Solving strategies for the optimisation of energy
systems

Prof. Francois Maréchal
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Heat recovery by a double flux heat exchanger

e Degrees of freedom !

—Knowledge

—Context Specifications
—Engineering Decisions for a given Engineering goal
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Degrees of freedom are fixed by knowledge (e.g. a heat transfer coefficient, typical efficiencies,...), context specﬁ"atlons like the ambient Londltlons or the
comfort temperature and engineering decisions (like the heat exchanger area)- pi
Engineering decisions need to be taken according to an engineering goal e.g. minimise the expected cost
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Thermo=-economic Model

System model F(Xstate, ™) =0 Model equations
S(Xstate, ™) =0 Context specifications
with s Model parameters
Xotate State variables

DOF : Degree of freedom of the system

DOF of the system = N_{state variables} - N_{Model equations}

Decision variables
N_{Decision variables} = DOF - N_{Context specifications}

Xd,min S Xd S Xd,ma;c

- Degrees of freedom for which | do not have any rationale to fix the value
- | only know the possible range
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Thermo-economic optimisation

Fixing the value of the decision variables

Xd,mfin S Xd S Xd,maa:

- Degree of freedom for which | do not have any rationale to fix the value
- | only know the possible range
- | would like to fix the value of X, so that it minimise an objective function

min
Xstate

s.t.

where

TotalCost(Xstate, ) Obijective function

F(Xstate, ™) = 0 = equipment model
S(Xstate, ™) = 0 = Specification equations

G(Xstate, ™) < 0 Inequality constraints
xXmin < x < XM Bounds

state — — state

Xstate — {xstatevam'ables: LUnitParameters ydecisione{oa 1}}

X, is a subset of X,z
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Typical objective function formuila

An objective function defines the relative importance of flows and installed
capacity of equipments during the expected lifetime of the system

states UNIts

OBJ,= Y (v -lops-T0)+ ) vTi .0,(S)

u
e with
— Vg, - the value (relative importance) of i for the objective function o

*V, , Can be the expected cost of a flow or the Life Cycle Impact of the flow

—1,,5 ' @ time of operation of the system in the state s of flow #i;

—V,., - the value (relative importance) of the capacity function O,(S,) of
unit u with the size S, for the objective function o

1
— : annualisation of the Installed capacity of unit u over its lifetime
Tlxt

*0,(S,) can be the investment cost, materials, Life Cycle Inventory, Land
footprint, Life cycle impact associated to construction of unit u
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Example of objective functions : engineering goals

TotalCost[CHF/year] = OPEX +CAPEX + Tax

OPEX = Z mep ,j"p + E; jp Ep_c;p + Z fupcmy)d,

p=1 r=1

1
CAPEX = ~(I1yyu + 12, f]7)
— T(Nyus 1)

Tax = CO;WCO2+

+ L
COS = Z Zm+ €Oz 4 E%fff E_egg )dp

r,p €r

p=1 r=1

Impact = (7% (COF +3° (€50 + £5°%) fre)
u=1 ny u
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p=1 mes—l
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E; +E, + Z fuplens; —ey,) =0 Vp =1..n,

u=1
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Inequality constraints

Constraints limit the search space for the values of X,
e Operating limits
—safety, equipment limits,
e Regulation
—Emission : environment
e Market limits => products quality
e Technology limits and heuristics
—Materials
e Models limits
—Correlations
—Structures and models
e Numerical safety ;Two types

—Hard: numerical validity of the model: i.e. can not be violated otherwise the system
state can not be calculated
*E.g. flow inversion
*try to place the hard constraints on the variables

—Soft: may be violated during resolution. The state exists but is not expected to be
valid as a solution
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Different types of problems

e Optimal operation (Equipment Size is fixed)
—Decision : Operation set point
—Objective : Operating cost (CHFs)

e Optimal operation strategy (Equipment Size is
fixed)

—Decision : Set point strategy + start/stop
—Objective : Operating cost (CHFperiod)
e Scheduling (Equipment Size is fixed)

—Decision : Set points strategy,
start/stop, when ¢, in which equipment ¢

—Objective : Operating cost (CHFperiod)
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Different types of problems

e Optimal sizing (equipment size is decided)
—Decision : operating set points, unit sizes, iInvestment
—Objective : Total cost (CHF, CHF/an)

e Optimal design (choice and size of equipment is decided)

—Decision : operating set points (Operating strategy), unit
sizes, Investment, configuration

—Objective : Total cost (CHF CHF/an)

e Retrofit (choice and size of some of the equipment is
decided, reuse of existing equipment with fixed sizes /
configuration)

—Decision : operating set points (Operating strategy), unit
sizes, configuration, reuse, reconfiguration, investments

—Objective : total cost
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e How do | use a flowsheet model to
solve an optimization problem ?

