(L,M); % solve the eigenvalue problem

27. tx(ik)=max(real(eiv)); % store the largest real part of the computed eigenvalue spectrum

28. end;

29. figure;

30. hold all;

31. plot(kk,tx);

32. grid on;

33. xlabel(’k’);

34. ylabel(’Im(\omega)’);

35. %title([’Ra = ’ num2str(Ra) ’ , Pr = ’ num2str(Pr) ]);

This code computes the growth-rate ωi as a function of the Rayleigh number and
the perturbation wavenumber k.
Lines 16 and 17 ensure the boundary conditions. Indeed, since the interior points
range from z1 = 0 + dz to zN = 1− dz, the endpoints on the bottom z0 = 0 and at
the top zN+1 = 1 have both the velocity ûz and the temperature T equal to zero,
i.e. u0 = 0, uN = 0, T0 = 0 and TN = 0. To impose a rigid boundary condition at
the bottom for instance, one uses the centered second-order finite difference formula
with ghost point z−1 = −dz

dûz
dz

∣∣∣∣
z=z0

=
u1 − u−1

2dz
, (10)

which gives
u−1 = u1. (11)

Therefore the second order derivation formula in z1 writes

d2ûz
dz2

∣∣∣∣
z=z1

=
u2 − 2u1 + u0

dz2
=
u2 − 2u1
dz2

(12)

and the fourth order derivative formula in z1 becomes

d4ûz
dz4

∣∣∣∣
z=z1

=
u3 − 4u2 + 6u1 − 4u0 + u−1

dz4
=
u3 − 4u2 + 7u1

dz4
, (13)

as seen in lines 16 and 17.
Propose a single modification to determine the stability bounds of the mixed boun-
dary conditions fluid system.

– 7. [1pts]

The figure generated by the modified code has been reported in figure 2. Can you
read out the resulting instability threshold ? What the is the approximate critical
wavenumber at threshold ? Complete the table and comment.
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Figure 2 – Dispersion relations for different Ra numbers and mixed dynamic/kinematic
boundary conditions

Boundary conditions Critical Rayleigh number Critical wavenumber

rigid/rigid 1707 3.16
free/free 657 2.22
rigid/free ? ?

Table 1 – Critical parameters for convection
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Figure 3 – Isocontours of growth-rate in the k-Ra plane for mixed dynamic/kinematic
boundary conditions and no thermal flux perturbation on the free surface

– 8. [1pts]

In reality, the Dirichlet boundary conditions for the temperature profile are rather
unlikely. It is more reasonable to assume an insulating boundary at the free surface
(a Biot number equal to zero)

dT̂

dz

∣∣∣∣∣
z=1

= 0. (14)

Remembering that the first-order off-centered finite difference approximation of the
first derivative writes (TN+1 − TN−1)/2dz, propose a very simple modification of
the code to cope with this boundary condition.

– 9. [1pts]

The figure generated by the modified code has been reported in figure 3. Can you
read out the resulting instability threshold ? What the is the critical wavenumber
at threshold ?

part II. Pure Bénard Marangoni instability

In this part only, the Archimedes force is neglected and ρ is taken constant. However,
the surface tension γ is now taken into account.

– 10. [2pts]

Which term disappears from equation 7 ? Which line should be modified in the
code ? how ?

– 11. [2pts]
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Figure 4 – surface tension dependance of water with temperature

In fact the inhomogeneous surface temperature creates strong surface tension va-
riations which in turn create Marangoni stresses, according to the tangential stress
discontinuity t ·σn = ∇γ ·t, where σ designates the stress tensor σ = −pI+µ(∇u+
∇ut). We further assume that the surface tension γ varies linearly with temperature,
according to γ = γa+β(T −T (a)). From figure 4, deduce an approximate value of β.

– 12. [1pts]

Is the fluid going to be driven on the surface from the hot region to the cold one or
the opposite ? Draw a sketch.

– 13. [1pts] Show that the Marangoni condition writes

µ

(
∂ux
∂z

+
∂uz
∂x

)∣∣∣∣
z=1

= β
∂T

∂x

∣∣∣∣
z=1

(15)

µ

(
∂uy
∂z

+
∂uz
∂y

)∣∣∣∣
z=1

= β
∂T

∂y

∣∣∣∣
z=1

(16)

– 14. [1pts] It is written here on the full variables before perturbation expansion.
Why does it directly translate to the perturbations (noted in part I with ’) ?

– 15. [2pts] The nondimensional Marangoni number compares the driving force to
the viscous friction force. Using the same characteristic velocity scale than in part
I, show that it can be written as

Ma =
β(T (b) − T (a))d

µκ
(17)

– 16. [2pts] Use incompressibility (what the name of the hypothesis that allows to
claim it holds at leading order ?) and non-penetration to show that
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Figure 5 – Dispersion relations for different Ma numbers.

−∂
2u′z
∂z2

∣∣∣∣
z=1

= Ma∆‖T
′. (18)

– 17. [1pts] Use the normal mode expansion to express this condition in “hat” (̂ )
variables.

– 18. [2pts] In matlab, the value of the ghost point uN+2 which was equal to
uN because of the condition of the D2u′z|z=1 = 0 becomes now uN+2 + uN =
−Mak2TNdz

2. Explain why and add a single correction to the code to determine
the eigenvalues.

– 19. [1pts]the results of the above code are reprinted in figure 5. What is the cri-
tical value of the Ma number Mac for instability to happen.

– 20. [2pts] Taking the values for Mac and Rac obtained in part I, deduce that
there is a critical fluid layer size below which the Marangoni-Bénard sets in before
the Rayleigh-Bénard instability. For water, it is typically 2cm and a little bit less
for oil. Comment this result in light of everyday’s life experience.

Free surface deformation

– 21. [2pts] We now add a surface deformation to this system η = 0+εη̂ exp(i(kxx+
kyy − ωt). How are the boundary conditions modified to take this into account ?
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