

The Energy Supply System

Prof François Marechal

EPFL Part1: defining the building needs

Buildings stock

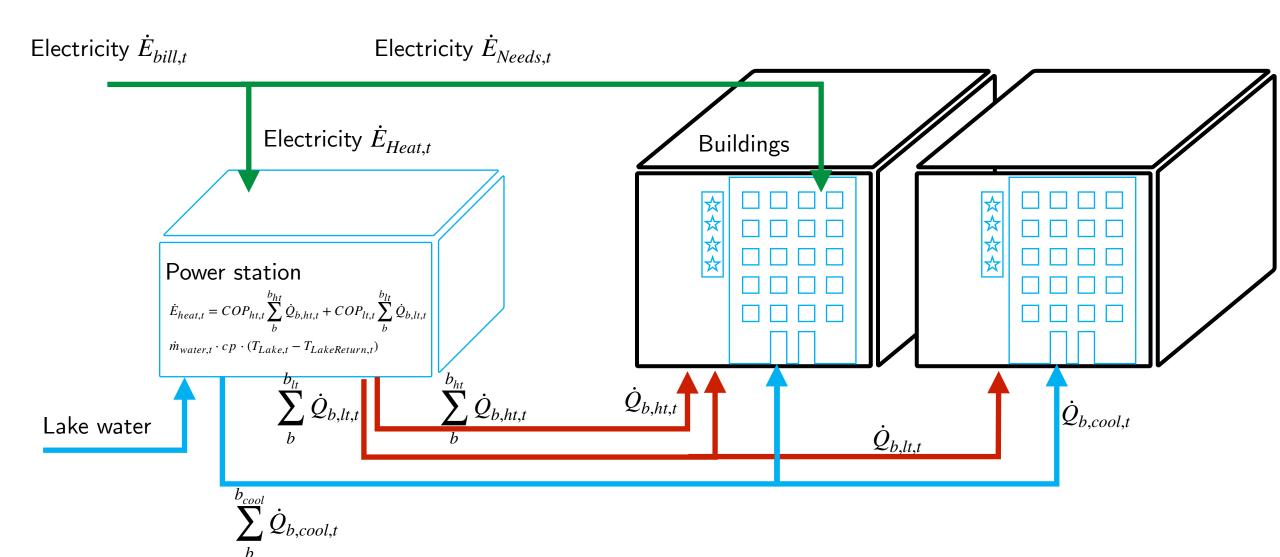
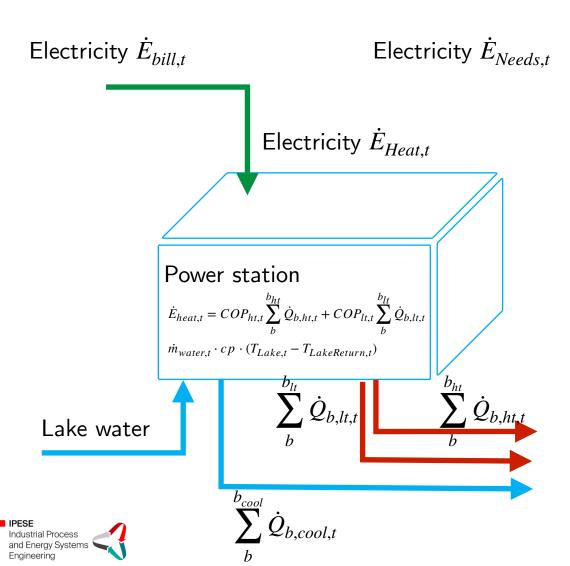

Measures

Table 1.1: EPFL Buildings

Building	Construction	Heated	Annual heat	Annual electricity
	period^a	surface $A_{\rm th}$ [m ²]	demand Q_{th} [kWh]	$demand \ Q_{el} \ [kWh]$
BC	2	17480	418,491	1,603,596
CO	2	11901	477,008	$943,\!653$
\mathbf{BP}	2	10442	$457,\!861$	691,031
\mathbf{BS}	2	10267	$509,\!183$	350,860
TCV	2	6095	318,209	2,067,675



EPFL The energy system of EPFL

EPFL The energy conversion system

For each distribution system d (e.g. ht)