F(Xstate) = 0 = equipment model
L(Xstate) = 0 = linking equations
T'(Xstate) = 0 = constitutive equations

S(Xstate) = 0 = Specification equations
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Black box method

Optimisation : min OBJ(X*decision)
Subject to Ginequality(X decision) =0

OBJ(X*decision)
X" decision G(X*decision) inequality
Status

Model : Solve
F(Xdependent: Xspecification -Xdecision)=0
S(Xdependent: Xspecification Xdecision)=0 = X(X"decision)
Xdecision - X" decision =0
then calculate OBJ(X(X*decision))
G(X(X"decision))
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Black Box strategy

*min TOtalCOSt(X:;ecision7 X(X;lkecision)7 7T)
decision

s.t. G(Xevisions X (X ovision), ™) < 0 inequality constraints
where

X;Zkecisfi,on — {xdecisiony ydecz’sione{oa 1}}
X (X Jecision) Calculated by solving:
NxN F(Xstate, ™) = 0 = model equations
problem S(Xstate, ™) = 0 = Specification equations
KXstate — X gecision = 0 = Specification of the value of decision variab

where

Xstate — {xStateVam'able& LUnitParameterss ydecisione{oa 1}}
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Black Box approach

+ Can be used in any kind of optimisation method
Heuristic, direct et indirect (derivatives)
+ Solving method to be defined => problem analysis
+ Selection of X*decision by the user
+ Robustness
+ Non convergence analysis
+ Gives a list of system states
- Flexibility
- Computation time
- Inequality might be a problem when not on decision variables
- Derivative calculation ( especially when done in iterative loops)

U FX+ A= FX)
ox, Ax,

l
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Simultaneous method

Optimisation: min OBJ(Xgtate)
Subject to F(Xstate)=0

S(Xstate)=0

G(Xstate)=0
OBJ(Xstate)
« F(Xstate)
state S(Xstate) + derivatives !
Status | G(Xstate)
Model

Function evaluation
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Simultaneous strategy

min TotalCost(Xstate, T)

Xstate
s.t. F(Xstate, ™) = 0 = equipment model
S(Xstate, ™) = 0 = Specification equations
G(Xstate, ™) < 0 Inequality constraints
XM < X ate < XM Bounds
where

Xstate — {xstatevam’ables; LUnitParameters ydecisione{oa 1}}

Requires : Non Linear Constrained Optimisation solving method

X4 is not defined (hidden in Xjzaz)
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Simultaneous approach

+ Optimisation under constraints
=> indirect method with 2nd derivatives if possible

+ Flexibility : different pbm with the same model (changing specification
set and not the model)

+ Efficient and robust for on-line optimisation systems
Bounds definition !

+ Computing time

+ Automatic DOF analysis and sensitivity analysis

+ Hard and soft inequality constraints

- Inrtialisation !

- Derivatives calculation (during function evaluation, symbolic ?)
- No system state when no convergence

- Scaling !

- No explanations when the problem does not converge !

- Push button system!?
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Two levels approach

Subject to H(X"decision, X specification)=0
G(X*decision: X"specification)=0

Optimisation: Requires a
i * * constrained
min OBJ(X deCiSiorh X SpeC|f|Cat|On) optimisation solver

X*decision:
X*specificatior

—

Status

OBJ(X*gecision: X specification)

H(X"gecision: X*specification)
G(X*gecision: X*s.peciﬁcation)

+ derivatives ?

Modele

Xdependent =P(X"decision, X specification)
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Two level strategy

. * * * *
x min . TOta’lOOSt(Xdecision7 XSpecs7 X(Xdecisi0n7 XSpecs)7 7T)
decision’ " Specs

s.t. H(X ], isions Xgpecs, X (X Jecisions X gpecs), m) =0 some equality constraints
G (X ocisions Xgpecs, X( X ecisions X:kqpecs), m) <0 inequality constraints
where
X ecision = \Tdecisions Ydecision€10, 1}}
(X decisions Xspees) Calculated by solving :

~ F(Xstate, ™) = 0 = system model
(N+Ns)x(N+Ns) < S(Xstate, ™) = 0 = Specification equations

problem Xdecision — X gocision = 0 = Specification of the value of decision variables
= Xapees — Xapees = 0 = Specification of the value of specification variables

where

Xstate — {xStateVariable& LUnitparameters ydecisione{oa 1}}
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Two levels strategy

+ Best of both world
+Robustness of unit models (single calculation mode)
+Code Maintenance

+Derivative chaining is possible
Analytical calculation is possible

+ Soft inequality constraints

+ Sensrtivity analysis

- Condritional simulation

- Computing time (solving the lower level iteratively)

- Hard bounds (except when they are at the decision variable
level).

- Noise in derivatives evaluation
Internal 1iterative calculations
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