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Solu�on- Serie 5. Es�ma�ng the length of a leading edge cavity. 

 
1. Using the applet Xfoil or JavaFoil (open so�ware), compute the pressure distribu�on on 

the hydrofoil for an upstream velocity of 20 m/s and incidence angles of 0°, 2° and 4°.  
2. Compute the pressure distribu�ons for an upstream velocity of 40 m/s (same incidence 

angles).  The cavita�on number is σ = 0.8 for all these cases.  
 

The pressure coefficient 𝐶𝐶𝑝𝑝 of a foil depends on its geometry and on the incidence angle 𝛼𝛼. 

However, for sufficiently large Reynolds numbers (here 𝑅𝑅𝑅𝑅 = 𝜌𝜌𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐0
𝜇𝜇

≥ 2.2 × 106), and for 

low incidence angles, it does not depend on the Reynolds number. Since JavaFoil is a 
poten�al flow solver (limit 𝑅𝑅𝑅𝑅 → ∞), the computa�on of 𝐶𝐶𝑝𝑝 does not require any Reynolds 
number input. For the foil geometry NACA0009 and incidence angles 𝛼𝛼 = 0°, 2° ,4° the 
pressure coefficients are ploted in Figure 1 below: 

 
Figure 1. Left: NACA0009 pressure coefficients for various incidence angles. Right: Zoom around the leading edge of the foil. 

For a given abscissa, there are two ordinates corresponding to the pressure coefficient at the 
pressure side (higher 𝐶𝐶𝑝𝑝) and suc�on side (lower 𝐶𝐶𝑝𝑝). Note that for the 𝛼𝛼 = 0° case, the 
pressure side and suc�on side curves are superimposed (symmetric foil geometry). From the 
zoomed image on the right, we can observe that for 𝛼𝛼 > 0° the stagna�on point (𝐶𝐶𝑝𝑝 = 1) is 
not located at 𝑥𝑥 = 0 but slightly shi�ed downstream on the pressure side of the foil. 
Cavita�on occurs under the condi�on 𝑝𝑝 < 𝑝𝑝𝑣𝑣 ⟺ 𝐶𝐶𝑝𝑝 < −𝜎𝜎 corresponding to the region 
located below the horizontal black dashed line in Figure 1. 
 
The pressure 𝑝𝑝(𝒙𝒙) at 𝒙𝒙 = (𝑥𝑥,𝑦𝑦) on the hydrofoil pressure/suc�on side can be derived from 
the pressure coefficient 𝐶𝐶𝑝𝑝(𝒙𝒙) as follows: 
 

𝐶𝐶𝑝𝑝(𝒙𝒙) =
𝑝𝑝(𝒙𝒙) − 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

1
2𝜌𝜌𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

2
⟹ 𝑝𝑝(𝒙𝒙) =

1
2
𝜌𝜌𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟2 𝐶𝐶𝑝𝑝(𝒙𝒙) + 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 
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Knowing 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 and given the cavita�on number 𝜎𝜎 = 0.8, we can retrieve the upstream 
pressure 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟: 
 

𝜎𝜎 =
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑝𝑝𝑣𝑣
1
2𝜌𝜌𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

2
⟹ 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =

1
2
𝜌𝜌𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟2 𝜎𝜎 + 𝑝𝑝𝑣𝑣 

 
This leads to 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = 162′300 𝑃𝑃𝑃𝑃 for 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 20𝑚𝑚/𝑠𝑠 and 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = 642′300 𝑃𝑃𝑃𝑃 for 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 =
40𝑚𝑚/𝑠𝑠. 
The vapor pressure is taken as 𝑝𝑝𝑣𝑣 = 2300 𝑃𝑃𝑃𝑃 at ambient temperature. 
The absolute pressure distribu�on on the foil suc�on side is ploted for all incidence angles 
and upstream veloci�es in Figures 2, 3, 4 below. 
 

 
Figure 2: Pressure distribution along the foil suction side for 𝛼𝛼 = 0°. 

 
Figure 3.  Left: Pressure distribution along the foil suction side for 𝛼𝛼 = 2°. Right: Zoom around cavitating region. 
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Figure 4. Left: Left: Pressure distribution along the foil suction side for 𝛼𝛼 = 4°. Right: Zoom around cavitating region. 

From these figures, we can see that for a given incidence angle, the locations where 𝑝𝑝(𝒙𝒙) <
𝑝𝑝𝑣𝑣 are the same for both upstream velocities. This result is the consequence of an identical 
pressure coefficient distribution and cavitation number in both cases.  
 
3. With the computed 𝐶𝐶𝑝𝑝 distribu�on, find the pressure 𝑝𝑝(𝑡𝑡) experienced by a nucleus 

travelling on the foil suc�on side for 20 m/s and 40 m/s upstream velocity and incidence 
angles of 0°, 2° and 4°.  
 

