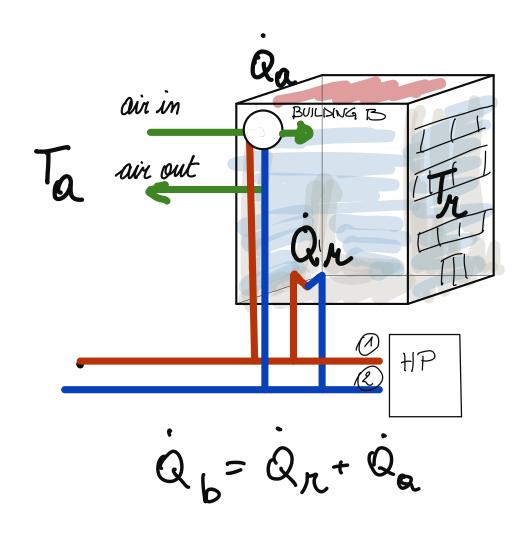
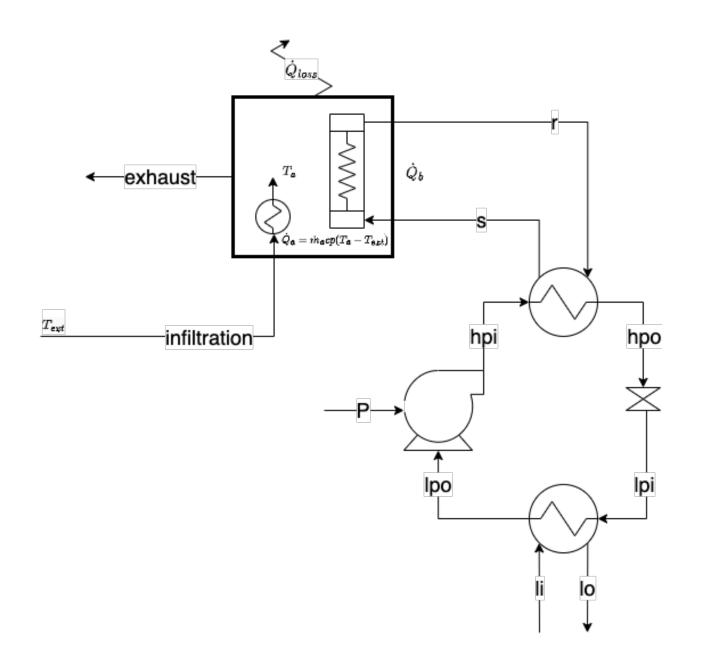
EPFL Flowsheets and process unit models

EPFL Building model





EPFL Building model: air flows

$$k_{th}(T_a-T_{ext})=\dot{Q}_a+\dot{Q}_{loss}$$

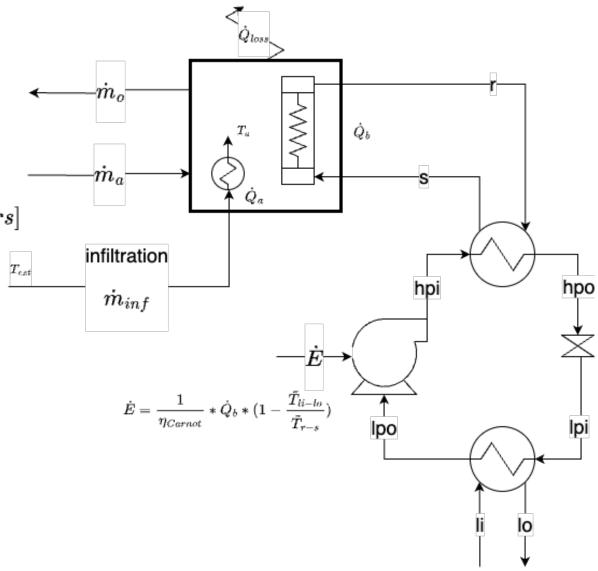
$$\dot{Q}_a = (\dot{m}_a + \dot{m}_{inf}) cp(T_a - T_{ext})$$

