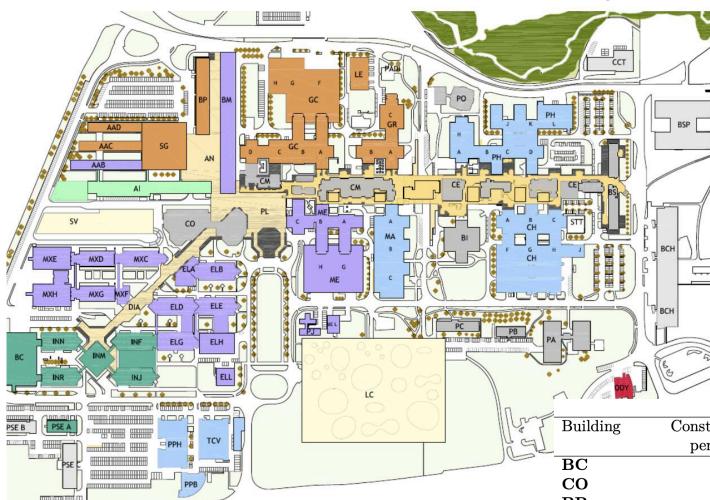


Solving a set of non linear equations

MOES François Marechal

EPFL Part1: defining the building needs

Buildings stock



Heating needs are defined by :

- $\dot{Q}_{b,t}$ $\forall b \in \{1..n_b\}$ [kW] heat required by building b at time t of the year
- $T_{b,t}^{supply}$ $\forall b \in \{1..n_b\}$ [°C] Minimum temperature of the heat supply of building b at time t of the year

Available:

Table 1.1: EPFL Buildings

Building	Construction	Heated	Annual heat	Annual electricity
7	period^a	surface $A_{\rm th}~[{\rm m}^2]$	demand Q_{th} [kWh]	$demand \ Q_{el} \ [kWh]$
\mathbf{BC}	2	17480	418,491	1,603,596
\mathbf{CO}	2	11901	477,008	$943,\!653$
\mathbf{BP}	2	10442	$457,\!861$	691,031
\mathbf{BS}	2	10267	$509{,}183$	$350,\!860$
\mathbf{TCV}	2	6095	318,209	2,067,675

EPFL What do we know?

+ QA : GAIN BY APPLIANCES

+QH: HEAT TO COMPENSATE LOSSES

+QL: GAIN BY LIGHTING SYSTEM

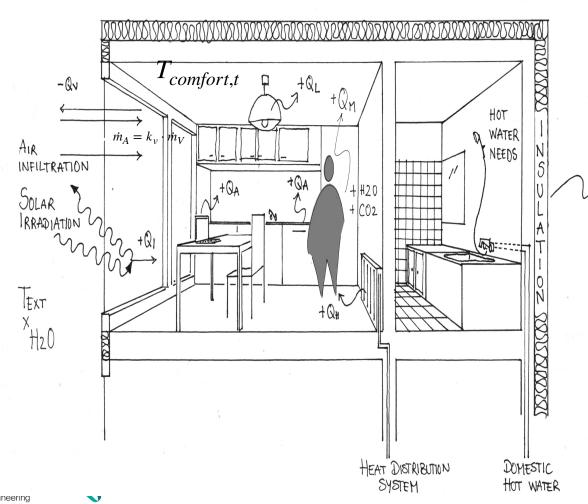
+ QM: GAIN BY HUMAN

+Q1: GAIN BY IRRADIATION

-QV: LOSSES BY VENTILATION

- QR: LOSSES THROUGH THE WALLS

 $T_{ext,t}$



Our knowledge:

The model of the building envelop heat balance

$$\begin{split} \dot{Q}_{A,t}[kW] &= \dot{E}_{A,t} \\ \dot{Q}_{L,t}[kW] &= \dot{E}_{L,t} \\ \dot{Q}_{M,t}[kW] &= \dot{q}_{cap} \cdot \sum_{cap} cap_t \\ \dot{Q}_{I,t}[kW] &= \dot{Ir}r_t \cdot k_{sun} \\ \dot{Q}_{V,t}[kW] &= \dot{m}_V \cdot cp_{air} \cdot (T_{comfort,t} - T_{ext,t}) \\ \dot{Q}_{R} \quad \dot{Q}_{R,t}[kW] &= \sum_{wall} k_{wall} \cdot S_{wall} \cdot (T_{comfort,t} - T_{ext,t}) \end{split}$$
 Losses
$$\dot{Q}_{V,t} + \dot{Q}_{R,t} = k_{th}(T_{comfort,t} - T_{ext,t})$$

