Cavitation & Interface Phenomena
Autumn semester 2022 E P F L

Exercises — Series 3

Dynamics of a spherical bubble

2.1. Establish the Rayleigh-Plesset equation for a spherical bubble placed in infinite volume of liquid.

2.2. By neglecting the effects of viscosity and surface tension and assuming that the bubble is filled only
with vapor (Rayleigh equation), derive the expression for the interface velocity and compute the
collapse time T; (Rayleigh time).

2.3. By taking the initial radius Ro and the Rayleigh time T; as the length and time scales (r=R/Ro, t*=t/T)),
write the Rayleigh equation in non-dimensional form.

2.4. Demonstrate that this non-dimensional equation can be written as:

P+ = = 0
r
With a constant K (to be determined) and the dots denote derivatives with respect to the non-
dimensional time t*.

2.5. Let us consider the collapse of a cavitation bubble with an initial radium Ro=1 cm, in an infinite volume
of liquid at the pressure prr=1 bar. The bubble contains non-condensable gas at the pressure pg=100
[Pa]. Using Matlab, solve numerically the evolution of the radius with the time according to:

1. The Rayleigh equation (compare the collapse time with the analytical solution)

2. The Rayleigh-Plesset equation
hint: use the Ordinary Differential Equation (ODE) solvers in Matlab to solve numerically the differential
equation.

2.6. To model more realistically the bubble rebounds and shockwave emissions during the collapse, it is
necessary to take into account the liquid compressibility. This is accomplished using the following
equation (Keller-Miksis) :

(P, +p, - P )1+P)+Rp, /c—(B-V)R*p/2

(1-7)pR with o(t) = R(t)/c

Assuming an adiabatic evlution of the pressure of non-condensable gas in the bubble:

R &
Pg = Py0 ( "R;m’)

Implement this set of equations in your program and compare the solution with previous results.

R=

2.7. Compute the pressure pg, the temperature T and the interface velocity R during the collapse using
the different models (Rayleigh, Rayleigh-Plesset, Keller-Miksis).

2.8. Compare the values previously obtained if the pressure of non-condensable gas is changed to
Pgo=1000 [Pa]. Repeat the operation with py=10'000 [Pa].

2.9. By neglecting the effects of viscosity & surface tension and assuming that the bubble is filled only with
vapor, plot the pressure distribution in the liquid when R/Rs=0.2. Repeat the operation when R/Ry=0.1
and R/Ry=0.05.

2.10. Demonstrate that at any location in the surrounding liquid, the local velocity exhibits a maximum when
R/R0=0.2571/3=63%. Give an expression of this maximum velocity at any location r.
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2.11. Check the validity of the analytical solution for the collapse of a bubble proposed by Nikolay A
Kudryashovand Dmitry | Sinelshchikov:

3
uil+§u2+<fz=0

1/2
3¢14° 2 3 2 u?

t and u stand for non-dimensional time and radius.
How does the computation time required to evaluate the analytical solution compare with the
numerical solution?

References
e Cavitation lecture notes
e Obreschkow, D., Bruderer, M. & Farhat, M. Analytical approximations for the collapse of an
empty spherical bubble. Phys. Rev. E 85, 66303 (2012).
e Kudryashov, N. A. & Sinelshchikov, D. I. Analytical solutions of the Rayleigh equation for empty
and gas-filled bubble. J. Phys. A: Math. Theory 47, 405202 (2014).
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SOLUTION

2.1) write the continuity and momentum equations for an infinite volume of liquid with an empty cavity inside:

