
AMPL for MILP
Alessio Santecchia

Ermanno Lo Cascio

Jordan Holweger

Julia Granacher

Luise Middelhauve

Rafael Amorim Leandro de Castro Amoedo

Xiang Li
Prof. François Maréchal

MILP problem

Introduction MILP problem
2

A Mixed-Integer Linear Programming problem is a mathematical
optimisation program in which some of the variables are constrained to
be integers, while others are allowed to be continuous. The necessary

condition for a mathematical problem to be part of the MILP class is that
both the objective functions and the constraints have to be linear

IPESE
Industrial Process and

Energy Systems Engineering

AMPL

Introduction AMPL Definition
3

A Mathematical Programming Language (AMPL)

High-level algebraic modelling language to build and solve complex problems
for large-scale mathematical computing

1. Natural syntax (concise and easy to read)
2. Good scripting language to process data

• Looping
• If…then…else… command

3. Can handle continuous and integer variables
4. Many available solvers

• Linear and convex quadratic (e.g. CPLEX, Gurobi,…)
• Nonlinear (e.g. MINOS, SNOPT, CONOPT,…)

https://ampl.com/resources/the-ampl-book/

https://ampl.com/resources/the-ampl-book/

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: modelling

Introduction AMPL Definition
4

Modelling steps

Mathematical
formulation of

MILP problems

Identify the parameters and variables

Formulate the objective function

Add constraints

AMPL Solver
e.g. Gurobi Results

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: types of file

Introduction AMPL Types of file
5

1. .mod
Main file where the entire model is implemented. It contains the definition of the
problem variables, constraints and objective function. All the laded data are
processed in this file.

2. .dat
It contains all the input data to the problem.

3. .run
Commands file where the model and the data files are loaded. The major run
options are defined here (e.g. selection of the solver) together with the solve
command and the variables that have to be shown after the convergence is
reached.

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Parameters
6

Parameter declaration

A parameter is a quantity not subjected to changes during the optimisation. It can be
used only after it is declared.

 param t;
 param t := 1;

The operator default initialises the parameter while allowing its value to be overridden
by a data statement or changed by subsequent assignments.

 param a default 5;
 param b := 3;
 param c := a+b;

A parameter can also be a vector:

 param C;
 param cost{1..C}; #numeric index from 1 to C

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Sets
7

Sets

This is a fundamental component of an AMPL model. Almost all of the parameters,
variables and constraints are indexed over sets.

 set Technologies default {};

It is possible to refer to a specific element of the vector by doing:

 …cost[x]…. #where x is a numeric index

If a parameter has to be editable, instead of being introduced by :=, it has to be
declared with the command default and later changed by using let

 param c default 100;
 ….
 let c := 200;

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Sets
8

A set can be an unordered collection of character strings.

 set Technologies = {“boiler”, “PV”, “HP”};
 or
 set Technologies := boiler PV HP;

Set members can also be numbers or even a mixture of numbers and strings.
The by clause can be used to specify the spacing:

 set years = 1990..2020 by 5;

It is also possible to construct new sets from existing ones (A and B) by using the
following operators:

 A union B # union: in either A or B
 A inter B # intersection: in both A and B
 A diff B # difference: in A but not B
 A symdiff B # symmetric difference: in A or B but not both

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Sets
9

Two other AMPL operators, in and within, are used to test the membership of sets:

 “boiler” in Technologies
 # true only if “boiler” is a member of the set Technologies

 {“boiler”, “PV”} within Technologies
 # true only if {“boiler”, “PV”} is a subset of the set Technologies

A parameter can be indexed over multiple sets.

 param Qheating{b in Buildings, t in Time} default 0;

It is possible to assign values to the parameters indexed over the two sets Buildings
and Time. To do so, one should specify the indexes followed by the corresponding
values. To improve readability it is convenient to define the parameter as follows:

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Sets
10

 param Qheating :=
 “BC” 1 value1
 “BC” 2 value2
 “CE” 1 value3
 “CE” 2 value4;

An element of the multi-dimensional parameter can be accessed by using the square
brackets:

 … Qheating[“BC”, 1] …

It is also possible to read values from a .txt file and assign them to a parameter. The file
must be unformatted in the sense that it contains nothing except the values to be read.
The values in the file are assigned to the entries in the list in the order that they appear.