Heat balance:

what is the load to maintain the comfort temperature?

$$\dot{Q}_{H,t}[kW] = max(0,\dot{Q}_{V,t} + \dot{Q}_{R,t} - (\dot{Q}_{A,t} + \dot{Q}_{L,t} + \dot{Q}_{M,t} + \dot{Q}_{I,t}))$$

State the problem to be solved: what needs to be calculated

$$Q_{H}(t_0, t_{end}) = \int_{t_0}^{t_{end}} \dot{Q}_{H,t} \cdot dt = \int_{t_0}^{t_{end}} max(0, k_{th} \cdot (T_{comfort,t} - T_{ext,t}) - k_{sun} \cdot \dot{Irr}_t - \dot{Q}_{gain,t}) \cdot dt$$

Calculate k_{sun} and k_{th} if

$$Q^1 = Q_H(January, December)$$

and
 $Q^2 = Q_H(February, March)$

$$Q_{H}(January, December)(k_{sun}, k_{th}) - Q^{1} = 0$$

$$Q_{H}(February, March)(k_{sun}, k_{th}) - Q^{2} = 0$$

2 equations and 2 unknowns: k_{sun} , k_{th}

Activate your knowledge :

Solve a set of equations

$$F(X,\pi)=0$$

EPFL Numerical methods for solving a set of non linear equations 5

When $f(x,\pi)=0$ can not be transformed into $x=\phi(\pi)$ by mathematical manipulation

- Different problem formulations
 - 1 variable & 1 equation
 - $f(x,\pi) = 0$: implicit equation
 - $x=f(x,\pi)$: explicit equation
 - N Equations & N Variables
 - $F(X,\pi) = 0$: implicit equations
 - $X = F(X,\pi)$: explicit equations

EPFL Solving f(x)= 0 : Newton-Raphson method

find x such that f(x) = 0

TAYLOR development to approximate any function:

$$f(x) = f(x^0) + (x - x^0) \cdot f'(x^0) + \frac{(x - x^0)^2}{2!} f''(x^0) + \cdots$$

Irst order limitation (approximate with a straight line) near x^0

$$f(x^0) + (x^* - x^0) \cdot f'(x^0) \cong f(x^*) = 0$$

$$x^* = x^0 - \frac{f(x^0)}{f'(x^0)}$$

EPFL Solving f(x)=0

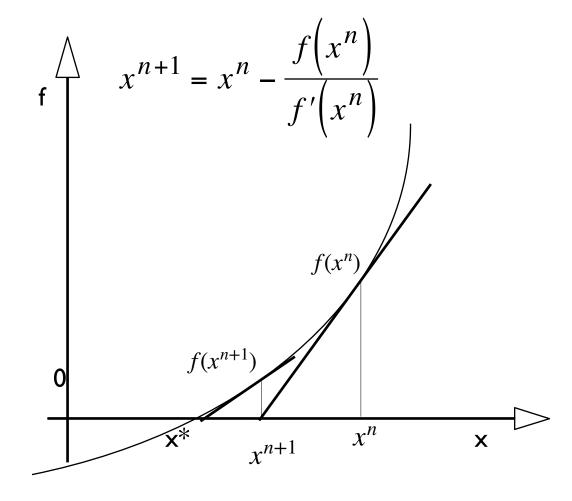
- Newton Raphson algorithm
 - Take n = 0 and x^0 = initial guess of x^* .
 - Repeat (Iterations):

$$x^{n+1} = x^n - \frac{f(x^n)}{f'(x^n)}$$

until $f(x^{n+1})$ sufficiently close to 0

EPFL geometrical interpretation

- tangent approximation
- intersection with f=0



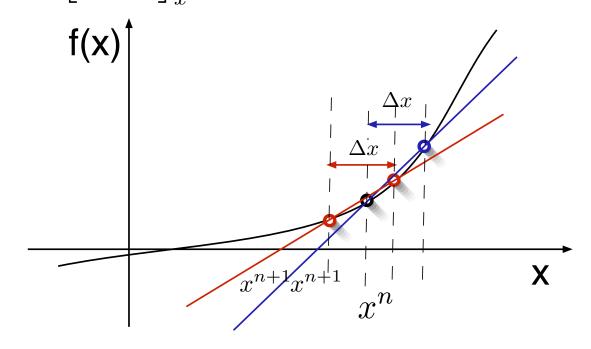
EPFL Numerical calculation of derivatives

