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Cavitation & Interface Phenomena 
Autumn semester 2022  
Exercises – Series 3 
 

Dynamics of a spherical bubble 
 
2.1. Establish the Rayleigh-Plesset equation for a spherical bubble placed in infinite volume of liquid.  
2.2. By neglecting the effects of viscosity and surface tension and assuming that the bubble is filled only 

with vapor (Rayleigh equation), derive the expression for the interface velocity and compute the 
collapse time Ti (Rayleigh time). 

2.3. By taking the initial radius R0 and the Rayleigh time Ti as the length and time scales (r=R/R0, t*=t/Ti), 
write the Rayleigh equation in non-dimensional form.  

2.4. Demonstrate that this non-dimensional equation can be written as:  
𝑟̈𝑟 +

𝐾𝐾
𝑟𝑟4

 = 0  
With a constant K (to be determined) and the dots denote derivatives with respect to the non-
dimensional time t*. 

2.5. Let us consider the collapse of a cavitation bubble with an initial radium R0=1 cm, in an infinite volume 
of liquid at the pressure pref=1 bar. The bubble contains non-condensable gas at the pressure pg0=100 
[Pa]. Using Matlab, solve numerically the evolution of the radius with the time according to: 

1. The Rayleigh equation (compare the collapse time with the analytical solution) 
2. The Rayleigh-Plesset equation 

hint: use the Ordinary Differential Equation (ODE) solvers in Matlab to solve numerically the differential 
equation. 

2.6. To model more realistically the bubble rebounds and shockwave emissions during the collapse, it is 
necessary to take into account the liquid compressibility. This is accomplished using the following 
equation (Keller-Miksis) : 

          with            
Assuming an adiabatic evlution of the pressure of non-condensable gas in the bubble:  

 

Implement this set of equations in your program and compare the solution with previous results. 

2.7. Compute the pressure pg, the temperature T and the interface velocity R  during the collapse using 
the different models (Rayleigh, Rayleigh-Plesset, Keller-Miksis).  

2.8. Compare the values previously obtained if the pressure of non-condensable gas is changed to 
pg0=1000 [Pa]. Repeat the operation with pg0=10'000 [Pa]. 

2.9. By neglecting the effects of viscosity & surface tension and assuming that the bubble is filled only with 
vapor, plot the pressure distribution in the liquid when R/R0=0.2. Repeat the operation when R/R0=0.1 
and R/R0=0.05. 

2.10. Demonstrate that at any location in the surrounding liquid, the local velocity exhibits a maximum when 
R/R0=0.25^1/3≈63%. Give an expression of this maximum velocity at any location r.  
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2.11. Check the validity of the analytical solution for the collapse of a bubble proposed by Nikolay A 
Kudryashovand Dmitry I Sinelshchikov: 
 

𝑢𝑢𝑢̈𝑢 +
3
2
𝑢̇𝑢2 + 𝜉𝜉2 = 0 

 

 
 

t and u stand for non-dimensional time and radius.  
How does the computation time required to evaluate the analytical solution compare with the 
numerical solution? 
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SOLUTION 

2.1) write the continuity and momentum equations for an infinite volume of liquid with an empty cavity inside:   

Continuity:  

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟2𝑢𝑢𝑟𝑟) +
1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃)
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑢𝑢𝜃𝜃 sin(𝜃𝜃)) +
1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃)
𝜕𝜕𝑢𝑢𝜙𝜙
𝜕𝜕𝜕𝜕

= 0 

We only have radial motion: 𝑢𝑢𝜃𝜃 = 𝑢𝑢𝜙𝜙 = 0 

Symmetrical geometry: 𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 

→  
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟2𝑢𝑢𝑟𝑟) = 0     →       𝑟𝑟2𝑢𝑢𝑟𝑟 = 0      → 𝑢𝑢𝑟𝑟 =
𝐴𝐴
𝑟𝑟2

 

We know that      𝑢𝑢𝑟𝑟 = 𝑢𝑢𝑟𝑟(𝑟𝑟, 𝑡𝑡)          
      @ 𝑟𝑟=𝑅𝑅      
�⎯⎯⎯⎯⎯⎯⎯�       𝑅̇𝑅 = 𝐴𝐴(𝑡𝑡)

𝑅𝑅2
      →      𝐴𝐴(𝑡𝑡) = 𝑅𝑅2𝑅̇𝑅 

→        𝑢𝑢𝑟𝑟 =
𝑅𝑅2𝑅̇𝑅
𝑟𝑟2

 

Navier-Stokes equations in r direction: 

𝜌𝜌 �
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑟𝑟
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