 param time_steps := 5;
 read {t in 1..time_steps} t_op[t] < values.txt;

From a file values.txt containing only:

 100 200 450 135 700

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Variables
11

Variables declaration

Variables represent unknown quantities whose values is calculated by the solver. As the
parameter they have to be declared before being used.

 var x;
 var mult{Utilities};

Zero-one (or binary) variables for modelling logical conditions:

 var use{Utilities} binary;

The lower bound has to be specified in order to avoid unfeasible evaluations and
facilitate the resolution of the optimisation problem:

 var mult{Utilities}>=0;

Or even the higher bound:

 var mult{Utilities}>=0, <=10000;

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Objective function
12

Objective function

It is the function that has to be maximise or minimise. It is declared with the command
maximize or minimize followed by the name of the objective and by a mathematical
expression of sets, parameters and variables previously defined.

 minimize Total_cost : Inv_cost + Op_cost;

The expression can be even more complicated:

minimize Total_cost : sum{tc in Technologies} (cinv1[tc] * use[tc] + cinv2[tc] * mult[tc]) +
 sum {u in Utilities, t in Time} (cop1[u] * use_t[u,t] + cop2[u] * mult_t[u,t]) * top[t];

However, it is highly recommended to avoid a complicated expression of the objective
function since it considerably slows down the resolution of the problem!!

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Constraints
13

Mathematical constraints

The simplest kind of constraint declaration begins with the keywords subject to, a
name, and a colon. Even the subject to is optional: AMPL assumes that any
declaration not beginning with a keyword is a constraint. Following the colon is an
algebraic description of the constraint, in terms of previously defined sets, parameters
and variables.

 subject to name:
 x <= 4;

Obs: The name of a constraint, like the name of an objective, is not used anywhere
else in an algebraic model!!.

Most of the constraints in large programming models are defined as indexed
collections, by giving an indexing expression after the constraint name.

 subject to size_cstr1{u in Utilities, t in Time}:
 Fmin[u]*use_t[u,t] <= mult_t[u, t];

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Operators
14

Iterated operators (sum, prod, min and max)

It is possible to iterate operations over sets. In particular, most large-scale linear
programming models contain iterated summations (sum):

InvCost = sum{tc in Technologies} (cinv1[tc] * use[tc] + cinv2[tc] * mult[tc]);

The arithmetic expression is evaluated once for each member of the set Technologies,
and all the resulting values are added.

Other iterated arithmetic operators are prod for multiplication, min for minimum, and
max for maximum. For example one could write:

 …max{t in Technologies} mult[t]…

to obtain the greatest mult among those attributed to each member t of the set
Technologies

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL If-then-else
15

Conditional operator if-then-else

It returns one of two different arithmetic values depending on whether the logical
expression is true or false. For example:

 param Qheatingdemand{h in HeatingLevel, t in Time} :=
 if h == 'MediumT' then
 sum{b in MediumTempBuildings} Qheating[b,t]
 else
 sum{b in LowTempBuildings} Qheating[b,t];

Qheatingdemand is a bi-dimensional parameter defined for each HeatingLevel h and
Time t. If the HeatingLevel h is equal to ‘MediumT' then Qheatingdemand is
calculated, for each Time t as the sum of all the demands Qheating of the buildings b
belonging to the MediumTempBuildings set. The LowTempBuildings set is used
otherwise.

IPESE
Industrial Process and

Energy Systems Engineering

AMPL: useful commands

Introduction AMPL Commands file
16

Commands file (.run)

The commands file with extension .run is often used to load both the model and the
corresponding data. This is done by including the following lines:

 model model_name.mod;
 data datafile_name.dat;

Additional options, such as the used solver, are declared with the command option:

 option solver gurobi;

Finally, the commands solve and display are used to compute the model and output to
the command window/terminal the desired quantities:

 solve;
 display Qheating;

Project structure

Commands file
17

.run

Energy Technologies

.mod

.dat

ET 1

.mod

.dat

ET 2

…
.mod

.dat

Model

Buildings

.dat
B1

.dat
B2

…

• All the .mod and .dat file are finally loaded into the commands file (.run)