Forward calculation

$$f'(x^n) = \left\lceil \frac{\delta f(x)}{\delta x} \right\rceil_{x^n} = \frac{f(x^n) - f(x^n + \Delta x)}{\Delta x} + 1 \text{ function evaluation}$$

Central value

$$f'(x^n) = \left[\frac{\delta f(x)}{\delta x}\right]_{x^n} = \frac{f(x^n - \frac{\Delta x}{2}) - f(x^n + \frac{\Delta x}{2})}{\Delta x} \ + \ \text{2 function evaluations}$$



EPFL Convergence criteria

Choose a small value well chosen value

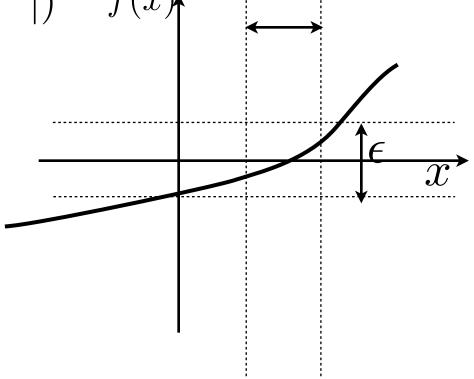
$$\epsilon = 1.0E - 06$$

Test variable variations

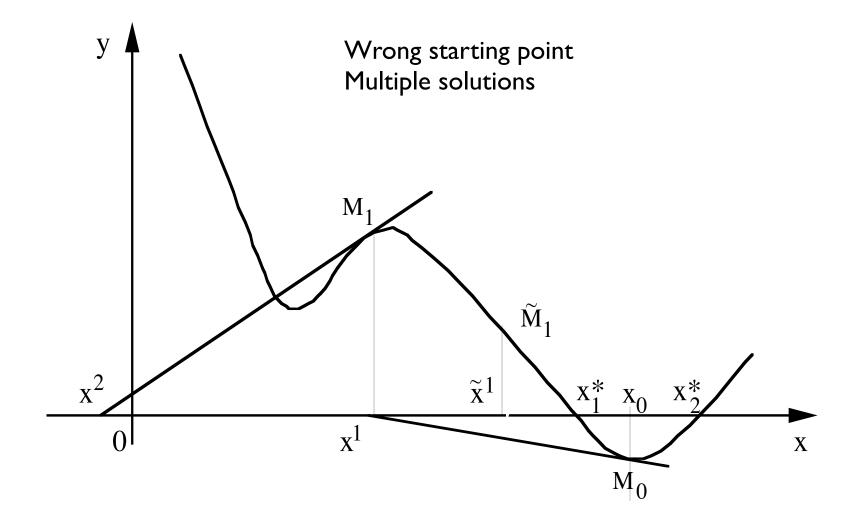
$$|x^{k+1} - x^k| \le \epsilon * (1 + |x^k|) \quad f(x)$$

Test function variation

$$|f(x^k)| \leq \epsilon$$



EPFL Newton-Raphson: possible problems



EPFL Increase robustness of solving procedure

When you suspect divergence :

i.e.
$$|f(x^{n+1})| > |f(x^n)|$$
 and $sign(f(x^{n+1})) = sign(f(x^n))$

Use relaxation factor 0 < q < 1

$$x^{n+1} = x^n \cdot q + (x^n - \frac{f(x^n)}{f'(x^n)}) \cdot (1 - q)$$

- note : q=0 => full step
- Choice of q is critical ?
 - convergence speed wrt robustness
 - q >> small steps and lots of iterations
 - q << Newton step : direct convergence if linear problem

EPFL Newton-Raphson: drawbacks

- Requires initial point
- Requires derivatives calculation
- divergence possible
- no step if tangent = 0

EPFL More efficient method

2nd order development (quadratic) to accelerate convergence

$$-f(x) = 0 \approx c + b(x - x^{0}) + a(x - x^{0})^{2}$$

$$x - x_0 = \frac{-b \pm \sqrt[2]{b^2 - 4ac}}{2a}$$

-a, b, c obtained if we know 3 values of f(x)