+
𝑣𝑣𝜃𝜃
𝑟𝑟
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

+
𝑣𝑣𝜙𝜙

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃)
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

−
𝑣𝑣𝜃𝜃2 + 𝑣𝑣𝜙𝜙2

𝑟𝑟
�

=
−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇 �
𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟2𝑢𝑢𝑟𝑟)� +
1

𝑟𝑟2(sin𝜃𝜃)2
𝜕𝜕
𝜕𝜕𝜕𝜕

�sin(𝜃𝜃)
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

� +
1

𝑟𝑟2(sin𝜃𝜃)2
𝜕𝜕2𝑢𝑢𝑟𝑟
𝜕𝜕𝜙𝜙2

−
2

𝑟𝑟2 sin(𝜃𝜃)
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣𝜃𝜃 sin(𝜃𝜃)) −
2

𝑟𝑟2 sin(𝜃𝜃)
𝜕𝜕𝑣𝑣𝜙𝜙
𝜕𝜕𝜕𝜕

� + 𝑝𝑝𝑔𝑔𝑟𝑟 
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Simplifying the above equation: 

𝜌𝜌 �
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑟𝑟
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

� =
−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇 �
𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟2𝑢𝑢𝑟𝑟)�� 

Inserting the found form of 𝑢𝑢𝑟𝑟 = 𝑅𝑅2𝑅̇𝑅
𝑟𝑟2

, we have: 

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑅𝑅2𝑅̇𝑅� +

�𝑅𝑅2𝑅̇𝑅�2

𝑟𝑟2
𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
𝑟𝑟2
� = −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

           ,           𝑅𝑅 = 𝑅𝑅(𝑡𝑡) 

2𝑅𝑅𝑅̇𝑅2𝑟𝑟−2 + 𝑅̈𝑅𝑅𝑅2𝑟𝑟−2 − 2𝑅𝑅4𝑅̇𝑅2𝑟𝑟−5 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Here, the integral of ∫ (… )𝑑𝑑𝑑𝑑∞
𝑅𝑅  is taken, which simplifies to: 

                        
��������        𝑅𝑅𝑅̈𝑅 +

3
2
𝑅̇𝑅2 =

1
𝜌𝜌
�𝑝𝑝(𝑅𝑅) − 𝑝𝑝∞�                 𝐸𝐸𝐸𝐸. (1) 

To determine 𝑝𝑝(𝑅𝑅), we express the mechanical equilibrium at the bubble interface as follows: 

−𝜎𝜎𝑟𝑟𝑟𝑟 ∗ 𝜋𝜋𝑅𝑅2 + 𝑆𝑆 ∗ 2𝜋𝜋𝜋𝜋 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝜋𝜋𝑅𝑅2 

−𝜎𝜎𝑟𝑟𝑟𝑟 = 𝑝𝑝𝑏𝑏 −
2𝑆𝑆
𝑅𝑅

 

Where 𝜎𝜎𝑟𝑟𝑟𝑟  is the normal stress in the moving liquid at the interface and pb the pressure in the bubble. In 
spherical coordinates, this term reads: 

𝜎𝜎𝑟𝑟𝑟𝑟 = −𝑝𝑝 + 2𝜇𝜇
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

            𝐸𝐸𝐸𝐸. (2) 

We need to calculate this term at 𝑟𝑟 = 𝑅𝑅, that is the interface: 

𝜎𝜎𝑟𝑟𝑟𝑟,   (𝑎𝑎𝑎𝑎 𝑟𝑟=𝑅𝑅) = −𝑝𝑝(𝑅𝑅) + 2𝜇𝜇
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑅𝑅2𝑅̇𝑅
𝑟𝑟2

� = −𝑝𝑝(𝑅𝑅) −
4𝜇𝜇𝑅̇𝑅
𝑅𝑅

 

Substituting in Eq. (2): 
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𝑝𝑝(𝑅𝑅) +
4𝜇𝜇𝑅̇𝑅
𝑅𝑅

= 𝑝𝑝𝑏𝑏 −
2𝑆𝑆
𝑅𝑅

 

Therefore 𝑝𝑝(𝑅𝑅) reads: 

𝑝𝑝(𝑅𝑅) = −
2𝑆𝑆
𝑅𝑅
−

4𝜇𝜇𝑅̇𝑅
𝑅𝑅

+ 𝑝𝑝𝑏𝑏 

Substituting in Eq. (1): 

𝑅𝑅𝑅̈𝑅 +
3
2
𝑅̇𝑅2 =

1
𝜌𝜌
�𝑝𝑝𝑏𝑏 −

2𝑆𝑆
𝑅𝑅
−

4𝜇𝜇𝑅̇𝑅
𝑅𝑅

+ 𝑝𝑝∞� 

𝑅𝑅𝑅̈𝑅 +
3
2
𝑅̇𝑅2 +

4𝜈𝜈𝑅̇𝑅
𝑅𝑅

+
2𝑆𝑆
𝜌𝜌𝜌𝜌

=
1
𝜌𝜌

(𝑝𝑝𝑏𝑏 − 𝑝𝑝∞) 

Which is the Rayleigh-Plesset equation.  