• Additional running options can be specified here:
1. Solver
2. Maximum number of iterations

• The display command is used to output the optimised variables

Introduction AMPL Project files

Project structure

Commands file
18

.run

Energy Technologies

.mod

.dat

ET 1

.mod

.dat

ET 2

…
.mod

.dat

Model

Buildings

.dat
B1

.dat
B2

…

• All the .mod and .dat file are finally loaded into the commands file (.run)

• Additional running options can be specified here:
1. Solver
2. Maximum number of iterations

• The display command is used to output the optimised variables

Introduction AMPL Project files

Project files: .mod and .dat

ModelProject files
19

Main model file moes2020.mod

• Sets
• Parameters
• Variables
• Constraints

• Utility sizing constraints
• Heating balances (MT and LT)
• Resource balances
• Electricity balances

• Objective function

Main data file moes2020.dat

• Define the composition of each set
• Define the generic parameters of the model (top, irradiation, Text, c_spec, …)

.mod

.dat

Model

Introduction AMPL

Xiang
should be moes.mod

Xiang
should be moes.dat

Project structure

Commands file
20

.run

Energy Technologies

.mod

.dat

ET 1

.mod

.dat

ET 2

…
.mod

.dat

Model

Buildings

.dat
B1

.dat
B2

…

• All the .mod and .dat file are finally loaded into the commands file (.run)

• Additional running options can be specified here:
1. Solver
2. Maximum number of iterations

• The display command is used to output the optimised variables

Introduction AMPL Project files

Project files: Buildings

Buildings
21

Buildings

.dat
B1

.dat
B2

…

Each building is loaded into the model using a .dat file only

1. Add the building to the corresponding set
 (MediumTempBuild or LowTempBuild)

2. Define some building-specific parameters:
• Floor area
• kth and ksun
• …

A .mod file could be used to model the refurbishment
• Additional binary variable (refurbishment option)
• Equation defining the new heating demand of the building
• Equation for the cost of refurbishment

Introduction AMPL Project files

Project structure

Commands file
22

.run

Energy Technologies

.mod

.dat

ET 1

.mod

.dat

ET 2

…
.mod

.dat

Model

Buildings

.dat
B1

.dat
B2

…

• All the .mod and .dat file are finally loaded into the commands file (.run)

• Additional running options can be specified here:
1. Solver
2. Maximum number of iterations

• The display command is used to output the optimised variables

Introduction AMPL Project files

Project files: Energy Technologies

ET
23

Each energy technology is introduced using the model-data structure

Energy Technologies

.mod

.dat

ET 1

.mod

.dat

ET 2

…

The data file contains:
• Definition of Maximum and minimum scaling factors
• Efficiencies
• Supply temperature
• …

The mod file contains the modelling equations:
• Supplied heat
• Resource consumption (Natural gas, electricity, biogas, …)
• …

Introduction AMPL Project files

Project structure

Commands file
24

.run

Energy Technologies

.mod

.dat

ET 1

.mod

.dat

ET 2

…
.mod

.dat

Model

Buildings

.dat
B1

.dat
B2

…

• All the .mod and .dat file are finally loaded into the commands file (.run)

• Additional running options can be specified here:
1. Solver
2. Maximum number of iterations

• The display command is used to output the optimised variables

Introduction AMPL Project files

Overall picture of the model

Importance of setsIntroduction Project structure
25

Sets are fundamental to model large-scale optimisation problems

They are used to group elements of the same type and repeat operations

In the project, sets are defined for the main elements:
• Time steps
• Buildings
• Technologies
• Grids (to buy resources)
• Resource layers (Natural gas, electricity, biogas)

Additional sets are used to group elements because of common features
• Low and Medium temperature buildings
• Type of utility (heating, electricity producers and consumers)
• Layer of the utility

Some sets are strictly related to each other since they share same elements!