EPFL Chord method: approximating the derivative

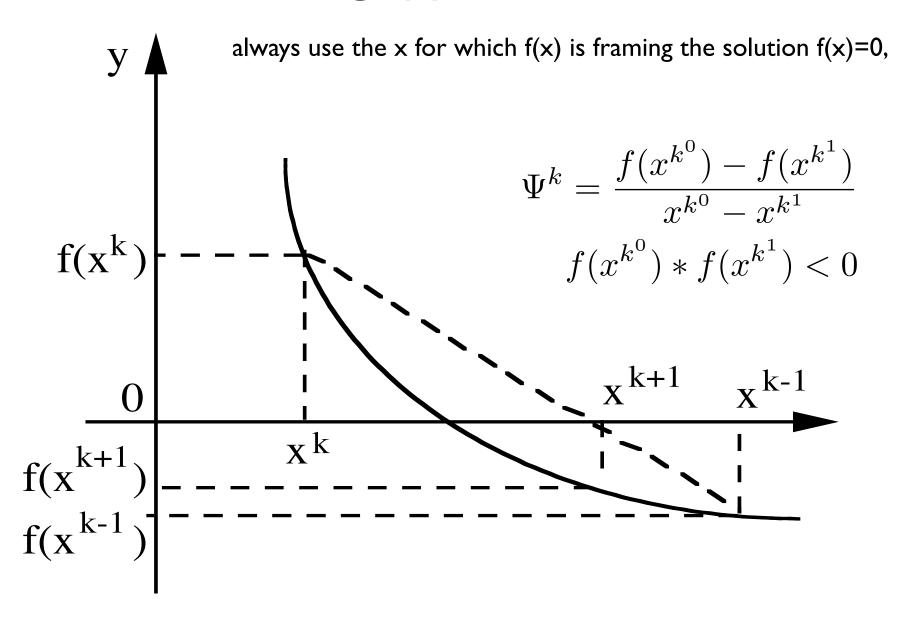
$$f(x) - f(x^{k}) = \frac{f(x^{k}) - f(x^{k-1})}{x^{k} - x^{k-1}} (x - x^{k})$$

$$x^{k+1} = x^k - \psi^{-1} . f(x^k)$$

$$\psi = \frac{f(x^k) - f(x^{k-1})}{x^k - x^{k-1}}$$

approximation of the derivative by the iteration step

EPFL Chord method : solving f(x)=0



EPFL Chord method

- Pro :
 - No derivative needed
 - Similar speed as Newton-Raphson.
- Cons:
 - Slow near the solution
 - Initial point like in newton method

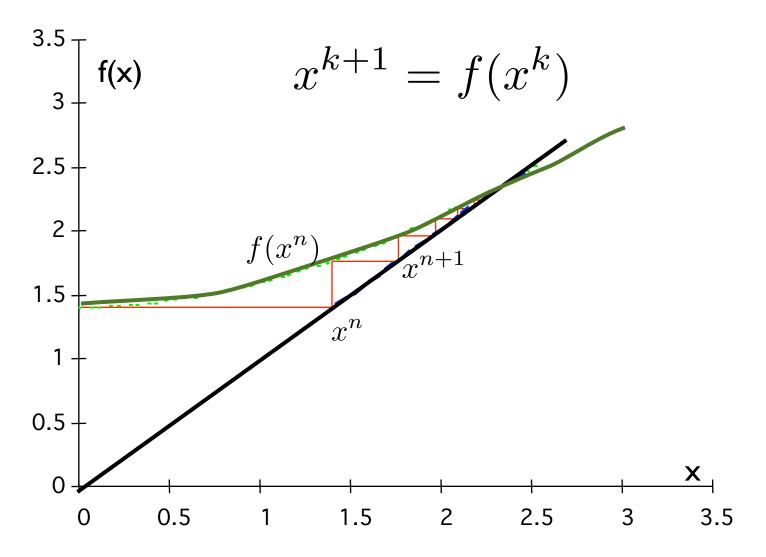
EPFL Solving explicit equations : x=f(x)