Continuity:
9 (r2u) + 2 (g sin()) + —— 2
r2 ar rsin(0) 06 Up Sin rsin(0) d¢p
We only have radial motion: ug = ugy = 0
. a _ 0
Symmetrical geometry: 3= % =0
10 A
r—za—(rzur) = > r*u,=0 -ou,= =
We know that  u, = u,.(r,t) _erh R = % - A(t) = R?R
R%R
= uT' = T—Z
Navier-Stokes equations in r direction:
E)ur ou, L Ve ou, LY du, v +v
P\t T or r 00 rsin(0) 09 r
_"op
or
d (10 1 d 1 0%u
- 6 ) .
# <6r< 2 or ar uT)) r2(sin0)2 90 (sm( ) r2(sin 0)2 d¢?
72 sm(B) ag e sin ~ r2sin(0) d¢ Pgr
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Simplifying the above equation:

el (22 s
H o7 rzar”‘"

. R?R
Inserting the found form of u,. = 7 we have:

19, ... (RZR)a /1 10
r_ZE(RZRHu_(_):___p . R=R®

r2  or\r? p or
. .. . 10
2RR2r~2 4+ RR2r~2 — 2R*R2r~5 = — =2
p or
Here, the integral of fRoo(... )dr is taken, which simplifies to:
. 3. 1
S RR +§R2 =;(p(R) _poo) Eq (1)

To determine p(R), we express the mechanical equilibrium at the bubble interface as follows:

—0Opr *TTR? + S * 2R = Pinsige * TR?

28

—O0rr = Pp _F

Where g, is the normal stress in the moving liquid at the interface and p, the pressure in the bubble. In
spherical coordinates, this term reads:

u
O = —P+ Zﬂa_rr Eq.(2)

We need to calculate this term at r = R, that is the interface:

d (R%R 4uR
Orr, (atr=R) = —Pr) T Zﬂa—r 7 | TP T

Substituting in Eq. (2):
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4uR 28
PR+ ——=pp — %

R R
Therefore p(R) reads:
Y — 25 4MR+
pR)=—F——F *D»

Substituting in Eq. (1):

. 3. 1 25  4uR
RR+5R = 2\py = ==+ P

2 R R
RR’+3R2+4VR+ZS—1( )

Which is the Rayleigh-Plesset equation.

2.2)

Assumptions:

Therefore, the Rayleigh equation becomes:

RE+ 282 =2 (py — po)
2 _ppv pOO

Multiplying the two sides by 2R?R, we have
. 3. . .
p (RR + ERZ) (2R?R) = (py — P=)(2R?R)
> p(2R*RR + 3R*R?) = (p, — p»)(2R?R)

The left-hand side can be written as:
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d . .
p 7 (R°R?) = (py — p)(2R?R)
- pd(R®R?) = (p, — Po) (2R*dR)

Taking integral f;o(...)dR,

1

-5\ R
p(R*R?), =3 (R* = R§)(py — peo)

Since R is equal to zero for R = Ry, (initial condition), we have:
3p2 1 3 3
p(R*R?) = = (R® = R (py — Peo)

Therefore,

Rzzw*z(ﬂ>

p 3 R3

. 2(poo _pv) R(?;

The negative sign is due to the direction of the motion (inward motion).

We use Eq 3 to derive the collapse time as follows:

. dR 2 (Pos — Py) (RS
R=— R: —_ | —-— __1
dt ” d \/3 p R3 dt

Where R in the right-hand side is a function of time.

dR
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Taking integral from two sides:

T; 0 dR
[a-]
0 R

° 12 (po — Pv)(gz 1)

Then, we have:

By changing the variable from R to 4, by R = RyA?, we will have:

__p A*da
fe ==K p,» f(l—zﬁ)os

The integration on the right-hand side may be solved numerically, which gives:

T, = 0.915 * R,

2.3) See attached publication (Obreschkow et. al, 2011)
Be careful that in this document the non-dimensional radius of the bubble is called r, which is used
hereafter to designate an arbitrary location in the liquid phase.

2.4) See attached publication (Obreschkow et. al, 2011)

2.5) Must be solved numerically (e.g. ode45 function of Matlab)
2.5.a) A bubble filled with vapor only (Rayleigh model)
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2.5.b) A bubbile filled with vapor and non-condensable gas of a given partial pressure.