 $\dot{m}_o[kg/hours] = \delta_a[kg/m^3] \cdot V_b[m^3] \cdot n_r[1/hours]$

$$\dot{m}_{inf} = k_{inf} \cdot \dot{m}_o$$

$$\dot{m}_a = (1 - k_{inf}) \cdot \dot{m}_o$$

$$\dot{m}_o = \dot{m}_a + \dot{m}_{inf}$$

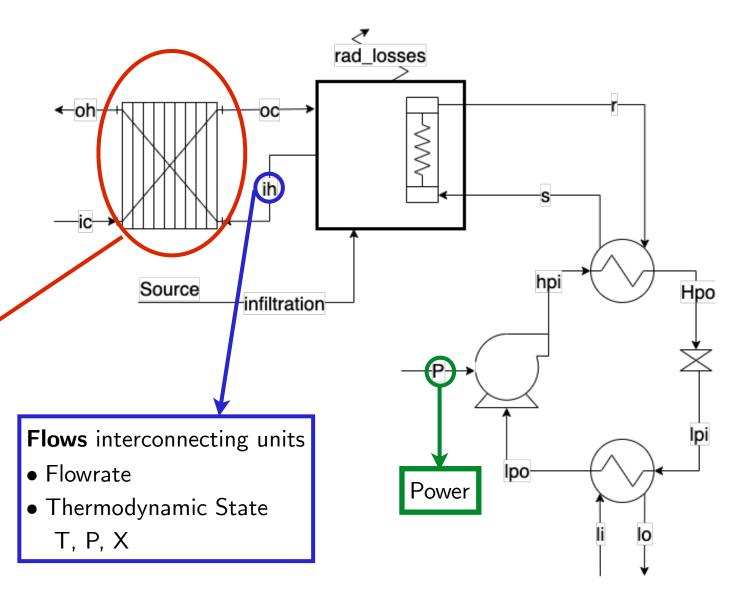


EPFL Heat recovery by a double flux heat exchanger

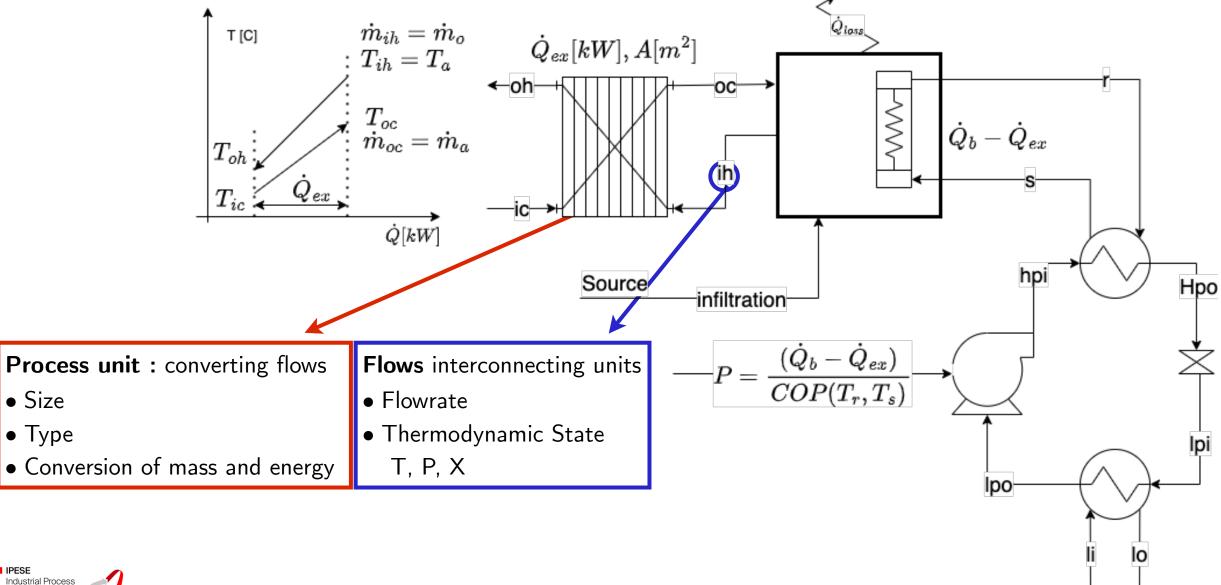
- Flowsheet
 - Flows
 - Units
- State of the system
 - Flows characterisation
 - Units size