- may be transformed into implicit form
 - $x = f(x) => \phi(x) = x f(x) = 0$

EPFL Monotonic convergence

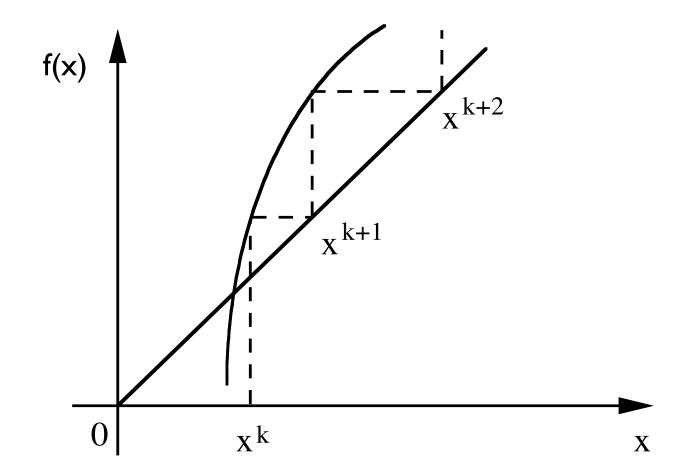
Substitution method

Solving x=f(x): Explicit Equation

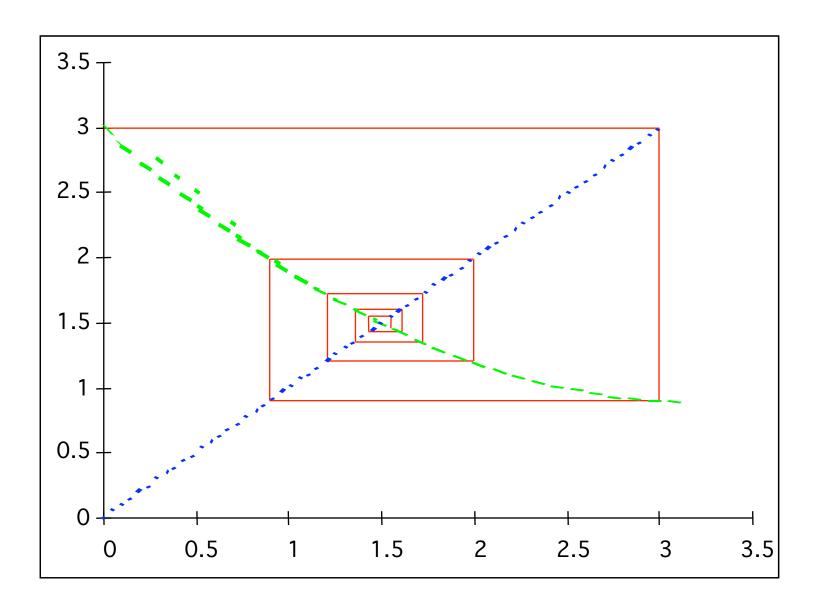


EPFL x=f(x): Substitution may diverge

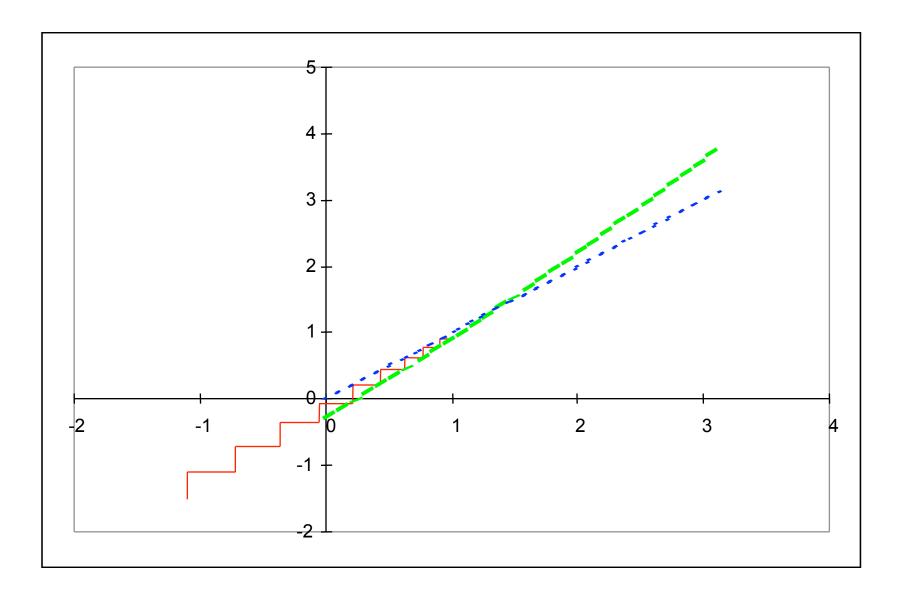
Substitution: x = f(x) May diverge



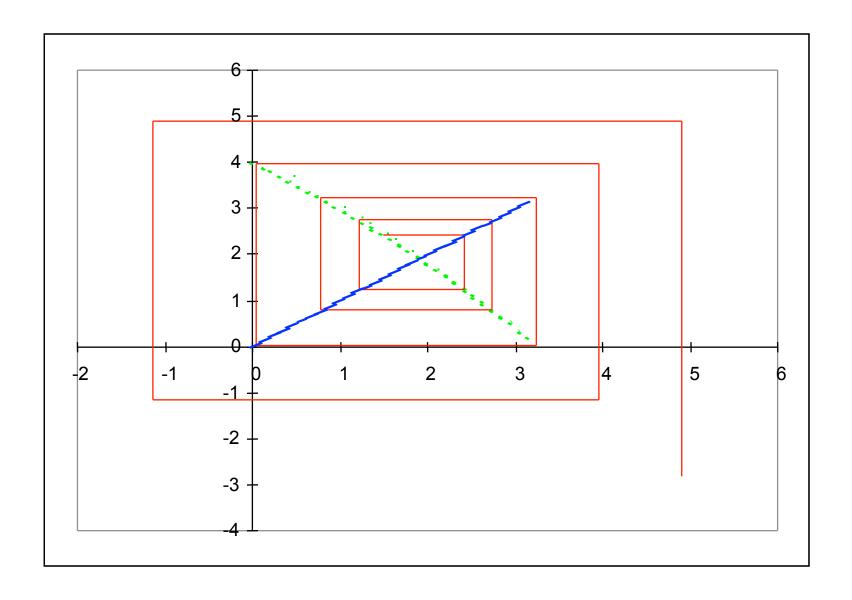
EPFL Oscillating Convergence



EPFL Monotonic Divergence

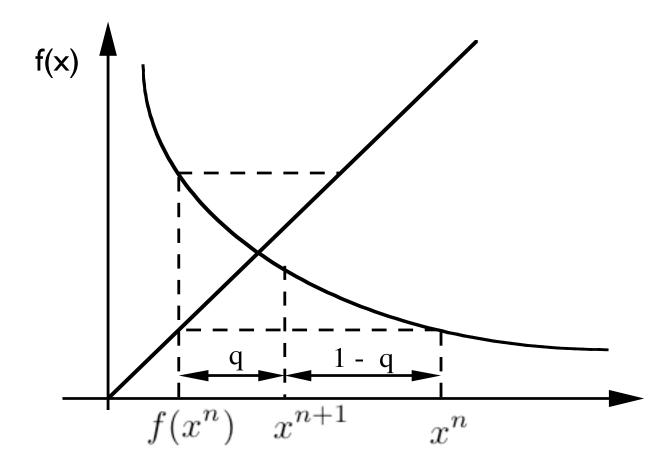


EPFL Oscilating divergence



EPFL Solution : Apply relaxation

$$x^{n+1} = x^n \cdot q + f(x^n) \cdot (1-q)$$
 Full substitution if $q = 0$



 $\tilde{\mathbf{x}}^{k+1}$

 x^k

EPFL Wegstein method

System to be solved : intersection of two curves

$$y - y^k = \frac{y^{k+1} - y^k}{x^{k+1} - \tilde{x}^k} (x - \tilde{x}^k) = \psi (x - \tilde{x}^k)$$