 

2.2)  

Assumptions: 

𝜈𝜈 = 0     ,     𝑆𝑆 = 0     ,     𝑝𝑝𝑔𝑔 = 0        →           𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑔𝑔 + 𝑝𝑝𝑣𝑣 = 𝑝𝑝𝑣𝑣  

Therefore, the Rayleigh equation becomes: 

𝑅𝑅𝑅̈𝑅 +
3
2
𝑅̇𝑅2 =

1
𝜌𝜌

(𝑝𝑝𝑣𝑣 − 𝑝𝑝∞) 

Multiplying the two sides by 2𝑅𝑅2𝑅̇𝑅, we have 

𝜌𝜌 �𝑅𝑅𝑅̈𝑅 +
3
2
𝑅̇𝑅2� �2𝑅𝑅2𝑅̇𝑅� = (𝑝𝑝𝑣𝑣 − 𝑝𝑝∞)�2𝑅𝑅2𝑅̇𝑅� 

→       𝜌𝜌�2𝑅𝑅3𝑅̇𝑅𝑅̈𝑅 + 3𝑅𝑅2𝑅̇𝑅3� = (𝑝𝑝𝑣𝑣 − 𝑝𝑝∞)�2𝑅𝑅2𝑅̇𝑅� 

The left-hand side can be written as: 



Cavitation & Interface Phenomena 2022      EPFL – STI – MF – M. Farhat, D. B. Preso 

𝜌𝜌
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑅𝑅3𝑅̇𝑅2� = (𝑝𝑝𝑣𝑣 − 𝑝𝑝∞)�2𝑅𝑅2𝑅̇𝑅� 

→         𝜌𝜌𝜌𝜌�𝑅𝑅3𝑅̇𝑅2� = (𝑝𝑝𝑣𝑣 − 𝑝𝑝∞)(2𝑅𝑅2𝑑𝑑𝑑𝑑) 

Taking integral ∫ (… )𝑑𝑑𝑑𝑑𝑅𝑅
𝑅𝑅0

,  

𝜌𝜌�𝑅𝑅3𝑅̇𝑅2�𝑅𝑅0
𝑅𝑅 =

1
3

(𝑅𝑅3 − 𝑅𝑅03)(𝑝𝑝𝑣𝑣 − 𝑝𝑝∞) 

Since 𝑅̇𝑅 is equal to zero for 𝑅𝑅 = 𝑅𝑅0 (initial condition), we have:   

𝜌𝜌�𝑅𝑅3𝑅̇𝑅2� =
1
3

(𝑅𝑅3 − 𝑅𝑅03)(𝑝𝑝𝑣𝑣 − 𝑝𝑝∞) 

Therefore,  

𝑅̇𝑅2 =
(𝑝𝑝𝑣𝑣 − 𝑝𝑝∞)

𝜌𝜌
∗

2
3
�
𝑅𝑅3 − 𝑅𝑅03

𝑅𝑅3
 � 

𝑅̇𝑅 =  −�
2
3

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌

�
𝑅𝑅03

𝑅𝑅3
− 1�                     𝐸𝐸𝐸𝐸. (3) 

The negative sign is due to the direction of the motion (inward motion). 

We use Eq 3 to derive the collapse time as follows:  

𝑅̇𝑅 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

       →           𝑑𝑑𝑑𝑑 = �−�
2
3

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌

�
𝑅𝑅03

𝑅𝑅3
− 1��𝑑𝑑𝑑𝑑 

Where R in the right-hand side is a function of time.  