Process unit : converting flows

- Size
- Type
- Conversion of mass and energy



EPFL Heat recovery by a double flux heat exchanger



EPFL Streams: Degrees of freedom

- To characterize the state of a stream with N compounds
 - only N+2 variables are required
 (Gibbs phase rule, Degree of freedom of a flow)
 - in which at least one will characterise a flow
 - i.e. 1 extensive variable
- Examples :

$$T, P, \dot{m}_i$$

 P, h, \dot{m}, c_i for $i = 1, ..., N - 1$
 P, \dot{V}, \dot{m}_i for $i = 1, ..., N$

EPFL Constitutive equations

- Calculating the other properties when the degrees of freedom are fixed
 - Enthalpy for T and P
 - Entropy for T and P
 - Density for T and P
 - Temperature for P and S

EPFL Constitutive equations: Enthalpy calculations

T0: reference temperature

Perfect gas: 25 C I atm

Gas ideal

$$H_{id}^{g}(T, P, x_{i}) = \sum_{i} x_{i} * \Delta H^{0f}_{i} + \int_{T^{\circ}}^{T} \left(\sum_{i} x_{i} * Cp_{i}(T) \right) . dT$$

$$Cp_i(T) = a_i + b_i * T + c_i * T^2 + d_i * T^3$$

a_i,b_i,c_i,d_i from data bases

Liquid ideal

$$H_{id}^{l}(T, P, x_{i}) = \sum_{i} x_{i} * \Delta H^{0f}_{i} + \int_{T^{\circ}}^{T} \left(\sum_{i} x_{i} * Cp_{i}(T) \right) dT - \sum_{i} x_{i} * \Delta Hvap_{i}(T)$$

$$\Delta H vap_i(T) = \Delta H vap_i(T_i^b) * \left(\frac{T_i^{crit} - T}{T_i^{crit} - T_i^b}\right)^{0.58}$$

Mixture liquid - vapor $T = T^{sat}(P, x_i)$

$$H_{id}^{l-v}(T, P, x_i) = \alpha * H_{id}^g(T, P, x_i) + (1 - \alpha) * H_{id}^l(T, P, x_i)$$

EPFL Constitutive equation: Entropy calculation

For a gas state

$$ds = cp \frac{dT}{T} - \left(\frac{\delta v}{\delta T}\right)_P dP$$

$$s_i = s_i^{0f} + \int_{T_0}^T \frac{cp_i(T)}{T} dT - \Re \ln \frac{P_i}{P^0}$$

- This shows that the properties can be deduced if we know
 - the correlation equations
 - the data characterising the components
 - the fundamental rules of thermodynamics.

EPFL A process unit model: transforming states

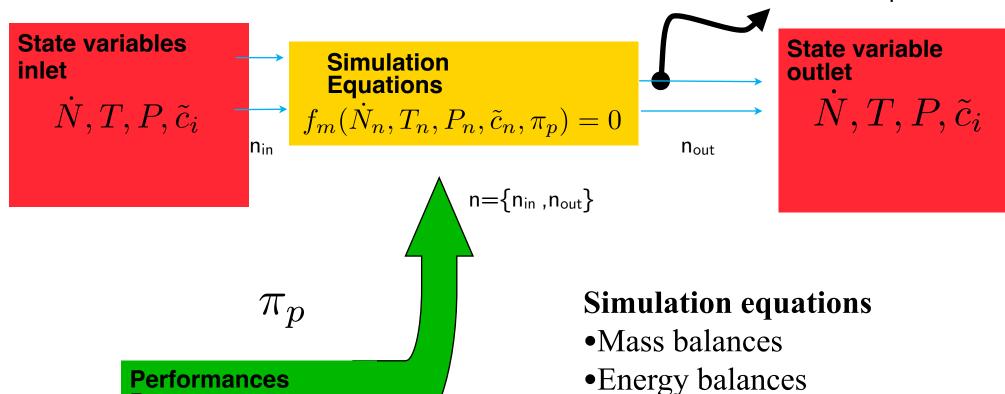
A simulation model introduces a set of equations that model the thermochemical transformations that occur in the unit with the aim of calculating the the states of the flows leaving the unit as a function of the inlet flows and the physical characteristics of the unit.

