

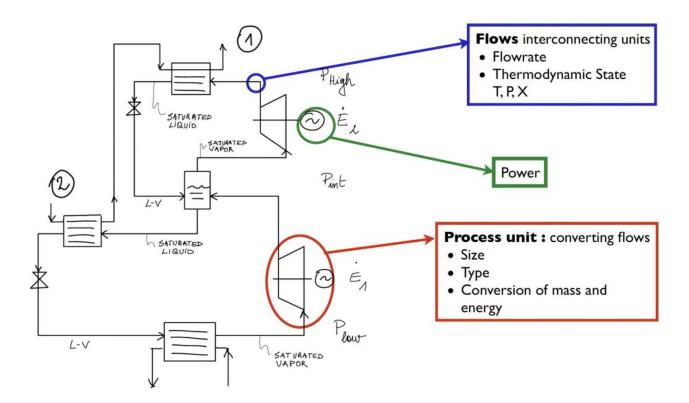
École Polytechnique Fédérale de Lausanne

Project - Part 3

Provide decision support to EPFL to choose a working fluid for the novel centralized heating system composed of a two-stage HP with maximum capacity of 6 MW based on environmental and economic characteristics.

Tasks:

- Build a thermodynamic model of the two-stage HP in the process simulation software Belsim VALI
- 2. Use measurement data for performing Degrees of Freedom (DoF) and data reconciliation analyses
- 3. Use the results of the data reconciliation to evaluate the thermodynamic and economic performances of the system

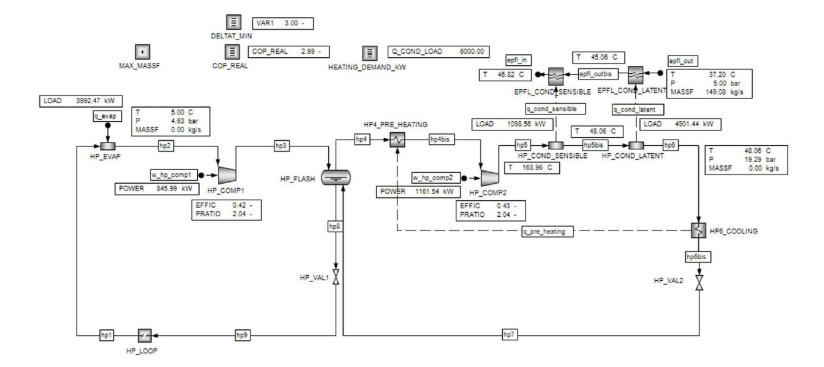

Modelling of a simple heat pump – Optional

Tutorials on SwitchTube

- Vali Tutorial
 - i. Opening Vali
 - ii. Creating a first PFD
 - iii. Defining Thermods
- 2. Heat pump compressions
 - i. Creating streams
 - Material
 - Mechanical
 - Defining units
 - Compressor
- 3. DoF analysis and running

- 4. Heat pump remaining steps
 - i. Defining units
 - Heat exchanger
 - Valves
 - ii. Defining streams
 - Thermal
- Closing loops
 - i. Defining units
 - Cutval
 - ii. Debugging
 - Error reporting
 - · DOF reporting
 - iii. Running

Modelling of a two-stage HP – Flowsheet



Belsim VALI

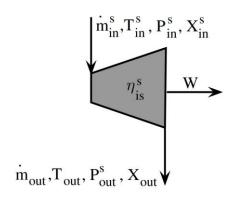
Flowsheeting and data reconciliation tool:

- Equation-based data validation and reconciliation (DVR) software, respecting energy and mass balances
- Uses information redundancy and conservation laws to correct measurements and convert them into accurate and reliable information
- Used in upstream, refinery, petrochemical and chemical plants as well as power plants, including nuclear power stations

