

Exercises – Serie 1 – Dissolved gas in liquids

Exercise 1:

Consider a vessel filled with $1\,L$ of water in CO_2 atmosphere at $2.5\,atm$. Calculate the mass of dissolved CO_2 when the temperature of the system is $25^{\circ}C$. Henry's constant for carbon dioxide in water at $25^{\circ}C$ is $3.36 \times 10^{-2} \ mol/(L. \ atm)$. The molar mass of CO_2 is $44.009 \ g/mol$.

Exercise 2:

Knowing that the mass concentration $c_{m,1}$ of a generic gas in solution at partial pressure $p_1^* = 150 \ mmHg$ is $4.4 \ g/L$, compute its mass concentration $c_{m,2}$ in the same solution when its partial pressure $p_2^* = 56 \ mmHg$. The temperature is the same in both cases.

Exercise 3:

Table 1- Constants of equation 1 for different gases

Name	Formula	A	В	C	D	T range, K
Acetylene	C_2H_2	-156.51	8,160.2	21.403	0	274-343
Carbon dioxide	CO_2	-159.854	8,741.68	21.6694	-1.10261E-03	273-353
Carbon monoxide	CO	-171.764	8,296.9	23.3376	0	273-353
Ethane	C_2H_6	-250.812	12,695.6	34.7413	0	275-323
Ethylene	C_2H_4	-153.027	7,965.2	20.5248	0	287-346
Helium	He	-105.9768	4,259.62	14.0094	0	273-348
Hydrogen	H_2	-125.939	5,528.45	16.8893	0	273-345
Methane	CH_4	-338.217	13,282.1	51.9144	-0.0425831	273-523
Nitrogen	N_2	-181.587	8,632.13	24.7981	0	273-350
Oxygen	O_2	-171.2542	8,391.24	23.24323	0	273-333

Table 2: Henry's constant for air [H]=[atm⁻¹]

T [°C]	0	5	10	15	20	25	30	35
10 ⁻⁴ x H	0,23	0,20	0,18	0,16	0,15	0,14	0,13	0,12
T [°C]	40	45	50	60	70	80	90	100
10 ⁻⁴ x H	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,09

1. Using Table 1 and equation 1 provided below, plot the evolution of the molar fraction of the gases listed in the table, when dissolved in water as a function of temperature.

$$ln(x) = A + \frac{B}{T} + Cln(T) + DT$$
 (1)

where T is expressed in Kelvin and x is the molar fraction of the solute dissolved in water when its partial pressure is $1 \ atm$.

- 2. Compute the Henry's constant for all listed gases at $25^{\circ}C$.
- 3. Calculate the mass concentration (in g/L) of oxygen and nitrogen dissolved in water from air (assume air is made by 21% in volume of oxygen and 79% in volume of nitrogen) at $25^{\circ}C$ and atmospheric pressure. The molar masses of oxygen, nitrogen, and water are $31.998 \ g/mol$, $28.013 \ g/mol$, and $18.02 \ g/mol$, respectively.
- 4. Calculate the mass concentration of dissolved air in water at $25^{\circ}C$ exploiting the Henry's constant for air mixtures provided in Table 2, where H is given in atm^{-1} . The molar mass of gas mixtures is computed as follow:

$$\overline{M} = \sum_{i} X_{i} M_{i}$$

Where X_i is the molar fraction of the i-th gas within the mixture, and M_i its molar mass. Compare the result with the mass concentration deduced from question 3.

5. Does the O_2/N_2 ratio is conserved when air is dissolved in water?