Parameters

Thermodynamic state Constitutive equations

•Impulsion (pressure drop)

Performances equations



EPFL Generic form of balance equations

Accumulation = in - out + Generation - Consumption

Net accumulation in the control volume

+ Import in the control volume

Export from the control volume

H Generation in the control volume

Consumption in the control volume

EPFL Steady state model

no Accumulation = 0 = in - out + Generation - Consumption

+ Import in the control volume

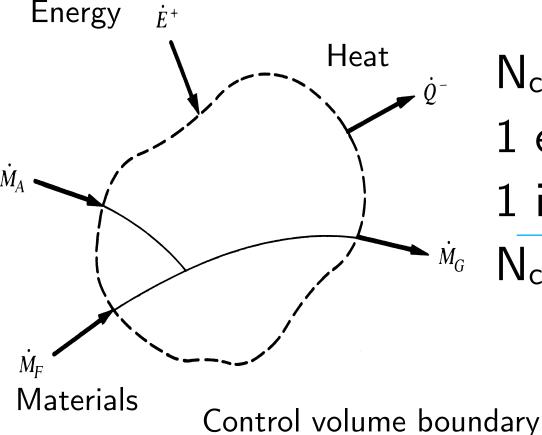
Export from the control volume

H Generation in the control volume

Consumption in the control volume

EPFL Unit model basis

For a given control volume with 1 network with N_c substances without chemical reactions



N_c mass balances per network*

1 energy balance

1 impulsion balance (P)

 N_c+2 balance equations

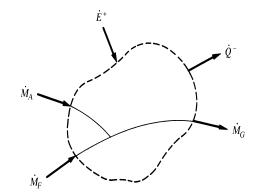
*when chemical reactions occur the material balance is the atomic balance

Network: interconnected flows with mass exchange

Mass network

EPFL Unit model basis

For a given control volume with 1 network with N_c substances



Material balance

$$\sum_{f} \dot{m}_{c,f}^{+} = \frac{dM_c}{dt} = 0 \qquad \forall c$$
Accumulation

Energy balance

$$\sum_{f} \dot{m}_{f}^{+} \cdot h(T_{f}, P_{f}, x_{f}) + \sum_{Q} \dot{Q}^{+} + \sum_{E} \dot{E}^{+} = \frac{dQ}{dt} = 0$$

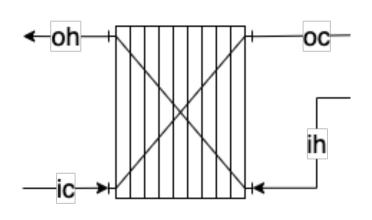
Accumulation

Subscript + means positive when entering

 $h(T_f, P_f, x_f)$ enthalpy of flow f with temperature T_f , Pressure P_f and composition x_f

Non linear equations!

