CAVITATION – Fall 2024

Learning Objectives

- Define the cavitation phenomenon:
 - Incipience, types, effects, ...
 - Importance of cavitation nuclei tensile strength of water
 - Express the cavitation occurrence in a flowing liquid in a non-dimensional way

 Draw typical Cp curves on suction and pressure sides of a foil and discuss cavitation occurrence
- Static equilibrium of a gas bubble within a liquid (Blake/Laplace equation)
 - Critical pressure and critical bubble radius
 - Comment the case of nanobubbles and their stability
 - Solubility of gases in a liquid (Henry's law)
- Dynamics of a spherical cavitation bubble in an infinite liquid volume:
 - Establish Rayleigh and Rayleigh-Plesset equations with a careful list of hypotheses
 - Propose a way to solve the Rayleigh-Plesset equation (bubble radius vs time)
- Collapse of a spherical bubble in infinite liquid volume:
 - Express the collapse time (Rayleigh time) Hypotheses ?
 - Discuss the role of viscosity, surface tension and non condensable gas
 - Establish the pressure field in the liquid phase during the collapse of a spherical bubble
- Dynamics of a cylindrical cavitation bubble (2D)

CAVITATION – Fall 2024

Learning Objectives

- Describe the collapse of a cavitation bubble in a non-uniform pressure field:
 - Case of gravity induced pressure gradient
 - Bubble collapse near a solid surface
 - Bubble collapse near a free surface
 - Bubble collapse inside a confined liquid volume (liquid drop, liquid jet)
- Describe the luminescence phenomenon
- Experimental setup to generate cavitation bubbles in a controlled manner
 - Describe the technique using a pulsed laser and relevant instrumentation to investigate the bubble dynamics and related physical phenomena
- Cavitation in flowing liquids: Leading edge cavitation
 - Describe the cavitation development on a hydrofoil
 - Discuss the transition form sheet to cloud cavitation
 - Estimation of the length of leading edge cavity using Rayleigh-Plesset equation (see exercise)

CAVITATION – Fall 2024

Learning Objectives

- Cavitation in vortices
 - The case of Karman vortices in the wake of a hydrofoil
 - Describe the alternate shedding of vortices in the wake of a bluff body
 - Effect of cavitation on shedding frequency (Strouhal number)
 - Tip vortex cavitation:
 - Establish the velocity and pressure fields in a vortex, using simple models (e.g. Rankine)
 - Discuss cavitation risk in a vortex flow
 - Describe the particular role of gas content on cavitation incipience and desinence
 - Propose mitigation techniques to prevent tip vortex cavitation in hydraulic machines