Modelling of a two-stage HP – Belsim VALI

Working Fluids

ASHRAE number	Name	Group	GWP	ODP	Lifetime τ [yr]	Safety Group
R-290	Propane	HC	3.3	0	12	A3
R-600	Butane	$^{\mathrm{HC}}$	4	0	12	A3
R-600a	Isobutane	$^{\mathrm{HC}}$	3	0	12	A3
R-717	Ammonia	N	0	0	0.02	B2L
R-1234yf	Tetrafluoropropene	$_{ m HFO}$	4	0	0.03	A2L
R-1234ze	Tetrafluoropropene	$_{ m HFO}$	6	0	0.05	A2L
R-1270	Propylene	$_{\rm HO}$	1.8	0	12	A3
R-12	Dichlorodifluoromethane	CFC	10'900	1	100	A1


- All the steps described next need to be carried out for the R-290 and another working fluid of choice
- → Remember to use the corresponding Vali model!
- Justify your choice considering thermophysical and economic features, safety concerns, environmental impact, and other properties you judge relevant

DoF Analysis – Flowsheet

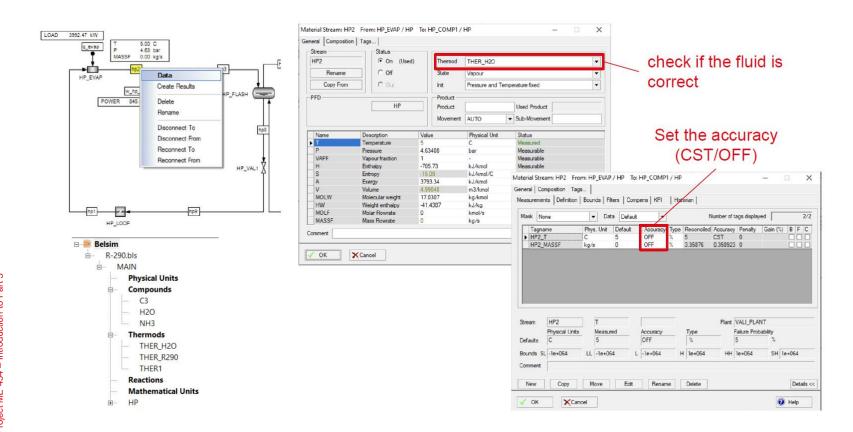
• Degrees of Freedom: $n_{DoF} = n_{variables} - n_{equations}$

e.g. Compressor unit

- $n_{variables} = 14$
- $n_{equations} = 9$
- Mass balance $\dot{m}_{out} \dot{m}_{in}^{s} = 0$
- Enthalpy of the input $h_{in} h(T_{in}^s, P_{in}^s, X_{in}^s) = 0$
- Entropy of the input $s_{in} s(T_{in}^s, P_{in}^s, X_{in}^s) = 0$
- •
- $n_{DoF} = 5$

 The DoF analysis needs to be carried out for the process flowsheet of the whole two-stage heat pump

DoF Analysis – Excel Sheet



Tag Name	Physical Unit	Option 1	Option 2	Option 3	Option 4	Option 5
HP_COMP1_EFFIC	-	OFF	CST	CST	OFF	CST
HP_COMP1_PRATIO	-	CST	OFF	CST	OFF	OFF
HP_FLASH_DP	bar	OFF	CST	OFF	CST	CST
HP_COMP2_EFFIC	-	CST	CST	CST	OFF	CST
HP_COND_LATENT_DP	bar	OFF	OFF	CST	CST	OFF
HP_EVAP_DP	bar	CST	OFF	CST	CST	OFF
COP_REAL	-	OFF	OFF	OFF	OFF	CST

- 1. Perform the DoF analysis of the model of the two-stage heat pump
- 2. Evaluate which of the 5 options in the Excel file is the right one:
 - **OFF** = feeding the model with a constant value of these variables would lead to overspecification
 - **CST** = specifications to be provided to solve the model
- 3. Open one of the R-XXX_empty.bls file in Vali and activate the necessary TAGS
 - → Do not change any values but just change the accuracy tab from OFF to CST
- 4. Run the model and hope for convergence
- Don't forget to activate the Edit Mode!