EPFL Unit model: heat exchanger



Nb. Equation

$$1(EB) \dot{Q} = \dot{m}_{ci} c p_c (T_{co} - T_{ci})$$

$$2(EB) \dot{Q} = \dot{m}_{hi} c p_h (T_{hi} - T_{ho})$$

$$3(MB) \dot{m}_{hi} = \dot{m}_{ho}$$

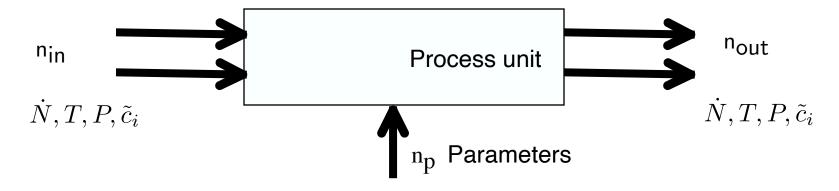
$$4(MB) \, \dot{m}_{ci} = \dot{m}_{co}$$

$$5(P)$$
 $P_{hi} = P_{ho}$

$$6(P) P_{ci} = P_{co}$$

7(M)
$$\dot{Q} = UA \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{ln(\frac{(T_{hi} - T_{co})}{(T_{ho} - T_{ci})})}$$

EPFL Degrees of freedom (DOF) of a unit model



Variables : n

Equations : n_e

	V	ariables . IIV	
mass balances/network	n_{C}	State of the streams	$n_x = (n_{out} + n_{in})*(n_c+2)$
Energy	1	Unit parameters	n _p
Impulsion	n¡	Internal variables	n _t
models	n _m		
specification	n _s		

 $DOF = n_{V}-n_{e}$

DOF = number of set points (specifications) to make the unit calculable

$$n_e + n_s = n_v$$

EPFL Incidence Matrix of a Unit model

n_v variables = $n_x + n_p$

Mass balance Energy balance Model Const Equations

Specifications

TIX State	variables	<u>np</u>	parai	met	ers
XXXXXXXXXXX	XXXXX XXXXX	XXXXX XXXXXXX XXX	XX X	X	n _e model equations
X X X X X X X			X X X		DOF n _s =n _v -n _e specification equations x-x ^s = 0

To solve the problem:

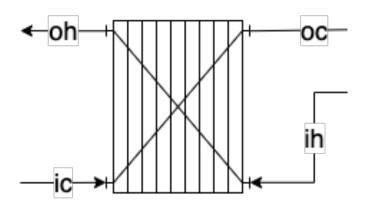
I) square matrix

n state variables

2) independent equations

In the incidence matrix, the element (i,j) is equal to 1 if variable i is in equation j It indicates the presence (incidence) of a variable (i) in the equation (j)

EPFL Unit model: heat exchanger



Nb. Equation	$1.\dot{m}_{ci}$	$2.T_{ci}$	$3.P_{ci}$	$4.\dot{m}_{co}$	$5.T_{co}$	$6.P_{co}$	$7.\dot{m}_{hi}$	$8.T_{hi}$	$9.P_{hi}$	$10.\dot{m}_{ho}$ $11.T_{ho}$	$12.P_{ho}$	13.A	$14.\dot{Q}$	15.U
$1(EB) \dot{Q} = \dot{m}_{ci} c p_c (T_{co} - T_{ci})$	x	X			X								X	
$2(EB) \dot{Q} = \dot{m}_{hi} c p_h (T_{hi} - T_{ho})$							X	X		X			X	
$3(MB)\dot{m}_{hi}=\dot{m}_{ho}$							X			X				
$4(\mathrm{MB})\dot{m}_{ci} = \dot{m}_{co}$	X				X									
$5(P) P_{hi} = P_{ho}$								X		X				
$6(P) P_{ci} = P_{co}$			X			X								
$7(M) \dot{Q} = UA \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{ln(\frac{(T_{hi} - T_{co})}{(T_{ho} - T_{ci})})}$		X			X			X		X		X	X	X

EPFL Unit model: Incidence matrix

F(X): Equations
Ne=Ns + Nb + Nm

XXXXXXXXXXXXX 00000000011111 12345678901234

	Eq1	X
	Eq2	X
Ns Specifications	Eq3	X
X-Xs=0	Eq4	X
	Eq5	X
	Eq6	X
Nb Balances	Eq8	X X
B(Xin)-B(Xout)=0	Eq9	XX X
	Eq7	X X
	Eq10	XX X
Nm Models	Eq11	X XX
M(X,P)=0	Eq13	X XX
Nc Constitutive equations	Eq14	X X XX
C(X)=0	Eq12	X X X

