m
U
"1l
—

Solving a set of non linear equations

MOES
Francois Marechal

£PFL Part1 : defining the building needs

Buildings stock

Heating needs are defined by :
¢ 0,, Vbe({l.n) kW]
heat required by building b

at time t of the year
. T;gpply Vb € {1.n,} [°C]

Minimum temperature

of the heat supply of building b

at time t of the year

L tUE—\

7Y Ev@»* Available :
R B — () ' Lc 1
ﬁmrmrmmﬂélﬁmﬂg‘ﬁ ﬁgm, & Table 1.1: EPFL Buildings
g % S g Building Construction Heated Annual heat Annual electricity
) : @ period® surface Ay [m?] demand Qg [kWh] demand Qe [kWh]
; —— BC 2 17480 418,491 1,603,596
/ I CO 2 11901 477,008 943,653
BP 2 10442 457,861 691,031
BS 2 10267 509,183 350,860
TCV 2 6095 318,209 2,067,675

M |PESE
Industrial Process
and Energy Systems ‘g,
Engineering

=PFL What do we know ?

QA GAIN BY APPLIANCES
+(4 : HexT To (oMPENSATE LOSSES

Air
INFILTRATION

MLAR |
lﬂmx%

Toxr
XﬂzO

B
I

T

ext,t

Our knowledge :

tQL: GMN By LIGHTING SysTen

+Qu: Gaw BY HUMAN

+(1: Gain By [RRADIATION
Qv [085ES BY VENTILATION
“(OR: L1568 THROUGK THE WALLS

The model of the building envelop heat balance

O kW1 =E,,

IO O TRORAE,

e

O [kW]=E, O ins Gains

»

vtV

14

QM,[[kW] = qCap) Z Capt
cap

Q, kW] = Irr, - kg,

QV,t[kW] = mV “CPuir (Tcomfort,t - Text,t) Losses

¢
Engineering W

104 +Q4 120 A/QP\ QR,t[kW] = Z kwall : Swall : (Tcomfort,t - Text,t)
L\f N ﬁ) 4le0x . . wall
1Q) klﬂ: - i QV,t + QR,t = th(Tcomfort,t - Text,t)
J Ff-__ 1 H Heat balance :
/ 16 { o> what is the load to maintain the comfort temperature ?
O kW] =max(0,Qy,+ Or,— (Q4,+ O, + Ou,+ 0O;))

Hear DTRRIMON DomEsTic

SYSTEM Hor WATER

=PrL State the problem to be solved : what needs to be calculated °

tend tend]
QH(tO’ tend) = [QH,t -dt = J max(o’kth) (Tcomfort,t - Text,t) - ksun) I?‘I’t - anin,t) - dt
1,

lo 0

Calculate k,, and k), if

Activate your knowledge :
o' = Qy(January, December)

and
0’ = Qu(February, March)

Solve a set of equations
Qy(January, December)(k,, . k;) — Q' =0
Qy(February, March)(k,, . k;) — 0% =0

F(X,7)=0

2 equations and 2 unknowns :k,,

kth

EPFL Numerical methods for solving a set of non linear equations

When f(x,77)=0 can not be transformed into x=¢)(xr) by mathematical manipulation
= Different problem formulations

« 1 variable & 1 equation
= f(x,7r) = 0 : implicit equation

= X=f(x,7) : explicit equation

- N Equations & N Variables
= F(X,7) =0 :implicit equations

= X = F(X,7) : explicit equations

ePFL Solving f(x)= 0 : Newton-Raphson method

find x such that f(x) =0

TAYLOR development to approximate any function :

(x = x°)7
2!

| rst order limitation (approximate with a straight line) near x9

f) =) + (x = x% - (%) + 10 + - -
£ + @ —x0) . (%) = fx¥) = 0

w« _ 0 i (x")
xX* =x" —
f(x9)

EPFL Solving f(x)=0
=Newton Raphson algorithm

. Take n = 0 and x" = initial guess of x*.
- Repeat (lterations) :

n+l _ ..n f (xn)
fan)

until f(x"*1) sufficiently close to 0

EPFL geometrical interpretation

= tangent approximation
= intersection with f=0

¢ X7 =x -
f/ xi’l
J&x")

n+1

N fa
x* xn+1 x"