DoF Analysis – Belsim VALI

Data reconciliation

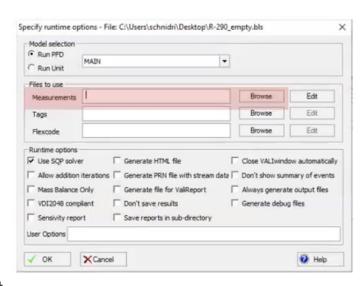
- Measured data contains inconsistencies:
 - Random errors → sensor location, plant instabilities, measurements taken at different times, etc.
 - Systematic errors → sensor calibration, measurement bias, intrinsic sensor precision, etc.
- → Data reconciliation ensures that there are no violations of mass and energy conservation laws
- Data reconciliation relies on measurement redundancy
 - → The measured values of the variables that are not set as specifications for the resolution of the model are redundant
- The data reconciliation problem statement minimizes the error between the measured values and the validated one
 - → Validated values solve the system model equations

Data reconciliation – Measurements

R-290 LT 1.txt

```
COP REAL 3.56768567878831 OFF -
DELTAT_MIN_VAR1 3.06964499386959 CST -
EPFL_IN_P 4.90108202595729 -0.1 bar
EPFL IN T 39.5065216193497 0.8 C
EPFL_OUT_MASSF 165.200133901951 -0.25 kg/s
EPFL_OUT_P 5.23774053831585 -0.1 bar
EPFL_OUT_T 30.371203187654 0.8 C
EPFL_OUTBIS_P 4.85457838850562 -0.1 bar
EPFL OUTBIS T 39.2761806539843 0.8 C
HP COMP1 EFFIC 0.438351 OFF -
HP COMP1 PRATIO 1.84759478339323 OFF -
HP COMP2 EFFIC 0.427407352518534 OFF -
HP1 T 1.97005686815828 0.8 C
HP2 MASSF 3.07024638802827 -0.25 kg/s
HP2_T 5.20112206588965 0.8 C
HP5_T 132.088442522007 0.8 C
HP5BIS T 40.1542407296763 0.8 C
HP6_MASSF 3.80180020682021 -0.25 kg/s
HP6_T 41.8523397444798 0.8 C
MAX_MASSF_HP2 11.5304884748294 0.5 -
MAX_MASSF_HP6 12.7425721083489 0.5 -
Q_COND_LATENT_LOAD 4466.64198678494 -0.5 kW
Q_COND_LOAD 5239.04822427638 CST -
Q_COND
Q_EVAP
       For 7 working fluids
W_HP_C
W_HP_c For 6-11 periods
ARCHIV
       For 2 temperature levels
DATA T
DATA
```

S	Values	Units
100°	131	The


COP_REAL	3.567685679	OFF	-
DELTAT_MIN_VAR1	3.069644994	CST	-
EPFL_IN_P	4.901082026	-0.1	bar
EPFL_IN_T	39.50652162	0.8	С
EPFL_OUT_MASSF	165.2001339	-0.25	kg/s
EPFL_OUT_P	5.237740538	-0.1	bar
EPFL_OUT_T	30.37120319	0.8	С
EPFL_OUTBIS_P	4.854578389	-0.1	bar
EPFL_OUTBIS_T	39.27618065	0.8	С
HP_COMP1_EFFIC	0.438351	OFF	-
HP_COMP1_PRATIO	1.847594783	OFF	-
HP_COMP2_EFFIC	0.427407353	OFF	-
HP1_T	1.970056868	0.8	С
HP2_MASSF	3.070246388	-0.25	kg/s
HP2_T	5.201122066	0.8	С
HP5_T	132.0884425	0.8	С
HP5BIS_T	40.15424073	0.8	С
HP6_MASSF	3.801800207	-0.25	kg/s
HP6_T	41.85233974	0.8	С
MAX_MASSF_HP2	11.53048847	0.5	-
MAX_MASSF_HP6	12.74257211	0.5	-
Q_COND_LATENT_LOAD	4466.641987	-0.5	kW
Q_COND_LOAD	5239.048224	CST	-
Q_COND_SENSIBLE_LOAD	730.7277	-0.5	kW
Q_EVAP_LOAD	3590.426987	-0.5	kW
W_HP_COMP1_POWER	635.1348379	-0.5	kW
W_HP_COMP2_POWER	801.2989638	-0.5	kW
ARCHIVE -T Reconciled/recor	nc_R-290_LT_1	l.txt	
DATA TAG			
DATA			