X: Variables
Nv state
Ni intermediate
Np parameters
Nx=Nv+Ni+Np

DOF analysis

Ne=Nx

EPFL Types of modelling equations

- Form of the equations
 - Implicit form
 - f(x,y)=0
 - Explicit* form
 - y=f(x)
- Types of equations
 - Balance equations
 - Constitutive equations (thermodynamic state): non linear
 - Model equation
 - Specification equations (constants)
 - X=Xs
 - x-x=0

EPFL Simultaneous equation solving

	Eq1	X		
	Eq2	X		
Ns V Va O	Eq3	Х		
X-Xs=0	Eq4	2	X	
	Eq5		X	
	Eq6		X	
Nb	Eq8	X	X	
B(Xin)-B(Xout)=	_	XX		X
	Eq7	X	X	
	Eq10	XX		X
Nm	Eq11		X	XX
M(X,P)=0	Eq13		X	XX
Nc	Eq14	X	X	XX
C(X)=0	Eq12		X X	X

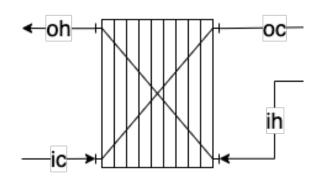
Find X such that

$$F(X)=0$$

NxN

set of N non linear equations

EPFL Unit model: heat exchanger simultaneous resolution



Find X such that

$$F(X)=0$$

15x15

set of 15 non linear equations

Nb.	Equation	$1.\dot{m}_{ci}$	$2.T_{ci}$	$3.P_{ci}$	$4.\dot{m}_{co}$	$5.T_{co}$	$6.P_{co}$	$7.\dot{m}_{hi}$	$8.T_{hi}$	$9.P_{hi}$	$10.\dot{m}_{ho}$ $11.T_{ho}$	$12.P_{ho}$ $13.A$	$14.\dot{Q}$	15.U
$\overline{1(EB)}$	$\dot{Q} = \dot{m}_{ci} c p_c (T_{co} - T_{ci})$	X	X			X							X	
2(EB)	$\dot{Q} = \dot{m}_{hi} c p_h (T_{hi} - T_{ho})$							X	X		X		X	
	$)\dot{m}_{hi}=\dot{m}_{ho}$							X			X			
	$)\dot{m}_{ci}=\dot{m}_{co}$	X				X								
5(P)	$P_{hi} = P_{ho}$								X		X			
6(P)	$P_{ci} = P_{co}$			X			X							
7(M)	$\dot{Q} = UA \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{ln(\frac{(T_{hi} - T_{co})}{(T_{ho} - T_{ci})})}$		X			X			X		X	X	X	X
	$\dot{m}_{ci}=\dot{m}_{ci}^s$	X												
` /	$T_{ci} = T_{ci}^s$		X											
	$P_{ci} = P_{ci}^s$			X										
	$T_{hi} = T_{hi}^s$								X					
	$P_{hi} = P_{hi}^s$									X				
	$\dot{m}_{hi}=\dot{m}_{hi}^s$							X						
	$A = A^s$											X		
15(S)	$U = U^s$													X

EPFL Sequential resolution

- Reorganise the equations such that :
 - one equation has one unknown => $x_i = f(x_{j < i})$

EPFL Sequence definition case 1

- 1. Process mathematical equations to have an explicit form $X_i = f(X_{k\neq i})$
- 2. Rearrange the matrix to have a diagonal matrix

if
$$diag_i = f(diag_k, k = 1, \dots, i-1)$$

3. Define the order of resolution Solve each equation one after the other in sequence

Ns X=Xs	Eq1 Eq2 Eq3 Eq4 Eq5 Eq6	X X ZO ZO X X X X X X X X X X X X X X X
N-Ns X=F(X)	Eq7 Eq8 Eq9 Eq10 Eq11 Eq12 Eq13 Eq14	

EPFL Sequence definition case 2

- 1. Process mathematical equations to have an explicit form X = f(X)
- 2. Rearrange the matrix to have a diagonal matrix

