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Solving non linear optimization problems
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Optimisation problem

min f(X’UCL’I"iCLbl€7 7-‘_pa/ra/metefr's) Objective function

Xfuariable
m : Model
+

variable — Tspecification — 0 Speciﬁcations
X o qri <0 .
9(Xoariabte) < Constraints
vaa,riable,min < vaam'able < vaa,riable,maa:

h(Xva/riablea Wparameters) =0
n : Decision Variables X

Degrees of freedom : n-m
Solving method

The goal of the optimisation is to fix the value of the n-m degrees of freedom
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Non linear Optimisation methods : iterative

e Direct search

—Exploring the search space from a location to find the lowest point
* Easy to use and robust
* High computing time
e Indirect search
—Mathematical condition of the optimality

* More efficient
* More complex (derivatives)

e Heuristic methods

—Explore the search space based on a property of the system
*e.g. genetic algorithms
* Global optimum
*Very high computing time
* Highly dependent on the quality of the model

O
Ol
=
©|
|
‘ INDUSTRIAL PROCESS AND
ENERGY SYSTEMS ENGINEERING

m
e

'y |



Direct search methods
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Unconstrained problems
Black Box Approach

min f (Xdecision)

decision

Xdecision,mz’n S Xdecision S Xdecision,ma:c
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| DOF method

From the best points : generate a new point and eliminate the worst one

40000 T

e Direct search

30000 +

—|nterval reduction
X o <X <X,<X__

min

20000 +

<
10000 Y
1l

o
0 <

x X=X X

‘xm min
— Gold number

xl_xmin xmax_xl _ ‘/g_l

et = ~(0,618
xmax - ‘xl xmax - xmin
— Polynomial approximation
f(x)= a+bx +cx’ :g—{c] —O:x*=%

With 3 points
1(x§—x§)-ﬁ+(x32—x12)-f2+( 1_x2) Ve

£
X =-

2 (xz_x3)'fl+(x3_x1)'f2+(x1 xz) /3
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Unconstrainted , multi variables

e |Irst order, follow the slope
+ choose the distance (| dimension problem)

distance direction

\) /q
xk+l _ xk +)LkSk _ xk _)Lkv (xk)

Slope calculation
Linear approximation from previous steps
Numerical calculation of derivatives

distance : )\k

> fixed size
: k+1
> | dimension optimisation H}\}Cn f(gj )
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Indirect search methods

e Unconstrained problem
e Express the conditions of optimality

min f(Xdecision)
Xdecision

is equivalent to  V f(Xgecision) = 0

e Transform the optimisation problem into solving a set
of equations

~VF(X)=0 VX:N variables => N derivatives
=> NxN problem ( O DOF)

e Inequalities = safe guards => constrained problems

Xdecz'sion,min S Xdecision S Xdecision,ma:c
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2nd order method : quadratic approximation

Newton method
1
f(x)=q(x) = f(x*)+ V' f(x*) Ax" + E(Ax")T H(x") (Ax")
Vg(x) =0 = VF(x)+ H(x") (Ax) =0
xk+l _ Xk — AXk — _ [H(xk)]—l Vf(xk)
8" f(x)

ox Ox ;

with H(x") = Hessian Matrix 2nd derivative !

when H is not definite positive = H =H + [l
>> steepest descent
p << Newton

of (x)
ox.,

l

Vf(x") =

:gradient
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Indirect search methods
Constrained problems

Simultaneous approach
Two level approach

min f(Xdecision)
Xdecision
h(Xdecision) =0
g(Xdecz'sion) S 0
Xdecision,mz’n < Xdecz'sion < Xdecision,mam



Constrained programming : transforming inequalities into equality contraints

e Canonical formulation :

min f(x) X=[X| X2, %]
Subject to hj(x) =0 = 1,...nK
ok(x) = 0 k=1,...ng
Add a slag variable Sk = 0 to each inequality constraint :
gk(x) - sk? =0 k=1,...,ng
sk=>0
- © New problem
min f(x) X=[X[,X2,....Xn, sg]
Subject to hj(x) =0 i=1,...nK
gk(X) - Sk2 =0 |<:|,...,ng
Xv,min < Xy < Xymax V=1,...,ny
sk=0 I<=I,...,ng

=l
Ol
=
|
|
‘ INDUSTRIAL PROCESS AND
ENERGY SYSTEMS ENGINEERING

m
T

'y |



Constrained programming

New problem
min f(x) X=[X [ X2,..