Data reconciliation – Belsim Vali

With the calibrated model:

- 1. Upload the measurement file
- Run the model to perform data reconciliation
- → Make sure to have a folder named "Reconciled" in the same folder as your Vali model!
- a. If converged: you can proceed with next measurement
- b. If not converged: you should re-run the model without measurements, then re-run it with the previous measurements, load the results and finally re-run with the current measurement file

Data reconciliation – Results

- The output file is generated if Vali has converged to a feasible solution
- → It includes both measured and reconciled values

PCOND_T-EFFIC 8.438351100008E+21 0.423483883089	Tags	Measured value	Measured accuracy	Reconciled value	Reconciled accurac	Units
DELTAT_MIN_VAR1 2.97675 0.00000 2.97675 0.00000 - MAX_MASSF_HP2 11.6389 0.500000 12.4538 0.329711 -	HP_COMP1_EFFIC	0.438351	-1.00E+20	0.423483	-0.883089	-
MAX_MASSF_HP6 12.9881 0.500000 12.7812 0.336194 - C	HP_COMP1_PRATIO	1.75565	-1.00E+20	1.8726	-0.548547	-
W_HP_COMP1_POWER 652.884500000 663.321439678 kW W_HP_COMP2_POWER 839.883500000 839.442279404 kW	HP_FLASH_DP	0	0.00E+00	0	0	bar
HP5_T 127.247 0.800000 133.986 0.390448 C HP5BIS_T 40.1457 0.8000000 39.1868 0.291387 C HP6 T 42.2654 0.800000 39.1868 0.291401 C	HP_COMP2_EFFIC	0.430301	-1.00E+20	0.449755	-0.984102	-
HP6_MASSF 3.78124250000 3.75418851219E-01 kg/s Q_COND_LATENT_LOAD 4312.18500000 4439.68534480E-01 kW	HP_COND_LATENT_DP	0	0.00E+00	0	0	bar
HP1_T 1.96268 0.800000 0.162730 0.343093 C Q_EVAP_LOAD 3779.42500000 3720.93966408E-01 kW	HP_EVAP_DP	0	0.00E+00	0	0	bar
Q_COND_SENSIBLE_LOAD 787.213500000 784.000302565 kW EPFL_OUTBIS_T 37.4638 0.800000 36.2101 0.291401 C EPFL_OUTBIS_P 5.08031100000 5.08031100000 bar	COP_REAL	3.73251	-1.00E+20	3.47606	-0.23813	-
EPFL_IN_T 38.4135 0.800000 37.2873 0.291692 C EPFL_IN_P 5.12703100000 5.12703100000 bar	HP_COND_SENSIBLE_DP	0	0.00E+00	0	0	bar
EPFL_OUT_T 30.6327 0.800000 30.1158 0.291099 C EPFL_OUT_P 4.99046100000 4.99046100000 bar EPFL_OUT_MASSF 173.386250000 173.300249953 kg/s	EPFL_COND_SENSIBLE_DP1	0	0.00E+00	0	1E+20	bar
EFFL_VOI_nL35F 173.336 -1230000 173.330 -1.49353 kg/s HPZ_SNOL 1.000000 0.100000E+21 -14.7569 0.67199E-01 kJ/kmol/C HP4BIS_SMOL 1.00000 0.100000E+21 -16.4407 0.528417E-01 kJ/kmol/C	EPFL_COND_LATENT_DP1	0	0.00E+00	0	1E+20	bar

