
Solving a set of non linear equations

MOES

François Marechal

Part1 : defining the building needs
M

E
 4

54
 -

P
R

O
JE

C
T

P
R

E
S

E
N

TA
TI

O
N

2

Buildings stock

Available :

Heating needs are defined by :

• [kW] 

heat required by building b  
at time t of the year

• [°C] 

Minimum temperature 
of the heat supply of building b 
at time t of the year

·Qb,t ∀b ∈ {1..nb}

Tsupply
b,t ∀b ∈ {1..nb}

What do we know ? 3

·QA,t[kW] = ·EA,t
·QL,t[kW] = ·EL,t
·QM,t[kW] = ·qcap ⋅ ∑

cap

capt

·QI,t[kW] = ·Irrt ⋅ ksun

·QR,t[kW] = ∑
wall

kwall ⋅ Swall ⋅ (Tcomfort,t − Text,t)

Tcomfort,t

Text,t

·QV,t[kW] = ·mV ⋅ cpair ⋅ (Tcomfort,t − Text,t)
·mA = kv ⋅ ·mV

·QH,t[kW] = ma x(0, ·QV,t + ·QR,t − (·QA,t + ·QL,t + ·QM,t + ·QI,t))

Our knowledge :

The model of the building envelop heat balance

Gains

Losses

Heat balance :

what is the load to maintain the comfort temperature ?

·Qgain,t

·QV,t + ·QR,t = kth(Tcomfort,t − Text,t)

State the problem to be solved : what needs to be calculated 4

QH(t0, tend) = ∫
tend

t0

·QH,t ⋅ dt = ∫
tend

t0

max(0,kth ⋅ (Tcomfort,t − Text,t) − ksun ⋅ ·Irrt − ·Qgain,t) ⋅ dt

QH(January, December)(ksun, kth) − Q1 = 0
QH(February, March)(ksun, kth) − Q2 = 0

2 equations and 2 unknowns : ksun, kth

Calculate if

and

ksun and kth

Q1 = QH(January, December)

Q2 = QH(February, March)

Activate your knowledge :

Solve a set of equations

F(X,)=0π

When f(x,)=0 can not be transformed into x= by mathematical manipulation

▪ Different problem formulations

• 1 variable & 1 equation

▪ f(x,) = 0 : implicit equation

▪ x=f(x,) : explicit equation

• N Equations & N Variables

▪ F(X,) = 0 : implicit equations

▪ X = F(X,) : explicit equations

π ϕ(π)

π
π

π
π

Numerical methods for solving a set of non linear equations 5

Solving f(x)= 0 : Newton-Raphson method 6

TAYLOR development to approximate any function :

f(x) = f(x0) + (x − x0) ⋅ f′￼(x0) +
(x − x0)2

2!
f′￼′￼(x0) + ⋅ ⋅ ⋅

1rst order limitation (approximate with a straight line) near x0

find x such that f(x) = 0

f(x0) + (x* − x0) . f′￼(x0) ≅ f(x*) = 0

x* = x0 −
f(x0)
f′￼(x0)

▪Newton Raphson algorithm

• Take and = initial guess of .

• Repeat (Iterations) :

until sufficiently close to 0

n = 0 x0 x*

xn+1 = xn −
f(xn)
f′￼(xn)

f(xn+1)

Solving f(x)= 0 7

▪ tangent approximation

▪ intersection with f=0

geometrical interpretation 8

f

x

0

x* xn
xn+1

€

xn+1 = xn −
f xn()
f xn()

f (xn)

f (xn+1)

Numerical calculation of derivatives 9

f 0(xn) =

�f(x)

�x

�

xn

=
f(xn)� f(xn + �x)

�x

Forward calculation

Central value

f(x)

x

f 0(xn) =

�f(x)

�x

�

xn

=
f(xn � �x

2)� f(xn + �x
2)

�x

�x

�x

xn

+ 1 function evaluation

+ 2 function evaluations

xn+1xn+1

▪ Choose a small value well chosen value

▪ Test variable variations

▪ Test function variation

| f(xk) | ✏

� = 1.0E � 06

f(x) ✏

✏ x

Convergence criteria 10

| xk+1 � xk |⇤ � ⇥ (1+ | xk |)

Newton-Raphson : possible problems 11

y

x0
x

x
x x* x*x

1

1

1
1

1

2
2

0

0
~

~

M

M

M

Wrong starting point
Multiple solutions

▪ When you suspect divergence : 
 i.e. and

▪ Use relaxation factor 0 < q < 1

• note : q=0 => full step

▪ Choice of q is critical ?