Considering the flow as incompressible and neglec�ng the viscous losses, the Bernoulli’s 
equa�on along a streamline reads: 
 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 +
1
2
𝜌𝜌𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟2 = 𝑝𝑝(𝒙𝒙) +

1
2
𝜌𝜌𝑪𝑪2(𝒙𝒙) ⟹ 𝐶𝐶𝑝𝑝(𝒙𝒙) = 1 −

𝑪𝑪2(𝒙𝒙)
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟2

 

 
And then, the tangen�al velocity component 𝐶𝐶(𝒙𝒙) = |𝑪𝑪(𝒙𝒙)| at each point can be obtained 
through: 

𝐶𝐶(𝒙𝒙) = 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟�1− 𝐶𝐶𝑝𝑝(𝒙𝒙) 

 
We now want to track the mo�on of a par�cle traveling with the flow along the suc�on side 
of the foil. 
Knowing the velocity 𝑪𝑪(𝒙𝒙𝑖𝑖) at each point 𝒙𝒙𝑖𝑖 on the suc�on side of the foil, we are able to 
deduce the �mes 𝑡𝑡𝑖𝑖 at which the par�cle passed through these successive points. 
This can be made by using the following differen�al form: 
 

|𝑑𝑑𝒙𝒙| = |𝑪𝑪(𝒙𝒙)|𝑑𝑑𝑑𝑑 
 
And a�er temporal discre�za�on we get: 
 

|∆𝒙𝒙𝑖𝑖| ≈ |𝑪𝑪(𝒙𝒙𝑖𝑖)|∆𝑡𝑡𝑖𝑖            𝑖𝑖 = 0,1, … ,𝑁𝑁𝑝𝑝 − 1 
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With 𝒙𝒙𝑖𝑖 = 𝒙𝒙(𝑡𝑡𝑖𝑖) and 𝑁𝑁𝑝𝑝 is the number of points along the foil suc�on side. This is equivalent 
to: 
 

|𝒙𝒙𝑖𝑖+1 − 𝒙𝒙𝑖𝑖| = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 ≈ |𝑪𝑪(𝒙𝒙𝑖𝑖)|(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖) 
 
Which results in: 
 

𝑡𝑡𝑖𝑖+1 = �(𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖)2+(𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖)2

|𝑪𝑪(𝒙𝒙𝑖𝑖)| + 𝑡𝑡𝑖𝑖   with   𝑡𝑡0 = 0𝑠𝑠 

 
A�er performing the computa�on, we get a �me variable discre�zed with a non-constant 
�me step and, consequently, the path line of the fluid par�cles along the foil suc�on side. 
 

 
Figure 5: Spatial discretization along the hydrofoil pressure and suction sides. 

Knowing the pressure at each �me step, we recover the transient pressure signal 𝑝𝑝(𝑡𝑡) seen 
by a nucleus travelling on the foil suc�on side. 
This transient pressure is shown below for all incidence angles and upstream veloci�es. 
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Figure 6 : The pressure felt by a nucleus travelling from leading to trailing edge of the hydrofoil (𝛼𝛼 = 0°).  

  

Figure 7. Left: The pressure felt by a nucleus travelling from leading to trailing edge of the hydrofoil (𝛼𝛼 = 2°).  
Right: Zoom around minimum pressure. 
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Figure 8. Left: The pressure felt by a nucleus travelling from leading to trailing edge of the hydrofoil (𝛼𝛼 = 4°).  
Right: Zoom around minimum pressure. 

From these figures, we can see that for a given incidence angle, the temporal start and 
duration at which 𝑝𝑝(𝑡𝑡) < 𝑝𝑝𝑣𝑣 are different for the two upstream velocities.  
 
4. Using the code that you have developed in the part 3 on bubble dynamics, compute the 

radius evolu�on of a nucleus evolving under the transient pressure computed above.  
 
The relevant cases for cavita�on occurrence are 𝛼𝛼 = 2° and 𝛼𝛼 = 4°. Indeed, in those cases, 
there exist a region on the foil suc�on side where 𝑝𝑝(𝒙𝒙) < 𝑝𝑝𝑣𝑣. Therefore, we only focus on 
those cases to compute the bubble’s radius evolu�on with �me 𝑅𝑅(𝑡𝑡). 
To do so, we imposed the transient pressure func�on as forcing pressure at infinity  
𝑝𝑝∞(𝑡𝑡) = 𝑝𝑝(𝑡𝑡)  in the Rayleigh model (which considers an unbounded fluid domain). 
Since the cavity does not necessarily begin to grow at the foil leading edge, a fluid par�cle will 
travel during a certain �me on the foil suc�on side before cavita�on starts. Therefore, the 
time integration should start at the first time when 𝑝𝑝(𝑡𝑡) < 𝑝𝑝𝑣𝑣 on the par�cle trajectory, which 
we define as 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐. 
Moreover, the initial radius of the nucleus should be small, i.e 𝑅𝑅(𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐) = 𝜀𝜀  with  𝜀𝜀 ≈ 10−7 𝑚𝑚 
for the numerical simulation to be successful. The problem to solve takes the form: 
 

