
Part 1: defining the heating needs of a building stock

Prof François Marechal

EPFL Part1: defining the building needs

EPFL Buildings stock

EPFL AGIR: the methodology of a task

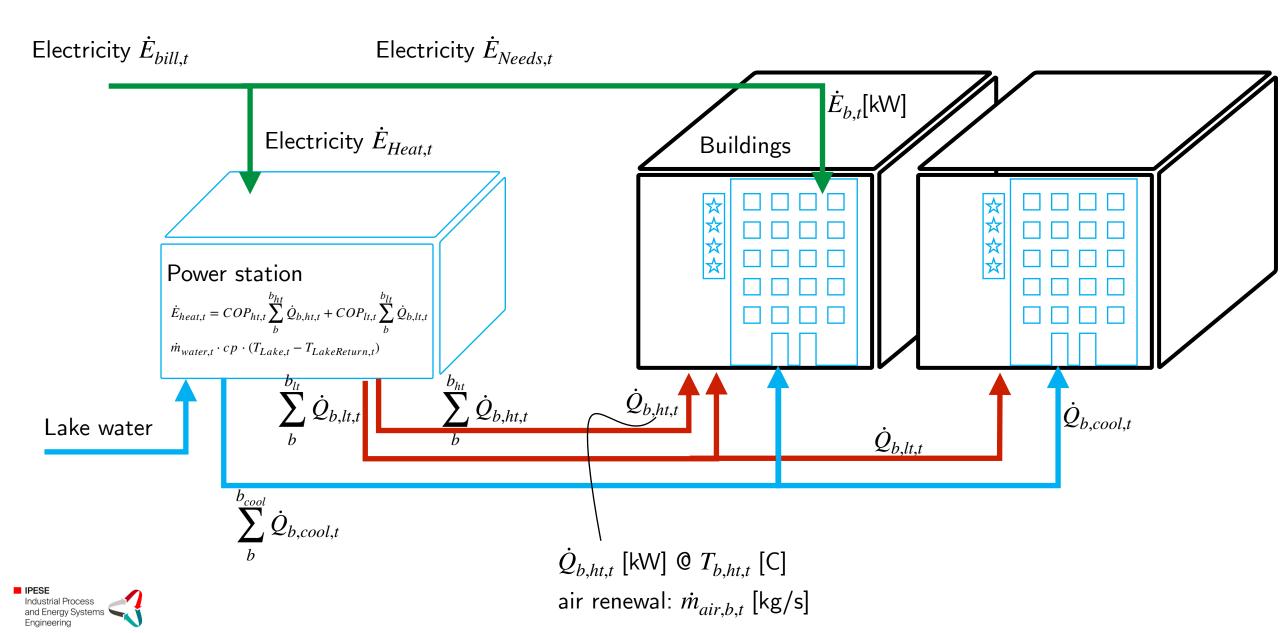
Analyse

- What we want ?
 - define variables (x_i) : give a textual description
 - define physical units : e.g. $[kJ_e/kJ_{th}]$
 - $_{\bullet}$ define order of magnitude of expected value of x_i : $x_{i_{min}} \leq x_i \leq x_{i_{max}}$
- · What we know: Write equations defining your knowledge!
 - write the knowledge as a set of equations $f_k(x_i, \pi_{k,i}) = 0$
 - $\pi_{k,j}$ are parameters of equation k
- · What we have : collect the data :
 - values of $\pi_{k,j}$ => reference, [physical units], comments
 - add assumptions : $f_a(x_i, \pi_{a,i}) = 0$ so that #k + #a = #i

Generate

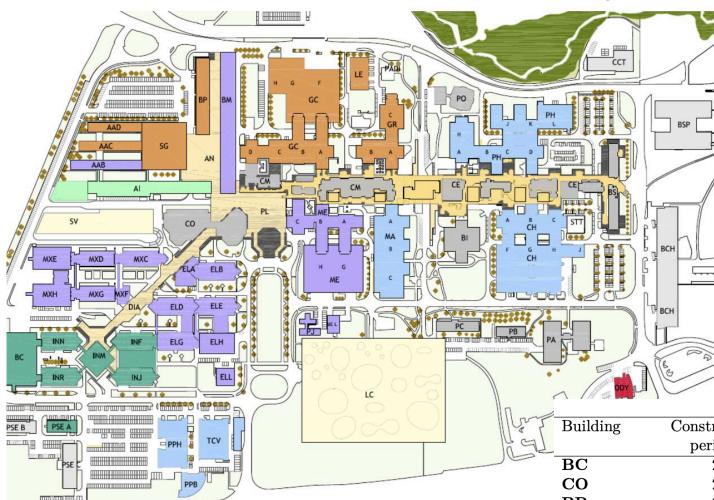
- Find numerical value of x_i by solving the set of equations : $f_e(x_i, \pi_{e,j}) = 0$, with $x_{i_{min}} \le x_i \le x_{i_{max}}$ and $f_e = \{f_k, f_a\}$
 - define the solving method
 - define the convergence criteria