Performance evaluation – Thermodynamics

Using the reconciled data:

1. Derive a polynomial function of the Carnot factor as a function of the ambient temperature for both stages of the heat pump

•
$$C_{Carnot}^*(t) = a \cdot T_{amb}^2 - b \cdot T_{amb} + c$$

2. Minimize the mean square error between the Carnot factor calculated with the given operating conditions and the Carnot factor calculated with the polynomial function over all measurement sets

•
$$C_{Carnot}(t) = \frac{Q_{cond}(t)}{W_{tot}(t)} \cdot \frac{T_{cond}(t) - T_{evap}(t)}{T_{cond}(t)}$$

•
$$\min_{a,b,c} \sum_{t} \left(C_{Carnot}^*(t) - C_{Carnot}(t) \right)^2$$

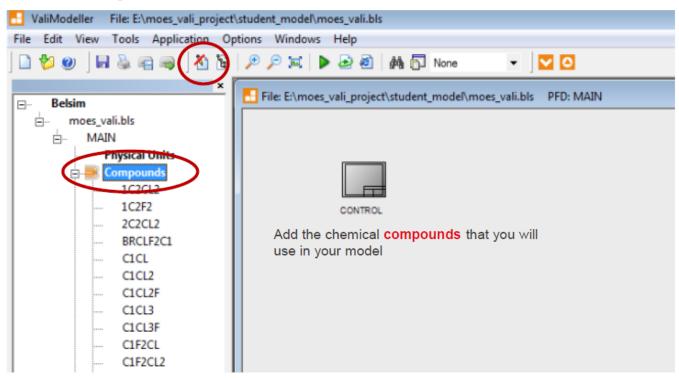
3. Calculate the Carnot factor for the temperatures of the clusters and plot the Carnot factor vs ambient temperature

Performance evaluation – Economics

Using the reconciled data:

- 1. Size the heat exchangers and compressors for the worst case, i.e. highest heat demand, present in the measurement set
- 2. Calculate the specific capital cost of the heat pump considering compressors and heat exchangers
- Use reconciled data for different working fluids to compare the thermodynamic and economic performances of the system in each case

Deliverables - Part 3


For the different working fluids:

- Size of the heat exchangers and compressors
- Total cost of the system including the investment cost of the heat exchangers and compressors
- → Provide decision support to EPFL to choose the working fluid for the two-stage HP
- Unit cost of the system per kW of heat pump capacity installed
- Carnot factor as a polynomial function of the ambient temperature T_{ext}
- → Information to be used in Part 4

EPFL

Vali modelling basics

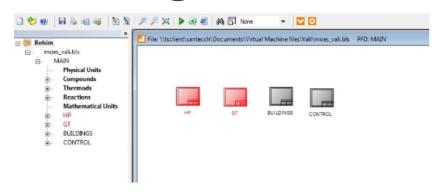
First turn editing on

Vali modelling basics

Giulia Giacomini

Add your thermods:

- Thermods might include only 1 compound as well as they can be a mixture of several compounds
- You must define the required compounds before being able to define the thermods



Add your chemical reactions:

Needed only when you use a reactor with a user defined reaction

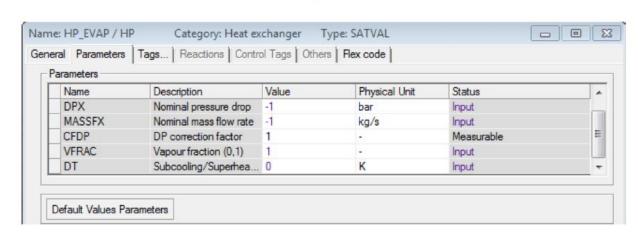
EPFL

Vali modelling basics

- On: the unit is operated normally
- Off: the UNIT does exist but is currently shutdown so that nothing flows to or from it. As a consequence, the streams connected to that unit will be shutdown as well
- Out: The UNIT is considered as not existing at all.
- STREAMS connected only to units that are OUT becomes OUT themselves, which means that they will not be part of the model during the next run

Choose the PFD/Unit status...