Supply by unit u :
$$\sum_{u=1}^{n_u} \dot{Q}_{u,d,t} = \dot{Q}_{d,t} \quad \forall t \in lifetime$$

and
$$\dot{Q}_{u,t} = \sum_{d}^{n_d} \dot{Q}_{u,d,t}$$

- Cost of the supply
 - Size of the conversion equipment :

$$\sum_{u=1}^{n_u} \max_{t \in lifetime} (\dot{Q}_{u,d,t}) = \max_{t \in lifetime} (\dot{Q}_{d,t})$$

$$\dot{Q}_{u,max} = \max_{t \in lifetime} (\dot{Q}_{u,t})$$

Buy the resources :
$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_u} \left(\int_{t_0}^{lifetime} c_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right)$$

EPFL Energy conversion OPEX

$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_{u}} \left(\int_{t_{0}}^{lifetime} c_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right) \quad [CHF/lifetime]$$

- $c_{r,t}$ [CHF/unit_r] cost of one unit of resource r at time t
 - e.g. kg of water, kg of fuel, kJ of fuel or kWh of electricity
 - $c_{r,t} \leq 0$ for products (e.g. electricity production)
- $m_{r,u,t}$ $[unit_r/kJ_{th}]$ unit of resource r used to deliver one $[kJ_{th}]$ of heat by unit u at time t
- $\dot{Q}_{u,t}$ [kW] heat delivered by unit u at time t
- *lifetime* [s] expected lifetime of the project

EPFL OPEX in [CHF/year]

OPerating EXpenditure (we assume a typical year of operation) :

Cost of resources
$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_u} \left(\int_{t_0}^{year} c_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right) \quad [CHF/year]$$

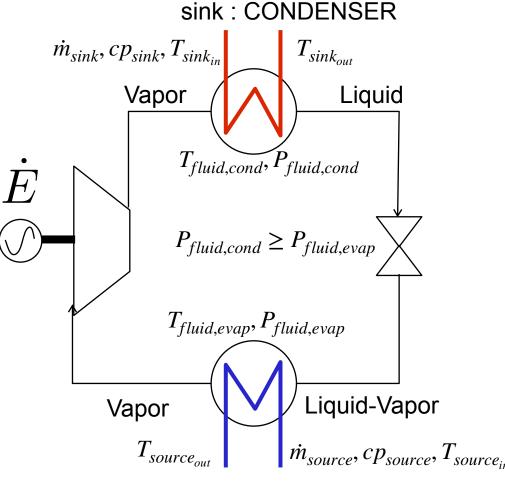
- + Maintenance [CHF/year]
- + Men Power [CHF/year]
- + Taxes [CHF/year]:

fixed: e.g. based on installed power

proportional:
$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_{u}} \left(\int_{t_{0}}^{year} t_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right) \quad [CHF/year]$$
 with $t_{r,t}$ $[CHF/unit_{r}]$ tax per unit of r e.g. $t_{r,t} = \tau_{CO_{2}}[CHF/kg_{CO_{2}}] \cdot m_{CO_{2},r}[kg_{CO_{2}}/unit_{r}]$

EPFL Calculating $m_{r,u,t}$ $[unit_r/kJ_{th}]$ for a Cogeneration unit

Assumptions


Thermal efficiency :
$$\eta_{th,u} = \frac{\dot{Q}_{th,u}}{\dot{m}_{r,u}}$$
 $[kJ_{th}/kJ_r]$ Electrical efficiency : $\eta_{e,u} = \frac{\dot{E}_u}{\dot{m}_{r,u}}$ $[kJ_e/kJ_r]$

$$m_{r,u,t} = \frac{1}{\eta_{th,u}} [kJ_r/kJ_{th}]$$

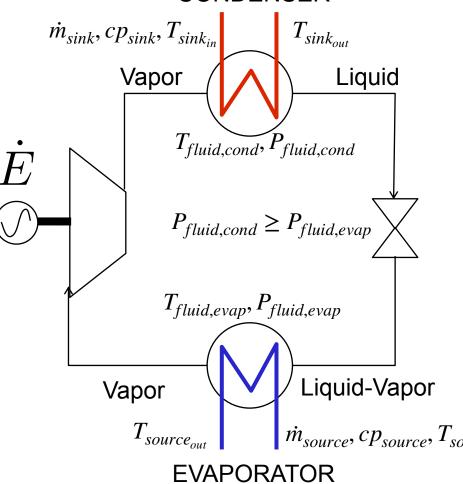
$$\dot{E}_{u,t} = \frac{\eta_{e,u}}{\eta_{th,u}} \cdot \dot{Q}_{u,t}$$