- y = x
- ψ = Chord slope
- Therefore

$$\tilde{x}^{k+1} = \frac{1}{1-\psi} \cdot \left(x^{k+1} - \psi \cdot \tilde{x}^k \right)$$

relaxation of substitution

$$\tilde{x}^{k+1} = \frac{1}{1-\psi} \left(x^{k+1} - \psi . \tilde{x}^k \right)$$

$$\tilde{x}^{k+1} = q \, \tilde{x}^k + (1-q) \, x^{k+1}$$
 $q = \frac{-\psi}{1-\psi}$ et $1-q = \frac{1}{1-\psi}$

- Increased speed of convergence
- More robust

EPFL Solving a set of equations F(X)=0 : N Variables

Newton-Raphson n dimensions

-Solve
$$F(X) = 0$$
 (Array)
 $f1(x) = f1(x1,x2,...,xn) = 0$
 $f2(x) = f2(x1,x2,...,xn) = 0$
....
 $fn(x) = fn(x1,x2,...,xn) = 0$

- Initial guess is given
- X0 = t[x... x]

EPFL Newton Raphson: N dimension

Taylor development

$$f_i(x) \approx f_i(x^0) + (\frac{\delta f(x)}{\delta x})_{x^0} \cdot (x - x^0) = 0 \qquad \text{i=1,n}$$