𝑑𝑑𝑑𝑑

�2
3

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌 �𝑅𝑅0

3

𝑅𝑅3 − 1�

= −𝑑𝑑𝑑𝑑 
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Taking integral from two sides: 

� −𝑑𝑑𝑑𝑑
𝑇𝑇𝑖𝑖

0
= �

𝑑𝑑𝑑𝑑

�2
3

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌 �𝑅𝑅0

3

𝑅𝑅3 − 1�

0

𝑅𝑅0
  

Then, we have: 

𝑇𝑇𝑖𝑖 = −�
3
2

𝜌𝜌
(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣) ∗ �

𝑑𝑑𝑑𝑑

��𝑅𝑅0
3

𝑅𝑅3 − 1�

0

𝑅𝑅0
 

By changing the variable from 𝑅𝑅 to 𝜆𝜆, by 𝑅𝑅 = 𝑅𝑅0𝜆𝜆2, we will have: 

𝑇𝑇𝑖𝑖 = −𝑅𝑅0�
6𝜌𝜌

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣) ∗ �
𝜆𝜆4𝑑𝑑𝑑𝑑

(1 − 𝜆𝜆6)0.5

1

0
 

The integration on the right-hand side may be solved numerically, which gives: 

𝑇𝑇𝑖𝑖 = 0.915 ∗ 𝑅𝑅0�
𝜌𝜌

𝑝𝑝∞ − 𝑝𝑝𝑣𝑣
 

 

 

2.3) See attached publication (Obreschkow et. al, 2011) 
Be careful that in this document the non-dimensional radius of the bubble is called r, which is used 
hereafter to designate an arbitrary location in the liquid phase.  

 
2.4) See attached publication (Obreschkow et. al, 2011) 

 

2.5) Must be solved numerically (e.g. ode45 function of Matlab) 
2.5.a) A bubble filled with vapor only (Rayleigh model) 
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2.5.b) A bubble filled with vapor and non-condensable gas of a given partial pressure.  

 

2.6) Must be solved numerically (e.g. ode45 function of Matlab), as in 2.5 

 

2.7)  

2.7.a) Rayleigh case (bubble filled with vapor only): 

𝑝𝑝𝑔𝑔0 = 0      →        𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣         →          𝑇𝑇 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 @ 𝑝𝑝𝑣𝑣 

In this case: 

- There is no increase of the gas temperature since it the vapor condenses instantaneously.  
- The interface velocity tends to infinity as the bubble radius tends to zero (See eq. 3 above) 

 

2.7.b) Rayleigh-Plesset (bubble filled with vapor and non-condensable gas at partial pressure 𝑝𝑝𝑔𝑔0 : 

𝑝𝑝𝑔𝑔 = 𝑝𝑝𝑔𝑔0 �
𝑅𝑅0
𝑅𝑅(𝑡𝑡)

�
3𝑛𝑛

 

If isothermal process: 𝑛𝑛 = 1,      𝑇𝑇 = 𝑇𝑇0 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 @ 𝑝𝑝𝑣𝑣 

If adiabatic process:   𝑛𝑛 = 𝛾𝛾 = 𝑐𝑐𝑝𝑝
𝑐𝑐𝑣𝑣

,          𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎: 𝛾𝛾 = 1.4  

𝑇𝑇𝑔𝑔 = 𝑇𝑇0 �
𝑅𝑅0
𝑅𝑅(𝑡𝑡)

�
3(𝛾𝛾−1)

  

Here, we need to solve the problem numerically to determine 𝑅𝑅(𝑡𝑡), 𝑇𝑇𝑔𝑔(𝑡𝑡) and 𝑅̇𝑅(𝑡𝑡) 

Due to the presence of non-condensable gas, the interface velocity is bounded and may be determined 
numerically.  

2.7.c) Keller-Miksis case, adiabatic process is assumed, so  

𝑝𝑝𝑔𝑔 = 𝑝𝑝𝑔𝑔0 �
𝑅𝑅0
𝑅𝑅(𝑡𝑡)

�
3𝛾𝛾

        →           𝑇𝑇𝑔𝑔 = 𝑇𝑇0 �
𝑅𝑅0
𝑅𝑅(𝑡𝑡)

�
3(𝛾𝛾−1)
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As for the Rayleigh-Plesset model, we need to solve the problem numerically to determine 𝑅𝑅(𝑡𝑡), 𝑇𝑇𝑔𝑔(𝑡𝑡) and 

𝑅̇𝑅(𝑡𝑡).  

 

2.8)  

Requires to be solved numerically (e.g. ode45 function of Matlab) 

 

2.9)  

Pressure build-up during the bubble collapse:  

Here we write the mass and momentum conservation as in 2.1 

2𝑅𝑅𝑅̇𝑅2𝑟𝑟−2 + 𝑅̈𝑅𝑅𝑅2𝑟𝑟−2 − 2𝑅𝑅4𝑅̇𝑅2𝑟𝑟−5 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

To obtain the pressure in the liquid during the bubble collapse, we must integrate the momentum equation 
between an arbitrary radius r>R(t) to infinity (∫ (… )𝑑𝑑𝑑𝑑∞

𝑟𝑟 ). This results in the following: 

𝑝𝑝∞ − 𝑝𝑝(𝑟𝑟)

