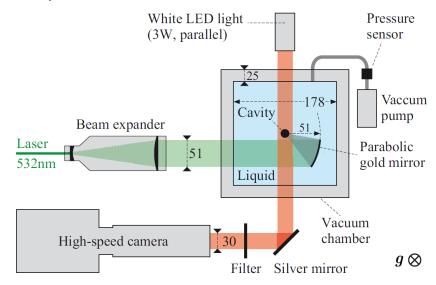
Cavitation & Interface Phenomena


Autumn semester 2023

Exercises – Series 4

Cavitation bubble dynamics: Image Processing

We provide a high-speed movie (BubbleMovie.avi) of the motion of a laser-induced bubble, using background light. The bubble is generated in the center of a cubic water container under atmospheric pressure (see figure below).

- 1. Write a computer program to analyse the images and retrieve the evolution of the non-dimensional radius as a function of non-dimensional time.
- 2. Compare the experimental data related to the collapse phase with Rayleigh model.
- 3. By tracking the faint shockwaves in the movie, determine the frame rate of the camera. Evaluate the dimensional values of the collapse time and maximum radius of the bubble. (Hypothesis: The speed of sound in water is 1500 m/s).
- 4. Compare the experimental data related to the collapse phase with Rayleigh-Plesset model. The partial pressure of the non-condensable gas is 100 Pa.
- 5. Compare the experimental data related to the collapse phase with Keller-Miksis model. Use the rebound bubble to determine the partial pressure of the non-condensable gas, which leads to the best fit of the data.
- 6. Produce a video to illustrate the evolution of the pressure field around the bubble during the collapse phase.