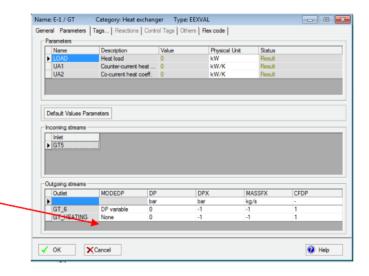
CONTROL Rename C On (Used) Off Out Show PFD CONTROL Graphical Infos Symbol VALI FlowSheet	eneral	
Rename C Off Out Show PFD CONTROL Graphical Infos Symbol VALI FlowSheet	PFD	Status
Show PFD CONTROL Graphical Infos Symbol VALI FlowSheet	CONTROL	C On (Used)
Show PFD CONTROL Graphical Infos Symbol VALI FlowSheet	Rename	COff
CONTROL Graphical Infos Symbol VALI FlowSheet Zone		← Out
Graphical Infos Symbol VALI FlowSheet Zone	Show PFD	
Symbol VALI FlowSheet	CONTROL	
Zone	Zone	
	Zone	
Comment	Comment	


Commonly used Vali units

Heat Exchanger units: Require at least 1 material stream inlet, 1 material stream outlet and a thermal stream

SATVAL

- Used to obtain saturated fluid (i.e. saturated liquid or saturated vapor) in the outlet
- · Outlet vapor fraction must be defined
- Possible to define superheating/subcooling


Commonly used Vali units

Heat Exchanger units: Require at least 1 material stream inlet, 1 material stream outlet and a thermal stream

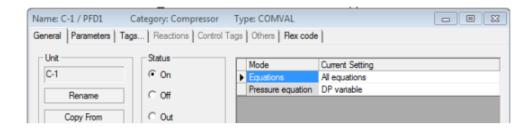
EEXVAL

- A more flexible heat exchanger unit
- Compared to SATVAL more properties should be defined

If Pin=Pout put DP variable to material outlet

Don't forget to specify DP=0 in the Tags

tab


Commonly used Vali units

Compressors and valves

COMVAL

- Only compressor unit available on Vali
- Requires a material inlet, a material outlet and a mechanical stream
- Hint: don't forget to set Pressure equation DP variable

DPVAL

- Valve unit
- Requires a material inlet and a material outlet
- Hint: don't forget to set Pressure equation DP variable

Commonly used Vali units

Separation, blackbox units

LVEVAL

- Liquid-vapor separation unit on Vali
- Requires at least a material stream inlet and 2 material stream outles (1 liquid and 1 vapor)

BBXVAL

- Blackbox unit
- Very flexible: can be used with material streams, mechanical streams, thermal streams or combination of them

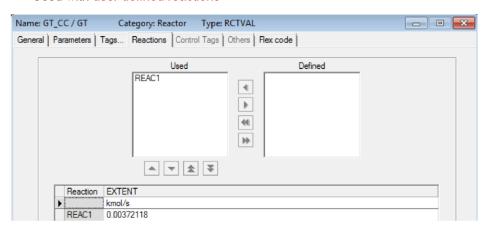
CUTVAL

- A type of Blackbox unit
- Used to break the material or pressure loops that can appear when dealing with closed cycles like for example the steam/water cycle in a power plant or a refrigeration cycle



Commonly used Vali units

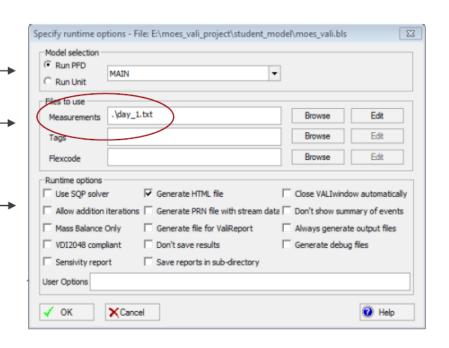
Reactor units: Require the reactants (e.g. air and natural gas) and products (e.g. fumes) as material streams