𝜌𝜌
= −

𝑅̈𝑅𝑅𝑅2

𝑟𝑟
+ 2𝑅̇𝑅2 �

𝑅𝑅4

4𝑅𝑅4
−
𝑅𝑅
𝑟𝑟
� 

Using the following equations, already established earlier: 

⎩
⎪
⎨

⎪
⎧𝑅̇𝑅2 =

(𝑝𝑝𝑣𝑣 − 𝑝𝑝∞)
𝜌𝜌

∗
2
3
�
𝑅𝑅3 − 𝑅𝑅03

𝑅𝑅3
 �

𝑅̈𝑅 = −
1
𝑅𝑅
�
𝑝𝑝∞ − 𝑝𝑝𝑣𝑣

𝜌𝜌
+

3
2
𝑅̇𝑅2�

 

We obtain the following equation:  

𝑝𝑝∞ − 𝑝𝑝(𝑟𝑟)

𝑝𝑝∞ − 𝑝𝑝𝑣𝑣
=
𝑅𝑅
3𝑟𝑟
�
𝑅𝑅03

𝑅𝑅3
− 4� −

𝑅𝑅4

3𝑟𝑟4
�
𝑅𝑅03

𝑅𝑅3
− 1� 

To find the maximum pressure in the field and its location, it is required to take the derivative of the above 
equation with respect to r. Doing so, we will have: 
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𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅

⎝

⎛4
1 − 𝑅𝑅3

𝑅𝑅03

1 − 4𝑅𝑅
3

𝑅𝑅03⎠

⎞

1
3

 

And  

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑝𝑝∞
𝑝𝑝∞ − 𝑝𝑝𝑣𝑣

=
1

44/3

�1 − 4𝑅𝑅
3

𝑅𝑅03
�
4/3

𝑅𝑅3
𝑅𝑅03

�1 − 𝑅𝑅3
𝑅𝑅03
�
1/3 

The corresponding plot: 

 

 

2.10)  

Owing to mass conservation, we have the following relation for the velocity 𝑢𝑢𝑟𝑟 everywhere in the liquid phase:  

𝑢𝑢𝑟𝑟 =
𝑅𝑅2𝑅̇𝑅
𝑟𝑟2

 

Which may be re-written using Eq. 3 as follows:  
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𝑢𝑢𝑟𝑟 =  −𝑅𝑅
2

𝑟𝑟2 �
2
3
�𝑝𝑝∞ − 𝑝𝑝𝑣𝑣�

𝜌𝜌 �
𝑅𝑅0

3

𝑅𝑅3 − 1� = − 1
𝑟𝑟2

�2
3
�𝑝𝑝∞ −𝑝𝑝𝑣𝑣�

𝜌𝜌
�𝑅𝑅𝑅𝑅0

3 −𝑅𝑅4 

𝑢𝑢𝑟𝑟  is a function of the bubble radius, which depends on time. Since the bubble does not rebound (bubble filled 
with vapor only), the liquid must fill the gap left by the collapsing bubble. To do so, the liquid everywhere is 
accelerated from rest to a maximum absolute value. It is then decelerated to zero velocity when the bubble 
completes its collapse.  

For a given location (r), the bubble radius (𝑅𝑅1) corresponding to the occurrence of maximum absolute velocity 

in the liquid is determined by solving (
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

= 0):  

𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

= 0    →     𝑅𝑅03 − 4𝑅𝑅3 = 0   →    𝑅𝑅1 = �1
4

3
𝑅𝑅0 ≈ 0.63𝑅𝑅0 

Owing to Eq. 3, the corresponding interface velocity, 𝑅𝑅1̇, is :  

𝑅𝑅1̇ =  −�
2
3

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌

�
𝑅𝑅03

𝑅𝑅13
− 1� = −�2

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌

  

And the maximum velocity, 𝑢𝑢𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚, at any arbitrary location (r) is given by the mass conservation:  

𝑢𝑢𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑅𝑅12𝑅𝑅1̇
𝑟𝑟2

= −
𝑅𝑅12

𝑟𝑟2
�2

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌

= −
2
1
2

4
2
3
�

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌

𝑅𝑅02

𝑟𝑟2

= −2
−5
6 �

(𝑝𝑝∞ − 𝑝𝑝𝑣𝑣)
𝜌𝜌

𝑅𝑅02

𝑟𝑟2
 

We may notice that:  

-  the maximum velocity is reached at the same time in the entire liquid phase. This is a consequence of 
the incompressibility assumption.  

 

- lim
𝑟𝑟→∞

�𝑢𝑢𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚� = 0 

1.  


