ME466- Instability 22^{nd} of January 2016 11h30-13h15

The objective of this exercise is to analyze the Bénard-Marangoni instability.

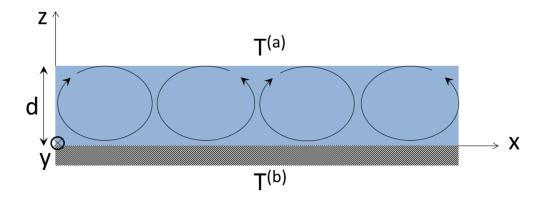


FIGURE 1 – Fluid layer heaten from below

We consider a layer of depth d of liquid of density ρ , kinematic viscosity ν , dynamic viscosity $\mu = \rho \nu$ in a gravitational field $\mathbf{g} = -ge_z$. We follow Boussinesq hypothesis and assume that ρ , μ (and therefore ν) are temperature indepedent in all internal stresses and accelerations. While the density is assumed to vary linearly with temperature $\rho = \rho^{(b)} - \alpha(T - T^{(b)})$ at first, surface tension and interface deformations are initially neglected. They are then progressively introduced. The base temperature profile (the base flow) is given by

$$T = T^{(b)} + \frac{T^{(a)} - T^{(b)}}{d}z,\tag{1}$$

where z=0 is set at the bottom plate. The heat diffusivity of the fluid is designated by κ .

Part I: Instability in presence of a free surface

- 1. [1pts]

What is the name of the instability of a layer of fluid heated from below and cooled from above?

- [2. 1pts]What is the physical mechanism that drives the instability?
- [3. 1pts]

Using the following nondimensionalization,

length
$$d$$
 (2)

time
$$\frac{d^2}{\kappa}$$
 (3)

pressure
$$\frac{\rho \kappa^2}{d^2}$$
 (4)

temperature
$$\frac{\kappa \nu}{\alpha q d^3}$$
 (5)

what is the natural velocity scale?

- [4. 1pts]

After some manipulations, we have shown in class that linearized equations around the base flow can be formulated for two unknowns only (the vertical velocity perturbation u'_z and the temperature fluctuation T') (you are NOT supposed to demonstrate them)

$$\frac{\partial \Delta u_z'}{\partial t} = Pr\Delta^2 u_z' + Pr\Delta_{\parallel} T', \tag{6}$$

$$\frac{\partial \Delta u_z'}{\partial t} = Pr\Delta^2 u_z' + Pr\Delta_{\parallel} T', \qquad (6)$$

$$\frac{\partial T'}{\partial t} = Rau_z' + \Delta T', \qquad (7)$$

where
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 and $\Delta_{\parallel} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ and where $Ra = \frac{\alpha g d^3 (T^{(b)} - T^{(a)})}{\kappa \nu}$ and $Pr = \frac{\nu}{\kappa}$.

A normal mode decomposition exploiting the invariance of the base flow with x, y and $t \exp(i(k_x x + k_y y - \omega t))$ is then introduced with k_x and k_y the horizontal wave-numbers and ω the frequency. Noting $k^2 = k_x^2 + k_y^2$, $D = \frac{d}{dz}$ and using the hat (*) to designate z-dependent variables, this yields

$$-i\omega(D^2 - k^2)\hat{u}_z = Pr(D^4 - 2k^2D^2 + k^4)\hat{u}_z - Prk^2\hat{T},$$
 (8)

$$-i\omega\hat{T} = Ra\hat{u}_z + (D^2 - k^2)\hat{T}, \tag{9}$$

For a perturbation with $k_x = 4\pi/h$, $k_y = 0$ and $\omega = 1$, what are the corresponding wavelengths in x and y and temporal period?

- 5. [1pts]

When considering a free surface at the top boundary (in contrast to the two situations analyzed in class), both the temperature boundary condition and the dynamic/kinematic boundary condition have to be changed at the upper interface. Let us first focus on the dynamic/kinematic boundary condition.

In class, we have considered two pairs of boundary conditions on the upper and lower surfaces, free-stress on both sides and no-slip on both sides. Let us now consider the situation of mixed boundary conditions. We impose no slip at the bottom wall and free-stress at the upper one. Do you expect the instability threshold to differ if no-slip is enforced at the upper boundary and free-stress at the bottom one? Why?