𝑅𝑅𝑅̈𝑅 + 3
2
𝑅̇𝑅2 = 𝑝𝑝𝑣𝑣−𝑝𝑝∞(𝑡𝑡)

𝜌𝜌
   with ini�al condi�ons  𝑅𝑅(𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐) = 𝜀𝜀 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅̇𝑅(𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐) = 0 

 
This can be solved by using the func�on ‘ode45’ in Matlab. For this, it is required to transform 
this second order nonlinear ODE into a first order differen�al system of the form: 

𝒚̇𝒚(𝑡𝑡) = 𝒇𝒇(𝒚𝒚, 𝑡𝑡) 
 
With 𝒚𝒚(𝑡𝑡) = (𝑦𝑦1(𝑡𝑡),𝑦𝑦2(𝑡𝑡)) = (𝑅𝑅(𝑡𝑡), 𝑅̇𝑅(𝑡𝑡)). 
The ODE can be now rewriten as: 
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�
𝑦̇𝑦1 = 𝑦𝑦2

𝑦̇𝑦2 =
1
𝑦𝑦1
�
𝑝𝑝𝑣𝑣 − 𝑝𝑝∞(𝑡𝑡)

𝜌𝜌
−
3
2
𝑦𝑦22�

 

 
In the func�on handle that evaluates the right-hand side of the ODE, the transient pressure 
obtained for successive �me steps (non-constant �me steps) should be interpolated on the 
internal �me steps that the solver uses. In Matlab, this func�on can be writen as: 
 
function dydt = Rayleigh(t,y,t_calc,p_inf,pv,rho)  
dydt=zeros(2,1);  
p_inf_int=interp1(t_calc,p_inf,t,'spline');  % Interpolation of pressure 
onto internal time of the solver 
dydt(1)=y(2); 
dydt(2)=1/y(1)*((pv-p_inf_int)/rho-3/2*y(2)^2); % Rayleigh ODE 
end 
 
% t_calc is the calculated time (non-constant time steps)in question 3 
% p_inf is the forcing pressure at infinity defined at each time 
% t is the internal time of the solver 
 
The temporal evolu�on of the radius 𝑅𝑅(𝑡𝑡) as well as its corresponding spa�al distribu�on 
𝑟𝑟(𝒙𝒙) on the foil suc�on side are given herea�er for the two incidence angles and the two 
upstream veloci�es considered. 
 

 
Figure 9. Case 𝛼𝛼 = 2°. Left: Radius evolution with time. Right: Radius spatial distribution over the foil suction side. 
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Figure 10. Case 𝛼𝛼 = 4°. Left: Radius evolution with time. Right: Radius spatial distribution over the foil suction side. 

In the temporal domain, the results show that for a given incidence angle, even if the 
maximum radius is the same, the radius evolu�on depends on the upstream velocity. In the 
spa�al domain, for a given incidence angle, the radius spa�al distribu�on over the foil suc�on 
side is independent of the upstream veloci�es. The later result is the consequence of an 
iden�cal pressure coefficient distribu�on and cavita�on number in both cases. 

5. Finally, es�mate the shape of the cavity by assuming that its thickness corresponds to the 
radius of the nucleus at a par�cular �me.    

 
The cavity thickness on the foil suc�on side is given herea�er for the two incidence angles (it 
is similar for the two upstream veloci�es). 

 

 
Figure 11: Cavity shape over the hydrofoil suction side for 𝛼𝛼 = 2°. 
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Figure 12: Cavity shape over the hydrofoil suction side for 𝛼𝛼 = 4°. 

For the 𝛼𝛼 = 2° case, the cavitation starts at an abscissa of 974.6 𝜇𝜇𝜇𝜇, the maximum cavity 
thickness is 83.36 𝜇𝜇𝜇𝜇, and the cavitation pocket extends over a length of 2.638 𝑚𝑚𝑚𝑚 in the x 
direction. 
For the 𝛼𝛼 = 4° case, the cavitation starts an abscissa of 27.5 𝜇𝜇𝜇𝜇, the maximum cavity 
thickness is 5.47  𝑚𝑚𝑚𝑚, and the cavitation pocket extends over a length of  4.49 𝑐𝑐𝑐𝑐 in the x 
direction. 
 
 


