

Exercises – Serie 2

Equilibrium of a nucleus

- 1. Write the equilibrium condition for a spherical nucleus of radius R, containing gas and vapor, within a liquid at rest at the pressure p_{∞} .
- 2. Assuming an isothermal transformation and a constant mass of gas, find the equation of the curve $p_{\infty}(R)$ as a function of the parameters p_{a0} and R_0 .
- 3. Find the radius R_c at which the curve $p_{\infty}(R)$ is minimum. Compute the corresponding pressure at this minimum. This pressure is the critical pressure p_c (or Blake threshold pressure).
- 4. Let us consider 3 bubbles of radius $R_0 = 1$ mm, 1 μ m and 1nm, in equilibrium at $p_{\infty 0} = 1$ bar. Compute the corresponding pressure of the gas p_{g0} inside each bubble (we assume a temperature of 20°C $\rightarrow p_v = 2300 \ Pa$, $S = 0.072 \ N/m$).
- 5. Find the critical radius and the critical pressure corresponding to each bubble. Are the bubbles in a stable equilibrium?
- 6. The difference p_v-p_c represents the static delay to cavitation of a nucleus. Compute this quantity for each bubble. Sketch the general form of the curve representing the static delay to cavitation as a function of the critical radius.
- 7. Using *Matlab* or *Excel*, plot the curve $p_{\infty}(R)$ corresponding to each bubble.