- 6. [1pts]

The code used in class has been reported here. It computes the growth-rate ω_i as a function of the Rayleigh number and the perturbation wavenumber k.

```
1. Pr=1;
             % Prandtl number
2. Ra=669; % Rayleigh number
%% Finite-difference operators:
\% n=1 is z=0+dz and n=N is z=1-dz
3. N=80;
              %number interior points
4. dz=1/(N+1); % grid size
5. Z=zeros(N); % zero matrix
6. I=eye(N); % identity matrix
% Second derivative operator
7. D2=-2*eye(N);
8. D2=full(spdiags(ones(N),1,D2));
9. D2=full(spdiags(ones(N),-1,D2));
10. D2=D2/dz^2;
% Fourth derivative operator
11. D4=6*eye(N);
12. D4=full(spdiags(-4*ones(N),1,D4));
13. D4=full(spdiags(-4*ones(N),-1,D4));
14. D4=full(spdiags(ones(N),2,D4));
15. D4=full(spdiags(ones(N),-2,D4));
%% Boundary conditions
%%rigid
16. D4(1,1)=7;
17. D4(N,N)=7;
%%stress free
%18. D4(1,1)=5;
%19. D4(N,N)=5;
20. D4=D4/dz^4;
%% Eigenvalue problem: s M phi = L phi
     [ D^2-k^2 I ; Z ] [uz']
                              [Pr(D^2-k^2 I)^2; -Pr k^2 I] [uz']
                     | | = |
  s |
                                                           ; I ] [th'] [
                                     Ra I ; D^2-k^2 I ] [th']
     Z
21. kk=[0:0.01:10]; % all k-values
% iterate overa ll k-values
```

```
23. k=kk(ik);
24. M=[[D2-k^2*I Z];[Z I ]]; % define L operator
25. L=[[Pr*(D4-2*k^2*D2+k^4*I) -Pr*k^2*I]; [Ra*I D2-k^2*I]]; % define M operator
26. eiv=eig(L,M); % solve the eigenvalue problem
```

27. tx(ik)=max(real(eiv)); % store the largest real part of the computed eigenvalue 28. end;

29. figure;
30. hold all;

31. plot(kk,tx);

32. grid on;

33. xlabel('k');

34. ylabel('Im(\omega)');

22. for ik=1:length(kk)

35. %title(['Ra = ' num2str(Ra) ' , Pr = ' num2str(Pr)]);

This code computes the growth-rate ω_i as a function of the Rayleigh number and the perturbation wavenumber k.

Lines 16 and 17 ensure the boundary conditions. Indeed, since the interior points range from $z_1 = 0 + dz$ to $z_N = 1 - dz$, the endpoints on the bottom $z_0 = 0$ and at the top $z_{N+1} = 1$ have both the velocity \hat{u}_z and the temperature T equal to zero, i.e. $u_0 = 0$, $u_N = 0$, $T_0 = 0$ and $T_N = 0$. To impose a rigid boundary condition at the bottom for instance, one uses the centered second-order finite difference formula with ghost point $z_{-1} = -dz$

$$\frac{d\hat{u}_z}{dz}\Big|_{z=z_0} = \frac{u_1 - u_{-1}}{2dz},\tag{10}$$

which gives

$$u_{-1} = u_1. (11)$$

Therefore the second order derivation formula in z_1 writes

$$\frac{d^2\hat{u}_z}{dz^2}\bigg|_{z=z_1} = \frac{u_2 - 2u_1 + u_0}{dz^2} = \frac{u_2 - 2u_1}{dz^2} \tag{12}$$

and the fourth order derivative formula in z_1 becomes

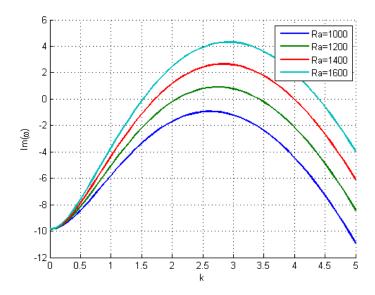
$$\frac{d^4\hat{u}_z}{dz^4}\Big|_{z=z_1} = \frac{u_3 - 4u_2 + 6u_1 - 4u_0 + u_{-1}}{dz^4} = \frac{u_3 - 4u_2 + 7u_1}{dz^4},$$
(13)

as seen in lines 16 and 17.

Propose a single modification to determine the stability bounds of the mixed boundary conditions fluid system.

- 7. [1pts]

The figure generated by the modified code has been reported in figure 2. Can you read out the resulting instability threshold? What the is the approximate critical wavenumber at threshold? Complete the table and comment.



 ${\tt Figure~2-Dispersion}$ relations for different Ra numbers and mixed dynamic/kinematic boundary conditions

Boundary conditions	Critical Rayleigh number	Critical wavenumber
rigid/rigid	1707	3.16
free/free	657	2.22
rigid/free	?	?