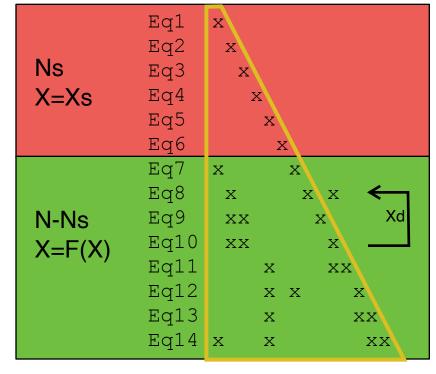
if not
$$diag_i = f(diag_k, k = 1, \dots, i-1)$$

- 3. Guess off-diagonal terms Xd
- 4. Define the order of resolution
- 5. Solve the sequence
- 6. Iterate on the value of Xd
 - 6.1 test convergence

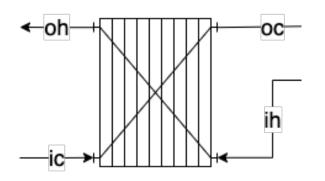
$$Xd^k ?= Xd^{k-1}$$

- 6.2 if NO : $Xd^{k+1} = Xd^{k}$
- 6.3 back to 5

Xd needed by Eq8 but calculated by Eq10



EPFL Unit model: heat exchanger



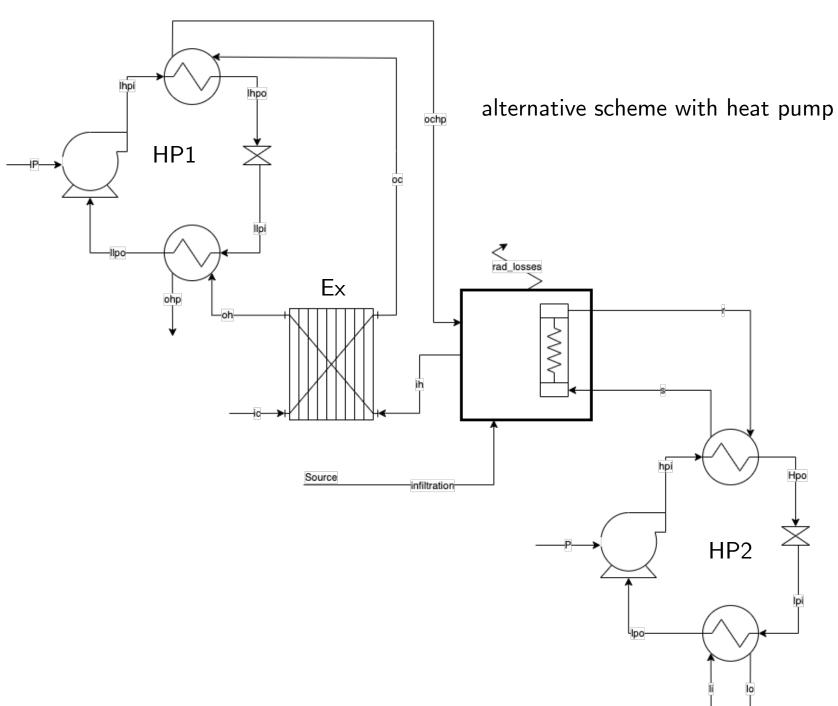
Explicit form

$$diag_i = f(diag_k, k = 1, \dots, i - 1)$$

Nb. Equation	$1.\dot{m}_{ci}$ $2.T_{ci}$ $3.P_{ci}$ $9.P_{hi}$ $8.T_{hi}$ $7.\dot{m}_{hi}$ $13.A$ $15.U$ $10.\dot{m}_{ho}$ $4.\dot{m}_{co}$ $6.P_{co}$ $12.P_{ho}$	$\frac{1}{5.T_{co}} 11.T_{ho} 14.\dot{Q}$
$\frac{1}{8(S) \dot{m}_{ci} = \dot{m}_{ci}^s}$	X \	
$9(S)$ $T_{ci} = T_{ci}^s$	X	
$10(S)$ $P_{ci} = P_{ci}^s$	X	
11(S) $T_{hi} = T_{hi}^s$	x So	
$12(S) P_{hi} = P_{hi}^s$	x Sequential resolution	
$13(S) \dot{m}_{hi} = \dot{m}_{hi}^s$	x (1/2/2/	$x_i = f(x_{j < i})$
$14(S) A = A^s$	x resolution	i j < i >
$15(S) U = U^s$	x "Ution	
$3(MB)\dot{m}_{hi} = \dot{m}_{ho}$	X X	
$4(MB)\dot{m}_{ci} = \dot{m}_{co}$	X X	
$5(P) P_{hi} = P_{ho}$	X	
$6(P) P_{ci} = P_{co}$	X X	
$1(EB) \dot{Q} = \dot{m}_{ci} c p_c (T_{co} -$	\mathbf{X} \mathbf{X}	X
$2(EB) \dot{Q} = \dot{m}_{hi} cp_h (T_{hi} - T_{hi})$	\mathbf{X}	$\underset{x}{\overset{x}{\longrightarrow}} \underset{x}{\overset{x}{\longrightarrow}} Solve x_i - f(x_{j \le i}) =$
$7(M) \dot{Q} = UA \frac{(T_{hi} - T_{co})}{\ln(\frac{(T_h}{(T_h)})}$	$\frac{T_{ci}}{}$ X X X X	

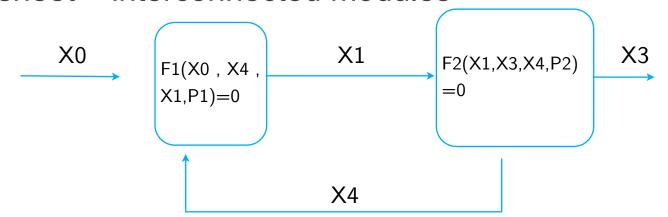
EPFL Flowsheets

- Process models
 - Process Units
 - Interconnections



EPFL Solving Flowsheets: simultaneous approach

Flowsheet = interconnected modules