EPFL Matrix representation

Jacobian matrix matrix of derivatives

function evaluated for x0

$${}^{t}\underline{\underline{I}}\,\underline{\Delta}\underline{x} + \underline{F}(\underline{x}^{0}) = \underline{F}(\underline{x})$$

EPFL Newton -Raphson (N dimensions)

$${}^{t}\underline{\underline{I}}\,\underline{\Delta}\underline{x} + \underline{F}(\underline{x}^{0}) = \underline{F}(\underline{x})$$

$$\underline{F}(\underline{X}) = 0$$

$$\underline{x}^{1} = \underline{x}^{0} - {}^{t}\underline{I}_{\underline{x}^{0}}^{-1}\underline{F}(\underline{x}^{0})$$

Iteration n:

$$\underline{x}^{n+1} = \underline{x}^n - L_{\underline{x}^n}^{-1} \underline{F}(\underline{x}^n)$$

EPFL Convergence criteria

- At iteration k
 - Variables variations

$$|x^{k+1} - x^k| \le \epsilon * (1 + |x^k|)$$

Functions variation

$$|f(x^k)| \leq \epsilon$$

EPFL Scaling variables and equations

Variables

Original problem
$$|f^{k+1}| \leq \epsilon \\ |x^{k+1} - x^k| \leq \epsilon * (1 + |x^k|)$$

Scaling
$$F(X) = 0 \rightarrow \Phi(\Xi) = 0$$

$$\Xi = Scale_x \cdot X$$

$$\Phi = Scale_f \cdot F(X)$$

All equations and variables are compared with the same reference value

New problem

$$|\chi_{j}^{k+1} - \chi_{j}^{k}| \leq \epsilon * (1 + |\chi_{j}^{k}|) \quad \forall j$$

$$|\phi_{j}^{k+1}(\chi) - \phi_{j}^{k}(\chi)| \leq \epsilon \quad \forall j$$

EPFL Newton-Raphson n dimensions; Drawbacks

- Initial guess
- Matrix inversion + derivatives
- Matrix inversion at each iteration n*n derivatives,
- Relaxation may be applied:

$$\underline{\tilde{x}}^{n+1} = \underline{\tilde{x}}^n - L_{\underline{x}^n}^{-1} \underline{F}(\underline{\tilde{x}}^n) \cdot (1-q)$$

EPFL Calculating derivatives

Forward numerical estimation

$$\frac{\partial f}{\partial x_i} = \frac{f(X + \Delta x_i) - f(X)}{\Delta x_i} \quad \forall i = 1, ..., n_X + 1$$

- Computation time cost!
 - central derivatives avoided
- Numerical noise (is the derivative a derivative ?)

$$\Delta f(X) = |F(X)_0 - F(X)_{n_X+1}|$$

EPFL Solving X=F(X) n dimensions

- $f(x) = x \psi(x) = 0$
- Newton?
 - $x^{k+1} = x^k \{tJ [f(x^k)]\}^{-1} f(x^k)$
- How to estimate the Jacobian matrix ?
 - $x^{k+1} = x^k \{E {}^tJ [\psi(x^k)]\}^{-1} [x^k \psi(x^k)]$

EPFL quasi Newton/Rubin Method

Taylor development

$$\psi_1(\underline{x}) = \psi_1(\underline{x}^k) + \left(\frac{\delta\psi_1}{\delta x_1}\right)^k (x_1 - x_1^k) + \dots + \left(\frac{\delta\psi_1}{\delta x_n}\right)^k (x_n - x_n^k)$$

. . .

$$\psi_{j}(\underline{x}) = \psi_{j}(\underline{x}^{k}) + \left(\frac{\delta\psi_{j}}{\delta x_{1}}\right)^{k} (x_{1} - x_{1}^{k}) + \dots + \left(\frac{\delta\psi_{j}}{\delta x_{n}}\right)^{k} (x_{n} - x_{n}^{k})$$

. . .

$$\psi_n(\underline{x}) = \psi_n(\underline{x}^k) + \left(\frac{\delta\psi_n}{\delta x_1}\right)^k (x_1 - x_1^k) + \dots + \left(\frac{\delta\psi_n}{\delta x_n}\right)^k (x_n - x_n^k)$$

EPFL Rubin method

select n+1 initial points (by substitution for example)

For each iteration store x and ψ (x)

Soit les matrices
$$\underline{C}$$
 et \underline{D} (n+1 lignes et n colonnes) x_1^0 ... x_j^0 ... x_n^0 x_1^1 ... x_j^1 ... x_n^1 ... x_n^1

After n iterations we have n equations => J is estimated

EPFL Rubin cont.