Table 1 – Critical parameters for convection

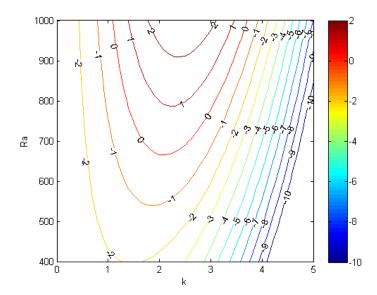


FIGURE 3 – Isocontours of growth-rate in the k-Ra plane for mixed dynamic/kinematic boundary conditions and no thermal flux perturbation on the free surface

- 8. [1pts]

In reality, the Dirichlet boundary conditions for the temperature profile are rather unlikely. It is more reasonable to assume an insulating boundary at the free surface (a Biot number equal to zero)

$$\left. \frac{d\hat{T}}{dz} \right|_{z=1} = 0. \tag{14}$$

Remembering that the first-order off-centered finite difference approximation of the first derivative writes $(T_{N+1} - T_{N-1})/2dz$, propose a very simple modification of the code to cope with this boundary condition.

- 9. [1pts]

The figure generated by the modified code has been reported in figure 3. Can you read out the resulting instability threshold? What the is the critical wavenumber at threshold?

part II. Pure Bénard Marangoni instability

In this part only, the Archimedes force is neglected and ρ is taken constant. However, the surface tension γ is now taken into account.

- 10. [2pts]

Which term disappears from equation 7? Which line should be modified in the code? how?

- 11. [2pts]

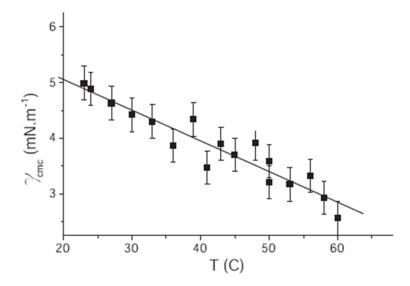


FIGURE 4 – surface tension dependance of water with temperature

In fact the inhomogeneous surface temperature creates strong surface tension variations which in turn create Marangoni stresses, according to the tangential stress discontinuity $\mathbf{t} \cdot \sigma \mathbf{n} = \nabla \gamma \cdot \mathbf{t}$, where σ designates the stress tensor $\sigma = -pI + \mu(\nabla \mathbf{u} + \nabla \mathbf{u}^t)$. We further assume that the surface tension γ varies linearly with temperature, according to $\gamma = \gamma^a + \beta(T - T^{(a)})$. From figure 4, deduce an approximate value of β .

- 12. [1pts]

Is the fluid going to be driven on the surface from the hot region to the cold one or the opposite? Draw a sketch.

- 13. [1pts] Show that the Marangoni condition writes

$$\mu \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \Big|_{z=1} = \beta \frac{\partial T}{\partial x} \Big|_{z=1}$$
 (15)

$$\mu \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) \Big|_{z=1} = \beta \frac{\partial T}{\partial y} \Big|_{z=1}$$
 (16)

- 14. [1pts] It is written here on the full variables before perturbation expansion. Why does it directly translate to the perturbations (noted in part I with ')?
- 15. [2pts] The nondimensional Marangoni number compares the driving force to the viscous friction force. Using the same characteristic velocity scale than in part I, show that it can be written as

$$Ma = \frac{\beta(T^{(b)} - T^{(a)})d}{\mu\kappa} \tag{17}$$

- 16. [2pts] Use incompressibility (what the name of the hypothesis that allows to claim it holds at leading order?) and non-penetration to show that

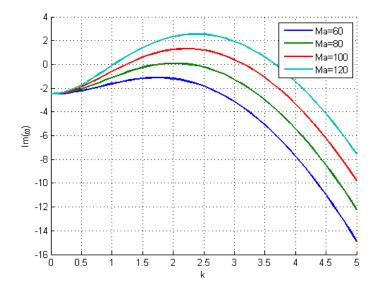


FIGURE 5 – Dispersion relations for different Ma numbers.

$$-\frac{\partial^2 u_z'}{\partial z^2}\bigg|_{z=1} = Ma\Delta_{\parallel} T'. \tag{18}$$

- 17. [1pts] Use the normal mode expansion to express this condition in "hat" (`) variables.
- 18. [2pts] In matlab, the value of the ghost point u_{N+2} which was equal to u_N because of the condition of the $D^2u'_z|_{z=1} = 0$ becomes now $u_{N+2} + u_N = -Mak^2T_Ndz^2$. Explain why and add a single correction to the code to determine the eigenvalues.
- 19. [1pts] the results of the above code are reprinted in figure 5. What is the critical value of the Ma number Ma_c for instability to happen.
- 20. [2pts] Taking the values for Ma_c and Ra_c obtained in part I, deduce that there is a critical fluid layer size below which the Marangoni-Bénard sets in before the Rayleigh-Bénard instability. For water, it is typically 2cm and a little bit less for oil. Comment this result in light of everyday's life experience.

Free surface deformation

- 21. [2pts] We now add a surface deformation to this system $\eta = 0 + \epsilon \hat{\eta} \exp(i(k_x x + k_y y - \omega t))$. How are the boundary conditions modified to take this into account?