Utilities

AMPL Project files

Demand-side sets

Demand-side setsIntroduction
26

MILP

…

Building 1

Building 2

…

Building 24

…
LowT

MediumT

Building 3

Buildings
• List of buildings

LowTempBuildings
• Buildings heated by low T loop

MediumTempBuildings
• Buildings heated by medium T loop

HeatingLevel
• Two options (low/medium)
• Classify buildings
• Each utility can provide heat to

both loops

Qheatingdemand['LowT',t]

Qheatingdemand['MediumT',t] mult_heating_t[u,t,'LowT']
mult_heating_t[u,t,'MediumT']

Project structureAMPL Project files

…

…

Utilities set

Introduction
27

…

Boiler

PV

Fuel Cell

HP

…

…ElecGridBuy ElecGridSell NatGasGridTechnologies
• List of ET

Grids
• Grid units to buy resources

Utilities
• List of utilities (technologies + grids)
• Utilities are the object of optimisation

1. Binary variables (use, use_t)
var use{Utilities} binary;
var use_t{Utilities, Time} binary;

2. Continuous variabels (mult, mult_t)
var mult{Utilities}>=0;
var mult_t{Utilities, Time}>=0;

AMPL Project files Project structure Utilities

…

…

Layers and other sets

28

…

Boiler

PV

Fuel Cell

HP

…

…

Natgas

Electricity

Biogas

…ElecGridBuy ElecGridSell NatGasGrid

…

Heating

ElectricitySup

ElectricityCon

UtilityType
• Type of technology
• List of ET sub-sets

Layer
• Type of consumed/produced resource
• List of ET sub-sets

Other useful sets…

AMPL Project files Project structure Other setsIntroduction

…

…

Overall structure of the sets

Overall viewIntroduction
29

…

Boiler

PV

Fuel Cell

HP

…

…

Building 1

Building 2

…

Building 24

…

Natgas

Electricity

Biogas

…ElecGridBuy ElecGridSell NatGasGrid

…
LowT

MediumT

Building 3

…

Heating

ElectricitySup

ElectricityCon

AMPL Project files Project structure

Constraints: heating balances

Heating balancesIntroduction
30

Heating balances:

1. LT_balance{t in Time}

Low temperature demand = sum over the utility set of the heat supplied by
each utility of type heating (mult_heating_t[u,t,’LowT’])

2. MT_balance{t in Time}

Medium temperature demand = sum over the utility set of the heat
supplied by each utility of type heating (mult_heating_t[u,t,’MediumT’])

Observe that for each utility u and time step t:
mult_t[u,t] = mult_heating_t[u,t,’LowT’] + mult_heating_t[u,t,’MediumT’]

AMPL Project files Project structure

Constraints: resource balance

Resource balanceIntroduction
31

Resource balance:

1. Sum of the FlowInUnit of the utilities over each layer l = Sum of the
FlowOutUnit of the utilities over the same layer l (except for electricity layer)

where…

FlowInUnit[l, u, t] = mult_t[u,t] * Flowin[l,u];
FlowOutUnit[l, u, t] = mult_t[u,t] * Flowout[l,u];

Observe that for each utility u and layer l:
Flowin[l,u] and Flowout[l,u] are calculated using the reference size

AMPL Project files Project structure

Constraints: electricity balance

Introduction
32

Electricity is considered to be a resource as well…

Electricity balance constraint:

1. Total electricity demand + Sum of the FlowInUnit of the utilities over the sub-set
ElectricityCons = Sum of the FlowOutUnit of the utilities over the sub-set
ElectricityProd

Observe that:
UtilitiesOfType[‘ElectricityCons'] and UtilitiesOfType[‘ElectricityProd'] are two

sets indexed over the elements of the set UtilityType

AMPL Project files Project structure Electricity balance

Objective function

Objective functionIntroduction
33

1. Operating cost

OpCost = sum {u in Utilities, t in Time} (cop1[u] * use_t[u,t] + cop2[u] * mult_t[u,t]) * top[t];

2. Annualised investment cost

InvCost = sum{tc in Technologies} (cinv1[tc] * use[tc] + cinv2[tc] * mult[tc]);

Where:
cop1[u] is the fixed operating cost of the utility u [CHF/h]
cinv1[tc] is the fixed investment cost of the technology tc [CHF/y]
cop2[u] is the variable operating cost of the utility u [CHF/h]
cinv2[tc] is the variable investment cost of the technology tc [CHF/y]

The objective function is the Total cost (annual) defined as the same between:

AMPL Project files Project structure

Bullshit Text Bullshit

Thanks for your attention and
ENJOY!