• convergence speed wrt robustness

▪ q >> small steps and lots of iterations

▪ q << Newton step : direct convergence if linear problem

| f(xn+1) | > | f(xn) | sign(f(xn+1)) = sign(f(xn))

xn+1 = xn ⋅ q + (xn −
f(xn)
f′￼(xn)

) ⋅ (1 − q)

Increase robustness of solving procedure 12

▪ Requires initial point

▪ Requires derivatives calculation

▪ divergence possible

▪ no step if tangent = 0

Newton-Raphson : drawbacks 13

• 2nd order development (quadratic) to accelerate convergence

–

–

– a, b, c obtained if we know 3 values of f(x)

f(x) = 0 ≈ c + b(x − x0) + a(x − x0)2

x� x0 =
�b± 2

⇤
b2 � 4ac

2a

More efficient method 14

Chord method : approximating the derivative 15

€

f x() − f xk() =
f x k() − f x k−1()

xk − xk−1
. x − x k()

€

x k+1 = x k −ψ −1. f xk()

€

ψ =
f x k() − f xk−1()
x k − x k−1

approximation of the
derivative by the
iteration step

Chord method : solving f(x)=0 16

y

x
x x0

f(x)
f(x)

f(x)

kk+1

k-1k+1

k-1

k

always use the x for which f(x) is framing the solution f(x)=0,

�k =
f(xk0

)� f(xk1

)

xk0 � xk1

f(xk0

) ⇤ f(xk1

) < 0

▪ Pro :

• No derivative needed

• Similar speed as Newton-Raphson.

▪ Cons :

• Slow near the solution

• Initial point like in newton method

Chord method 17

▪ may be transformed into implicit form

• x = f(x) => φ(x) = x - f(x) = 0

Solving explicit equations : x=f(x) 18

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

xn+1

xn

f(xn)

x

f(x)

▪ Substitution method

Monotonic convergence 19

Solving x=f(x) : Explicit Equation

xk+1 = f(xk)

 Substitution : x = f(x) May diverge
x=f(x) : Substitution may diverge 20

y

0 xkxk+1 xk+1~ x

q 1 - q

y

0 xk

xk+1

x

xk+2
f(x)

Oscillating Convergence 21

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

Monotonic Divergence 22

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4

Oscilating divergence 23

-4

-3

-2

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3 4 5 6

Solution : Apply relaxation 24

xn+1 = xn · q + f(xn) · (1� q)

y

0 xkxk+1 xk+1~ x

q 1 - q

y

0 xk

xk+1

x

xk+2
f(x)

Full substitution if q = 0

▪ System to be solved : intersection of two curves

▪ ψ = Chord slope

▪ Therefore

▪ 	

▪ relaxation of substitution

▪ Increased speed of convergence

▪ More robust

Wegstein method 25

€

y − y k =
y k +1 − y k

x k +1 − ˜ x k
. x − ˜ x k() =ψ . x − ˜ x k()

y = x

€

˜ x k +1 =
1

1−ψ . xk +1 −ψ .˜ x k()

€

˜ x k +1 = q.˜ x k + 1− q().x k +1

€

q =
−ψ
1−ψ et 1− q =

1
1−ψ

• Newton-Raphson n dimensions
– Solve F(X) = 0 (Array)

f1(x) = f1(x1,x2,...,xn) = 0

f2(x) = f2(x1,x2,...,xn) = 0

. . . .

fn(x) = fn(x1,x2,...,xn) = 0

– Initial guess is given

– X0 = t[x... x]

Solving a set of equations F(X)=0 : N Variables 26

▪ Taylor development

▪

0iiixxxΔ=−

i = 1, n

Newton Raphson : N dimension 27

fi(x) ≈ fi(x0) + (
δf(x)
δx

)x0 ⋅ (x − x0) = 0

Matrix representation 28

...
δf1
δxj

 ...
δf1
δxn

 Δx1 f1(x0) f1(x)

...
δfi
δx1

 ...
δfi
δxj

 ...
δfi
δxn

 . Δxj + fi(x0) = fi(x)

...

δf1
δx1 ..

δfn
δx1

 ...
δfn
δxj

 ...
δfn
δxn

 Δxn fn(x0) fn(x)

€

tJ .Δx + F x 0() = F x()

Jacobian matrix
matrix of derivatives function evaluated for x0

Newton -Raphson (N dimensions) 29

Iteration n :

€

tJ .Δx + F x 0() = F x()

€

x1 = x0− t J x 0
−1F x 0()

€

x n+1 = xn−t J x n
−1F xn()

F (X) = 0

▪ At iteration k

• Variables variations

• Functions variation

Convergence criteria 30

| f(xk) | ✏

| xk+1 � xk |⇤ � ⇥ (1+ | xk |)

▪ Variables

Scaling variables and equations 31

| fk+1 |⇤ �
| xk+1 � xk |⇤ � ⇥ (1+ | xk |)

| ⇤k+1
j � ⇤k

j |⇤ � ⇥ (1+ | ⇤k
j |) ⌅j

| ⇥k+1
j (⇤)� ⇥k

j (⇤) |⇤ � ⌅j

F (X) = 0 � ⇥(�) = 0
� = Scalex ·X
⇥ = Scalef · F (X)

Original problem

Scaling

New problem

All equations and
variables are compared
with the same reference
value

▪ Initial guess

▪ Matrix inversion + derivatives

▪ Matrix inversion at each iteration n*n derivatives,

▪ Relaxation may be applied :

Newton-Raphson n dimensions ;Drawbacks 32

€

˜ x n+1 = ˜ x n−t J x n
−1 F ˜ x n(). 1− q()

▪ Forward numerical estimation

▪ Computation time cost !