2.6) Must be solved numerically (e.g. ode45 function of Matlab), as in 2.5

2.7)

2.7.a) Rayleigh case (bubble filled with vapor only):
Pg, = 0 - Pbubble = Pvapor - T = Tsat@pv

In this case:

- Thereis noincrease of the gas temperature since it the vapor condenses instantaneously.
- The interface velocity tends to infinity as the bubble radius tends to zero (See eq. 3 above)

2.7.b) Rayleigh-Plesset (bubble filled with vapor and non-condensable gas at partial pressure Pg,:

3n
o =Pan (5)

If isothermal process: n =1, T =Ty = Tsqt @p,

If adiabatic process: n=y = Z—p, forair:y =14

T T < RO >3(y_1)
97 PR
Here, we need to solve the problem numerically to determine R (t), Tg (t) and R(t)

Due to the presence of non-condensable gas, the interface velocity is bounded and may be determined
numerically.

2.7.c) Keller-Miksis case, adiabatic process is assumed, so

R, )3”

R. \30r—1)
0
Pg = Pao (R(t) )

T =To (g
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As for the Rayleigh-Plesset model, we need to solve the problem numerically to determine R (t), Tg (t) and
R(1).

2.8)

Requires to be solved numerically (e.g. ode45 function of Matlab)

2.9)

Pressure build-up during the bubble collapse:

Here we write the mass and momentum conservation as in 2.1

. . . 19
2RR2r~2 4+ BR2r~2 — 2R*R2r~5 = — 2L
p or

To obtain the pressure in the liquid during the bubble collapse, we must integrate the momentum equation

between an arbitrary radius r>R(t) to infinity (f:o(... )dr). This results in the following:

Mz_@”m(“ R)

D r 4R* 1

Using the following equations, already established earlier:

3 3
I{RZ z(pv_pw)*z R _RO
p 3 R3
.. 1 /P —DPy 3.
R=—=|—— —Rz)
L R< p +2

We obtain the following equation:

Poo — p(T) _ R R(?; 4 R* Rg 1
Do — Py 37 \R3 3r4\R3

To find the maximum pressure in the field and its location, it is required to take the derivative of the above
equation with respect to r. Doing so, we will have:
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And
3. 4/3
(=13
Pmax — P _ 1 Ro

Po —Dy A3 R3 LR 1/3
%)

The corresponding plot:

10 e

p(r) ~ P ¢
Po —DPv F g

2.10)

Owing to mass conservation, we have the following relation for the velocity u, everywhere in the liquid phase:

RZR

Uy = —5—
T rz

Which may be re-written using Eq. 3 as follows:
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2 _ 3 —
23 p \R° 23 p N

u, is a function of the bubble radius, which depends on time. Since the bubble does not rebound (bubble filled
with vapor only), the liquid must fill the gap left by the collapsing bubble. To do so, the liquid everywhere is
accelerated from rest to a maximum absolute value. It is then decelerated to zero velocity when the bubble
completes its collapse.

For a given location (r), the bubble radius (Rl) corresponding to the occurrence of maximum absolute velocity

. . . . ou, _
in the liquid is determined by solving (E = ():

ou, 3 5 31
ST=0 o RI-4R*=0 o Ry= |;R,~063R,

Owing to Eq. 3, the corresponding interface velocity, er is :

3 . p

And the maximum velocity, Uy g4, at any arbitrary location (r) is given by the mass conservation:

. 1

_R’R;  Ry? , P =P0) _ 22 (b — 1) Ry’

Uy max = r2 - = r2 0 - _E P 72
3

=5 (Poo — Pv) Ro”
p r?

= -2

We may notice that:

- the maximum velocity is reached at the same time in the entire liquid phase. This is a consequence of
the incompressibility assumption.

- lim (ur_max) =0

r—oo
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