Subject to hj(x) = 0 i=1,...nh

2(X) - sk2 =0 k=1,...ng

Xv,min = Xy < Xy,max V= I yo s eslly

2012

SkZO k=|,...,ng

aboratory- LI

arechal@epfl.ch ©Industrial Energy Systems L.

XN Sg]

<"IPES

NNNNNNNNNNNNNNNNNNNN
ERGY SYSTEMS ENGINEERING

m
' |



Reduced gradient

e Variables are divided into two groups :

e Basic Variables are calculated by solving the set of
equations for fixed values of the Non Basic variables

Xbase = X(anase) . h(Xbasea ana,se) =0

solve h(Xbasea anase) =0
Xnbase — XNbase =0

For given values of X Nbase

New unconstrained problem

nbaseF(X(anase)a anase)
SUbjeCt to szn < Xbase (anase) < Xmaaz

MIN X

S(Xnbase)? >0 "' non linear inequality
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Generalised Reduced Gradient (GRG)

aboratory- Ll 2012
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e Variables are divided into two groups : Basic and Non Basic variables
e Use slack variables for inequalities
e Search by conjugate direction => unconstrained problem within bounds

— Optimisation search is realised in the nbase domain, the basic variables are
calculated by solving :

h(xbase"xnbase) = O nd % = ( é)h ah ) = (B B”base)

’ base
0’))(3 ﬁxbase axnbase
| oh
W|th :nh X nh I 'xbase = (p(xnbase)
é)xbase
and f(’xbase ’xnbase) becomes F('xbase ('xnbase)’xnbase)
oF
Reduced Gradient = i - ZTBnbase
é)xnbase é)’xnbase
4 d
Where 7z = (Bbase) A
é)xbase
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Constrained programming : Lagrange equivalence

e Problem equivalence
e Original : decision variable : ny + ng

min f(x) X=[X] X2, xv], s=[s],52,. . ..5¢]
Submitted to hj(x) =0 =1, K
2k(X) -s? = 0 k=1...ng

e Lagrange equivalent : decision variables :ny + nh + 2 ng

min L(xA)= f(x) + Y A0+ Y i [8,(x)=5,”]

decision variables Xymin < Xy < Xyrmax v=1,...,ny
ng slag variables s> 0 k=1,...ng
. - < |=
Nh + Ng new variables : }\J <0 =l
5 Langrangian multipliers U <0 k=1,.. Ng
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Lagrange formulation

2012

e the goal is to transform a constrained problem into a non
constrained problem but with a higher problem size :

Lx )= O+ Y Ak )+ Y ilg, (0 -s]

—to be minimised with respect to x,s and A, Y
e There are therefore (nx+ nh +2 ng variables)

e Necessary optimality conditions
OL(x*, s, \*, u*)

=0 1=1,...,n,

. 533‘1
. < — * * * *

)\'J — O J 1""’nh OL(z ’g A ) =0 g=1,..,ng4
Sg

u =0 k=1,..n, OL(x*, 5% X" 1) _ A1 .om
I

OL(x™,s*, X", u*) B
51tg =0 g=1,..,n,4

9
9
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Conditions of optimality

Vx,S,A,ML(a:, S, )\, ,u) — O Square system : nyt nh+2 ng
)\.j <0 j=1,.,n,
uw <0 k=1,..,n

o gh, s *
oL(x") 3f(x)+z)L (X)+E k[égk(x)

-0 i=1,..,
é)xl k=1 3 dxi ] l nx
oL(x") .
0 hi(x)=0 " j=L..n, We calculate the variables,
! the slags and the Lagrange
JL. * T . |
(x) - g, (x) Sk2 -0 k=1l..n multipliers at the same time !
oLy,
oL(x) =7 u, s, =0 k= ],m’ng <- Difficult to solve
s,
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Lagrange multipliers

_—i of*

e Explanation A )\'j B % ,u}: B Ogk

J

—What is the penalty of a constraint ¢

—Without the constraint the objective function is better; the
multipliers measures of how much

—Important for inequality constraints

Example :