• central derivatives avoided

▪ Numerical noise (is the derivative a derivative ?)

Calculating derivatives 33

€

∂f
∂xi

=
f (X + Δxi) − f (X)

Δxi

�f(X) = |F (X)0 � F (X)nX+1|

8i = 1, ..., nX + 1

• f(x) = x - ψ(x) = 0

▪ Newton?

• xk+1 = xk - {tJ [f(xk)]}-1 f(xk)

▪ How to estimate the Jacobian matrix ?

• 	 xk+1 = xk - {E - tJ [ψ(xk)]}-1 [xk - ψ(xk)]

▪

Solving X=F(X) n dimensions 34

▪ Taylor development

quasi Newton/ Rubin Method 35

€

ψ1 x() =ψ1 x
k() +

δψ1

δx1

$

%
&

'

(
)

k

. x1 − x1k() +… +
δψ1

δxn

$

%
&

'

(
)

k

. xn − xnk()

!

ψ j x() =ψ j x
k() +

δψ j

δx1

$

% &
'

()

k

. x1 − x1
k() +… +

δψ j

δxn

$

% &
'

()

k

. xn − xn
k()

!

ψ n x() =ψ n x
k() +

δψ n

δx1

$

%
&

'

(
)

k

. x1 − x1k() +… +
δψ n

δxn

$

%
&

'

(
)

k

. xn − xnk()

▪ select n+1 initial points (by substitution for example)�
	 	 x0 , x1, x2, ..., xk, �

▪ For each iteration store x and ψ (x)

Rubin method 36

Soit les matrices C et D (n+1 lignes et n colonnes)
x0

1 ... x0
j ... x0

n
x1

1 ... x1
j ... x1

n
...

C = xk
1 ... xk

j ... xk
n

...
xn

1 ... xn
j ... xn

n

ψ1(x0) ... ψj(x0) ... ψn(x0)
ψ1(x1) ... ψj(x1) ... ψn(x1)

...
D = ψ1(xk) ... ψj(xk) ... ψn(xk)

...
ψ1(xn) ... ψj(xn) ... ψn(xn)

After n iterations
we have n equations
=> J is estimated

▪ From C and D,

Rubin cont. 37

€

A =

x1
1 − x1

0 ! x j
1 − x j

0 ! xn
1 − xn

0

" # " "
x1
k − x1

0 ! x j
k − x j

0 ! xn
k − xn

0

" " # "
x1
n − x1

0 ! x j
n − x j

0 ! xn
n − xn

0

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

€

B =

ψ1 x
1() −ψ1 x

0() ! ψ j x
1() −ψ j x

0() ! ψ n x
1() −ψ n x

0()
" # " "

ψ1 x
k() −ψ1 x

0() ! ψ j x
k() −ψ j x

0() ! ψ n x
k() −ψ n x

0()
" " # "

ψ1 x
n() −ψ1 x

0() ! ψ j x
n() −ψ j x

0() ! ψ n x
n() −ψ n x

0()

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

Rubin (in practice) 38

System to be solved

and

After n iterations J can be evaluated and Newton-Raphson can be
applied to calculate the new point.

From this point the J matrix can be updated at each step.
eliminate the worst point in the list and then reevaluate J

€

ψ x() −ψ xk() = t J ψ xk()[]{ }Δxk

€

 tB = t J t A

ou t B t A−1 = tJ

d'où J = A−1 B

€

˜ x n+1 = xn − E−
t

A−1 B(){ }−1

x n −ψ xn()[]

▪ As calculating Jacobian matrix is expensive, the idea is to preserve the validity of
the inverted matrix for several steps : i.e.

• kn is the evaluation k of the Jacobian matrix used at iteration n

• the validity of the step is obtained by comparing the x obtained and the

expected value (is the difference decreasing ?)

Updating the matrix 39

x̃n+1 = xn � {E� (Akn)�1Bkn}�1(xn � �(xn))

▪ Iterative procedure when no mathematical formulation is found

• Does not always converge !

• Bounds on variables + safe guards

▪ Initialisation point : use ranges of x

• bad initialisation point means long calculations

▪ Direction (derivative) + Step length (relaxation)

• Derivatives : defines direction

▪ Numerical calculations => length of

▪ Numerical calculation cost + noise

• Matrix inversion : defines the direction

▪ Try to reuse direction for several steps

▪ Relaxation : if divergence observed

▪ Test of convergence

• on both equations and variables

• one criteria for several equations+ variables => scaling

Δx

Conclusions : Solving non linear equations 40