=PFL Numerical calculation of derivatives

Forward calculation
0f () f(z") — f(z" + Ax)
/ ny\ __ -
f(x)_[&z: Ln_ Ax
Central value

+ 1 function evaluation

+ 2 function evaluations

) = [5];?)] St =5 — [+ 5

f(x)]

EPFL Convergence criteria

= Choose a small value well chosen value

e=1.0E — 06

= [est variable variations

2" =2t [<ex (14| 2V)

« Test function variation

| f(2%) [< e

fah

10

=PFL Newton-Raphson : possible problems

y A Wrong starting point
Multiple solutions

EPFL Increase robustness of solving procedure

= When you suspect divergence :

e [SO] > A | and sign(f(x™*)) = sign(fx™))

= Use relaxation factor 0 < g < 1
xn
xn+1 =x”-q+(x”—f,()
J'(x)
- note : g=0 => full step
= Choice of q is critical ?
- convergence speed wrt robustness
= g >> small steps and lots of iterations
= g << Newton step : direct convergence if linear problem

) - (1 =¢q)

12

EPFL Newton-Raphson : drawbacks

= Requires initial point

= Requires derivatives calculation
= divergence possible

= no step if tangent =0

13

=PFL More efficient method)

- 2nd order development (quadratic) to accelerate convergence

—f(x) =0 = c + b(x —x%) + alx — x)?

—b + \2/192 — 4ac
_LIZ‘—LIZ‘Q: 9

—a, b, c obtained if we know 3 values of f(x)

EPFL Chord method : approximating the derivative

Industrial Process

k k-1
B f(x)_ f(x) approximation of the
1/} — k k-1 derivative by the

iteration step

ystems \Q
i

15

EPFL Chord method : solving f(x)=0

y A always use the x for which f(x) is framing the solution f(x)=0,

f(x)f - - -

16

ePFL Chord method

= Pro:
 No derivative needed

- Similar speed as Newton-Raphson.

= Cons :
« Slow near the solution
- |nitial point like in newton method

17

EPFL Solving explicit equations : x=f(x)
= may be transformed into implicit form
« xX=1f(x)=>@(Xx)=x-1(x)=0

18

EPFL Monotonic convergence
» Substitution method Solving x=f(x) : Explicit Equation
3.5+
k+1 k
f —
L] 16 T f(z®)

2.5

21
f(ajn » n+1

1.5 ¢

14+

0.5+

EPFL x=f(X) : Substitution may diverge
B Substitution : x = f(x) May diverge

f(x)

A |

20

=PFL Oscillating Convergence

2.5+ \~\’

M IPESE

Industrial Process
and Energy Systems ‘g,
Engineering

21

EPFL Monotonic Divergence

(¢}

N

M |PESE
Industrial Process
and Energy Systems ',
Engineering

EPFL QOscilating divergence

»

S

M IPESE
Industrial Process q

and Energy Systems ',
Engineering

23

=PFL Solution : Apply relaxation

" =2 g+ f(z") - (1—q)
Full substitution if g =0
A

f(>)

EPFL Wegstein method

= System to be solved : intersection of two curves

yk+1 _ yk
k ~k ~k
— = —\lxX—-X =Y lx—-X
-y = -)=y
y=X
= Y = Chord slope
= Therefore 1
~ k+1 k+1 ~k
: X = 1—(x -YP X)
= relaxation of substitution ¥
~ k+l ~k k+1 _ ~Y
X =qx +(1—q)x q -y

= Increased speed of convergence
= More robust

M IPESE
Industrial Process ‘q

and Energy Systems ‘g,
Engineering

EPFL Solving a set of equations F(X)=0 : N Variables
- Newton-Raphson n dimensions
—Solve F(X)=0 (Array)
f1(x) = f1(x1,x2,....xn) =0
f2(x) = 2(x1,x2,....xn) =0

fn(x) = fn(x1,x2,...,xn) = 0

— Initial guess is given
— X0 =t[x... X]

26

=PFL Newton Raphson : N dimension

= Taylor development

fix) = fi(x’)

of (x)