Minimise the time for transporting goods with a maximum of 3 trucks
Constraint : maximum 3 trucks

A = what is the time benefit when adding | truck
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Solving the equations step by Newton step

at iteration r VS ~VL" + H’I“Aa:.’lf-l—l —
1
AL A i r r r 1r r+1 7
M_I_ EAJ &hj(x )+ E,Uk[(?gk(x )]=0 H A B O AX
&Xl- =l &Xl- ol (?Xl- ArT O O O A)LHI
(x) = =-VL'
10)=0 BT 0 0 =2Is ||Au
g(1)-5,=0 r r rel
25 =0 _ O 0 s lu __As |
with
Fren] & D] E ae ()]
Hr= f(x) +E)\.] J +2Mk gk(x)
ox,0x ; “ ox ;o | ot ox;0x ;
GO (€S
ox, ox,
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Solving the equations set by Newton step

VL~VL +H Azt =0

Azt = —H ~'VL

(

;=] + (1 - q)Aay ™

1

¢ Note :for linear problems

Hr Ar Br 0 AXH]
AT 0 0 0 ||Aaxt .
T r r+l =VL
2 T . B” 0 0 =2Is"||Au
g IS constant 0 0 If Iu ||As*
5 with
g=0 (no relaxation) w PO, O], Pa
ax 0x ; &7 o “ oox;
PaAC )’B, _ 98(x")
ox; ox;

Problem : find which s or = 0
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Successive Quadratic Programming

e Quadratic approximation of the Langrangian
—Quadratic Approximation of the objective function
V()] Ax+(Ax) QAx
Q is the quadratic approximation of
VL=V(f-Ah-u'g)
or other method to update Q
—Linearised constraints

—Defines

—the direction

—step lenght
—Penality when the points is infeasible
— [terative procedure
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Mixed Integer Problems

e MILP

—Mixed Integer Linear Programming problems
* Linear constraints & objective
* continuous and Integer variables

e MINLP

—Mixed Integer Non Linear Programming
broblems

* Non linear constraints & objective

* continuous and integer variables
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Mixed Integer Problems

e MILP

—Mixed Integer Linear Programming problems
* Linear constraints & objective
* continuous and Integer variables

<1 — X =1

ariable — variable

=0 or X

variable

0<X,

2 inequality contraints 2 new equality contraints => 2 new problems
=> Obijective is same or worst !

when nvariable = |, there is the need to test all the combinations of
“integerification” constraints in a systematic way
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MILP : Branch & Bound Method

min F=2x, - 3z, 22,- 31,
e Solve LP at each node
o | | S.C. X, +7,+ L+ 122
—start with integer variables = continuous 10x, +52, + 32,4 42,5 10
0<%z <1 Vi=1,..3 X2 0
2,2, 2,=0,1

e Progressively “integerify” by systematically adding
constraints (Branch) oo

z=(0.6,1,1)
zi =1or0Oforiin Nodes 0<z; <1 Vj#1 » O Z
=the objective Is worsening = @/

e when a set where all zi is integer

—define the bound (the objective function will =0 e
never be worse then this value \

o re-explore the branches o (5) e
—cut the three exploration when the objective

function reaches the bound
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MILP : Branch & Bound Method

min F=12x, - 3z, 22,- 3,4
S.C. X+ 7, + Iyt 1522
10x, + 3z, + 32,4 4z:< 10
x>0
. o | e
z=(0,1,1) z=(1,0.333,1)
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MINLP : outer approximation
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e Decomposition theorem

—Partition variables in 2 sets
« complicating set (integer)
* continuous variables
—Solve 2 problems

* NLP with fixed integer (lower
bound)

* MILP : outer-approximate the
objective function (upper bound)

—Lower = upper => convergence
*integer cut to avoid looping

e Problems :

—NLP converge !
—Calculation time ?
—|nitial set feasible ?

—Derivatives for MILP
* outer approximation

(:initial integer se§>

<: NLP with fixed integers value:>

optimum ?

l

yes o
reference set=integer set (:: >

!
(V MILP with linearized sy

\

at NLP solution.

S S @ 1) e, SV
—— o ' —
1 1 .

3
|

!

yes

. N
new feasible set
J

no

(: solution = reference seg)
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