N_e: Equations

 $F_u(X_f, \pi_u) = 0 \quad \forall u \in \{1..n_u\}, \forall f \in \{1..n_f\}$: Unit models

 $X_{f^s} - S_{f^s} = 0$: Specifications (flows)

 $\pi_{u^s} - S_{u^s} = 0$: Specifications (unit parameters)

 $X_{u_i}^- - X_{u_i}^+ = 0$: Links (unit interconnections)

outlet of u_i enters u_i :

N_v : Variables

 X_f : $n_f^*(2+n_{c,f})$ state of the flows

 π_u : n_u * $n_{p,u}$ parameters of unit models

n_f nb of flows

n_{c,f} nb of compound in flow f

n_u nb of units

 $n_{p,u}$ nb of parameters in unit u

Degrees of freedom : N_{DOF} : N_v - N_e

EPFL Conclusions

- 1. Draw the flowsheet
- 2. Identify the states to calculate the state of the system
 - list of flows with a name and thermodynamic properties
- 3. Calculate the degrees of freedom for the system
 - number of specifications
 - identify the variables to specify
 - define the values for the specifications
- 4. Define the list of states for the system design
 - Operating conditions (list of specifications) seen by the system over its lifetime
- 5. Define a solving strategy
 - Simultaneous
 - Sequential (with iterations if needed)

EPFL Degrees of freedom: conclusions

- A flowsheet is a set of interconnected units
- System State Variables: what we need to know to characterize the system
 - State variables for each flow
 - Unit parameters
- Simulation equations
 - Constitutive equations define the thermodynamic state of the flows
 - Unit models model the thermo-chemical transformations in units
 - Balance equations : mass + energy + impulsion
 - Thermo-chemical transformations
 - Flowsheet introduce the unit interconnection equations
- Specifications
 - Variables that needs to be fixed to fix the degrees of freedom