From C and D,

$$\underline{A} = \begin{bmatrix} x_{1}^{1} - x_{1}^{0} & \cdots & x_{j}^{1} - x_{j}^{0} & \cdots & x_{n}^{1} - x_{n}^{0} \\ \vdots & \ddots & \vdots & & \vdots \\ x_{1}^{k} - x_{1}^{0} & \cdots & x_{j}^{k} - x_{j}^{0} & \cdots & x_{n}^{k} - x_{n}^{0} \\ \vdots & & \vdots & \ddots & \vdots \\ x_{1}^{n} - x_{1}^{0} & \cdots & x_{j}^{n} - x_{j}^{0} & \cdots & x_{n}^{n} - x_{n}^{0} \end{bmatrix}$$

$$\underline{B} = \begin{bmatrix} \psi_{1}(\underline{x}^{1}) - \psi_{1}(\underline{x}^{0}) & \cdots & \psi_{j}(\underline{x}^{1}) - \psi_{j}(\underline{x}^{0}) & \cdots & \psi_{n}(\underline{x}^{1}) - \psi_{n}(\underline{x}^{0}) \\ \vdots & \ddots & \vdots & & \vdots \\ \psi_{1}(\underline{x}^{k}) - \psi_{1}(\underline{x}^{0}) & \cdots & \psi_{j}(\underline{x}^{k}) - \psi_{j}(\underline{x}^{0}) & \cdots & \psi_{n}(\underline{x}^{k}) - \psi_{n}(\underline{x}^{0}) \\ \vdots & & \vdots & \ddots & \vdots \\ \psi_{1}(\underline{x}^{n}) - \psi_{1}(\underline{x}^{0}) & \cdots & \psi_{j}(\underline{x}^{n}) - \psi_{j}(\underline{x}^{0}) & \cdots & \psi_{n}(\underline{x}^{n}) - \psi_{n}(\underline{x}^{0}) \end{bmatrix}$$

EPFL Rubin (in practice)

System to be solved

$$\underline{\psi}(\underline{x}) - \underline{\psi}(\underline{x}^k) = \left\{ {}^t \underline{J} \left[\underline{\psi}(\underline{x}^k) \right] \right\} \underline{\Delta x}^k$$

$${}^{t}\underline{B} = {}^{t}\underline{I} {}^{t}\underline{A}$$

$$ou {}^{t}\underline{B} {}^{t}\underline{A}^{-1} = {}^{t}\underline{I}$$

$$d'où {}^{t}\underline{I} = \underline{A}^{-1}\underline{B}$$

and

After n iterations J can be evaluated and Newton-Raphson can be applied to calculate the new point.

$$\underline{\tilde{x}}^{n+1} = \underline{x}^n - \left\{ \underline{\underline{E}}^{-t} \left(\underline{\underline{A}}^{-1} \underline{\underline{B}} \right) \right\}^{-1} \left[\underline{x}^n - \underline{\psi} \left(\underline{x}^n \right) \right]$$

From this point the J matrix can be updated at each step. eliminate the worst point in the list and then reevaluate J

EPFL Updating the matrix

 As calculating Jacobian matrix is expensive, the idea is to preserve the validity of the inverted matrix for several steps: i.e.

$$\underline{\tilde{\mathbf{x}}}^{n+1} = \underline{\mathbf{x}}^n - \{\underline{\mathbf{E}} - (\underline{\mathbf{A}}^{k_n})^{-1}\underline{\mathbf{B}}^{k_n}\}^{-1}(\underline{\mathbf{x}}^n - \psi(\underline{\mathbf{x}}^n))$$

- k_n is the evaluation k of the Jacobian matrix used at iteration n
- the validity of the step is obtained by comparing the x obtained and the expected value (is the difference decreasing?)

EPFL Conclusions: Solving non linear equations

- Iterative procedure when no mathematical formulation is found
 - Does not always converge!
 - Bounds on variables + safe guards
- Initialisation point : use ranges of x
 - bad initialisation point means long calculations
- Direction (derivative) + Step length (relaxation)
 - Derivatives : defines direction
 - Numerical calculations => length of Δx
 - Numerical calculation cost + noise
 - Matrix inversion : defines the direction
 - Try to reuse direction for several steps
 - Relaxation : if divergence observed
- Test of convergence
 - on both equations and variables
 - one criteria for several equations+ variables => scaling