BATVAL

- A reactor unit that takes the atomic balances, energy balance and pressure drop into account
- · Well suited for reactors with unknown reaction stoichiometry

RCTVAL

- Similar to BATVAL: takes the atomic balances, energy balance and pressure drop into account
- Used with user defined reactions


How to run a Vali model

Choose what you want to run (i.e. a PFD, a unit or the whole model)

Choose the measurement file that you want to run your model with (not obligatory)

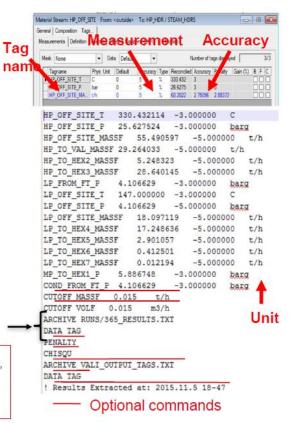
Choose the run options:

 Generate HTML file is highly recommended as it creates a page with the errors in your model

Vali input file – Measurements

DH HEATING LOAD	HD6 T	GT1 T	HD ELECTRIC VARI	GT FLECTRIC VARI	GT3 MASSE	HP1 MASSF
6438.6384	_	_	1670.83281		_	_
6212.7135	40.90384615	5	1656.75371	63.915238	0.008604093	28.534607
5647.9338	39.23076923	6	1392.58381	1.00E-05	1.00E-05	28.13084
3897.0433	34.04423077	9.1	898.07281	1.00E-05	1.00E-05	18.54226
0	22.5	16.1	1.00E-05	1.00E-05	1.00E-05	1.00E-05
0	22.5	18.6	1.00E-05	1.00E-05	1.00E-05	1.00E-05
0	22.5	20.1	1.00E-05	1.00E-05	1.00E-05	1.00E-05
0	22.5	19.6	1.00E-05	1.00E-05	1.00E-05	1.00E-05
903.66779	25.17692308	14.4	154.48681	1.00E-05	1.00E-05	4.3892858
2541.5621	30.02884615	11.5	516.42961	1.00E-05	1.00E-05	12.423414
5309.058	38.22692308	6.6	1274.28001	1.00E-05	1.00E-05	25.653934
7850.6021	45.75576923	2.1	1880.26801	606.75306	0.075659966	28.844983

- EPFL heat demand data
- Heat pump refrigerant temperature at point 6 (HP6_T: see the figure in the project description)
- Air inlet temperature to the fuel cell (FC1_T)
- Net electricity consumption of the heat pump (HP_ELECTRIC_VAR1)
- Net electricity production of the fuel cell (GT_ELECTRIC_VAR1)
- Mass flow rate of the natural gas inlet to the fuel cell (GT3_MASSF)
- Mass flow rate of the heat pump refrigerant at point 1 (HP1_MASSF)
- Compression ratio of the first stage of the heat pump (HP COMP1 PRATIO)
- Compression ratio of the second stage of the heat pump (HP1_COMP2_PRATIO)
- Mass flow rate of the heat pump at point 4 (HP4_MASSF)
- Mass flow rate of the fuel cell at point 1 (GT1_MASSF)



Vali input file – Measurements

- Tag name: Specific name you used on your Vali model
- Measurement: measured value of the tag
- Accuracy: Measurement inaccuracy
 - CST: For the measurements that you want to keep constant
 - OFF: For the properties that you want Vali to calculate
 - x: For the measurements with x% accuracy
 - x: For the measurements with x absolute accuracy
- Unit: unit of the measurement

To archive the results in a txt file

Info on the output file have to be included in the Vali input txt file. In the example, the generated output is called "365_results" and it will be stored in folder "runs". "DATA TAG" is a command that simply tells Vali to copy all the tags of the input files.