EPFL Calculating $m_{r,u,t}$ $[kJ_e/kJ_{th}]$ for a heat pump: approximation

source: EVAPORATOR

$$\begin{split} \dot{Q}_{sink} &= \dot{Q}_{u,t} = \dot{m}_{sink,t} \cdot cp_{sink} \cdot (T_{sink_{out,t}} - T_{sink_{in,t}}) \\ \dot{E}_{u,t} &= \frac{\dot{Q}_{u,t}}{COP_{u,t}} \\ &COP_{u,t} = \eta_{COP} \cdot COP_{th,u,t} \\ &\eta_{COP} = 50 \% \\ &COP_{th,u,t} = \frac{\tilde{T}_{sink,t}}{\tilde{T}_{sink,t} - \tilde{T}_{source,t}} \end{split} \qquad \begin{split} \tilde{T}_{sink,t} &= \frac{T_{sink_{out,t}} - T_{sink_{in,t}}}{In(T_{source_{out,t}}) - In(T_{source_{in,t}})} \\ \tilde{T}_{source,t} &= \frac{T_{source_{out,t}} - T_{source_{in,t}}}{In(T_{source_{out,t}}) - In(T_{source_{in,t}})} \end{split}$$

$$\begin{split} \dot{Q}_{source,t} &= \dot{m}_{source,t} \cdot cp_{source} \cdot (T_{source_{in,t}} - T_{source_{out,t}}) \\ \dot{Q}_{source,t} &= \dot{Q}_{u,t} - \dot{E}_{u,t} \end{split}$$



Sizing : condenser, evaporator & compressor

Calculating $i_{u_{O_i}}$

$$\dot{Q}_{u,t} = \dot{Q}_{sink,t} = \dot{m}_{sink,t} \cdot cp_{sink} \cdot (T_{sink_{out},t} - T_{sink_{in},t})$$

$$\dot{Q}_{sink,t} = \dot{m}_{fluid,t} \cdot (h(T_{fluid,cond_{in},t}, P_{fluid,cond_{in},t} - h(T_{fluid,cond_{out},t}, P_{fluid,cond_{out},t}))$$

$$A_{condenser} = \max_{t \in lifetime} ((\frac{1}{u_{sink}} + \frac{1}{u_{fluid,cond}}) \frac{\dot{Q}_{sink,t}}{\frac{(T_{fluid,cond,t} - T_{sink_{in},t}) - (T_{fluid,cond,t} - T_{sink_{out},t})}{ln(T_{fluid,cond,t} - T_{sink_{in},t}) - ln(T_{fluid,cond,t} - T_{sink_{out},t})})$$

$$\dot{E}_{max} = \max_{t \in lifetime} \left(\frac{\dot{Q}_{u,t}}{COP_{u,t}} \right)$$

$$A_{evaporator} = \max_{t \in lifetime} ((\frac{1}{u_{source}} + \frac{1}{u_{fluid,evap}}) + \frac{\dot{Q}_{source,t}}{\frac{(T_{source_{out,t}} - T_{fluid,evap,t} - (T_{source_{in,t}} - (T_{fluid,evap,t}))}{ln(T_{source_{out,t}} - T_{fluid,evap,t}) - ln(T_{source_{in,t}} - T_{fluid,evap,t})}$$

$$\dot{Q}_{source,t} = \dot{m}_{source,t} \cdot cp_{source} \cdot (T_{source_{in,t}} - T_{source_{out,t}})$$

$$\dot{Q}_{source,t} = \dot{m}_{fluid,t} \cdot (h(T_{fluid,evap_{out},t}, P_{fluid,evap_{out},t} - h(T_{fluid,evap_{in},t}, P_{fluid,evap_{in},t}))$$

$$\dot{Q}_{source,t} = \dot{Q}_{sink,t} - \dot{E}_{u,t}$$

EPFL CAPEX energy conversion system [CHF/year]

CAPital EXpenditure

$$CAPEX \quad [CHF/year] = \sum_{u=1}^{n_u} \frac{1}{\tau_u} \cdot i_{u_{\dot{Q}_{u,max}}} \cdot \dot{Q}_{u,max}$$

$$\dot{Q}_{u,max} = \max_{t \in lifetime} (\dot{Q}_{u,t})$$
 [kW] size of unit u

$$\frac{1}{\tau_u} = \frac{1}{\tau(i, lifetime_u)}$$
 [year⁻¹]: annualisation factor of unit u

EPFL Total Cost (TOTEX in [CHF/year])

TOTal EXpenditure :

$$TOTEX \quad [CHF/year] = OPEX \quad [CHF/year] + CAPEX \quad [CHF/year]$$

it assumes that the unit will be operated with the same power profile over the lifetime of the equipment

We assume a mean year and the associated costs as being representative of the lifetime of the project