OX

)y (x = x¥)

EPFL Matrix representation

Jacobian matrix
matrix of derivatives

& o] el

&I .. Xy &j Xy &n

i ksi i

&I XX &j cee &n

S S i

&I Xyl &j Xy &n
i

function evaluated for x0

Ax] f1x0) fl)
My |+ | i) = | fi®
Moy fn(x0) fr(x)
0
x’)= F(x)

28

=EPFL Newton -Raphson (N dimensions)

F(X) =0
X =x =L F
Iteration n : £n+l - ln_t-_l;

|
-
N—

53

EPFL Convergence criteria

= At iteration k
« Variables variations

2" =2 < ex (14] 27)

* Functions variation

| f(zh) < e

EPFL Scaling variables and equations

= Variables

k41
Original problem S <e
2" =2t < ex (14 | 27)

Scaling F(X) — ()= (I)(E) 0 All equations and

variables are compared

SCCLZ@:B X with the same reference

® = Scales - F(X) Bl
b _ k(o / :

New problem

31

EPFL Newton-Raphson n dimensions ;Drawbacks

= |nitial guess

= Matrix inversion + derivatives

= Matrix inversion at each iteration n*n derivatives,
= Relaxation may be applied

32

=PFL Calculating derivatives

= Forward numerical estimation

of FXAA)-FOO) V=1, nx+1
0x, Ax,

= Computation time cost !
« central derivatives avoided

= Numerical noise (is the derivative a derivative ?)

Af(X) = [F(X)o = F(X)nx+1

33

=PFL Solving X=F(X) n dimensions
« f(x) =x-w(x)=0

= Newton?
Xkt = - (TR F(xk)

= How to estimate the Jacobian matrix ?
Xkt = xk - {E - U [WOH (XK - wix)]

34

=PFL quasi Newton/ Rubin Method

= Taylor development

ePFL Rubin method

= select n+1 initial points (by substitution for example)
x0 , x1, x2, ..., Xk,

= For each iteration store x and y (x)

Soit les matrices C et D (n+1 lignes et n colonnes)

0] (0] (0]
X1 e X e Xp
x] e X x,11
C = x'1(xjk x‘:,
X7 .ox .. oxp After n iterations
x9) <)) we have n equations
P (X Pij(X Pn(X _))
1) (X)) apn(x?) =>] is estimated
D=yi(x) ... X)) ... pn(XK)
Pi(Xn) o (X)L n(XN)

M IPESE
Industrial Process
and Energy Systems ‘g,
Engineering

36

EPFL Rubin cont.
« From C and D,

1 0 1 1 0
X, — X, X, =X X, —X
k 0 k 0
0 n 0

x/' =X X=X X! —x

EPFL Rubin (in practice)

System to be solved lﬂ(lc) —l/_j(ick) = {té[y(ick)]}A_xk
B-"1'A
ou 'B'AT="1
and S
douw I=A B

After n Iterations | can be evaluated and Newton-Raphson can be
applied to calculate the new point.

ey e (a8 [()]

From this point the J matrix can be updated at each step.
eliminate the worst point in the list and then reevaluate }

=2

38

=PFL Updating the matrix

= As calculating Jacobian matrix is expensive, the idea is to preserve the validity of
the inverted matrix for several steps : i.e.

T = x" — {E— (AF)7IBF 1 (x™ — o (x™))

* kn is the evaluation k of the Jacobian matrix used at iteration n

- the validity of the step is obtained by comparing the x obtained and the
expected value (is the difference decreasing ?)

39

=PFL Conclusions : Solving non linear equations

= |terative procedure when no mathematical formulation is found
- Does not always converge !
- Bounds on variables + safe guards
= |nitialisation point : use ranges of x
« bad initialisation point means long calculations
= Direction (derivative) + Step length (relaxation)
- Derivatives : defines direction

= Numerical calculations => length of Ax
= Numerical calculation cost + noise
- Matrix inversion : defines the direction
= Try to reuse direction for several steps
= Relaxation : if divergence observed
= Test of convergence
- on both equations and variables
- one criteria for several equations+ variables => scaling

M |PESE
Industrial Process
and Energy Systems ',
Engineering

40