Interpret


• Verify that the value of x_i is meaningful for the application

Report

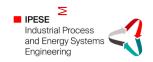
• Report the values (plots, tables, validity check)



EPFL What are the needs?

EPFL Part1: defining the building needs

Buildings stock


Heating needs are defined by :

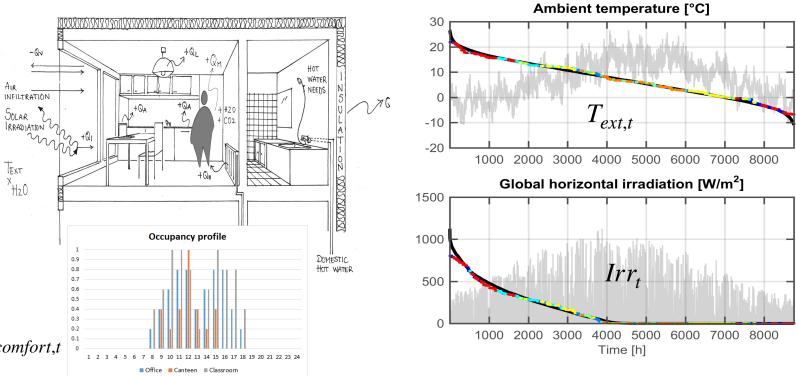
- $\dot{Q}_{b,t}$ $\forall b \in \{1..n_b\}$ [kW] heat required by building b at time t of the year
- $T_{b,t}^{supply}$ $\forall b \in \{1..n_b\}$ [°C] Minimum temperature of the heat supply of building b at time t of the year

Available:

Table 1.1: EPFL Buildings

1		0				
	Building	Construction	Heated	Annual heat	Annual electricity	
1		period^a	surface $A_{\rm th}$ [m ²]	demand Q_{th} [kWh]	$demand \ Q_{el} \ [kWh]$	
	BC	2	17480	418,491	1,603,596	
	CO	2	11901	477,008	$943,\!653$	
	\mathbf{BP}	2	10442	$457,\!861$	691,031	
	\mathbf{BS}	2	10267	$509{,}183$	$350,\!860$	
	\mathbf{TCV}	2	6095	318,209	$2,\!067,\!675$	

EPFL What we want?


 $oldsymbol{\dot{Q}}_{b,t}[kW]$: Heat load of building b at time t of its life time

EPFL What do we have?

Building enveloppe S [m2] h [m]

People presence cap_t Comfort Temperature $T_{comfort,t}$

Measurement

Table 1.1: EPFL Buildings

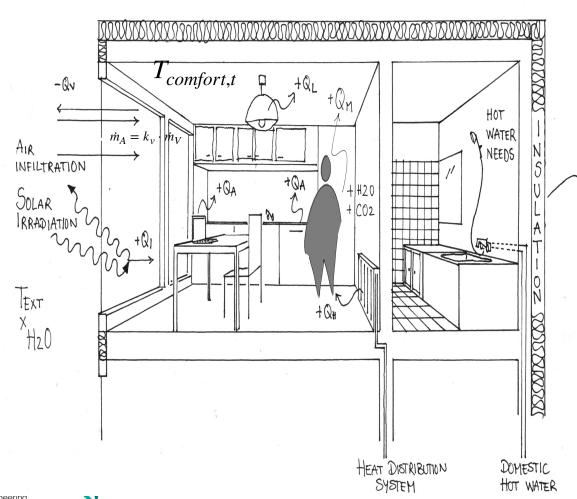
TTT COUDAN CHITCHIC		Table 1.1. Et l'E bullatings		
Building	Construction	Heated	Annual heat	Annual electricity
	period^a	surface $A_{\rm th}$ [m ²]	$demand Q_{th} [kWh]$	$demand \ Q_{el} \ [kWh]$
BC	2	17480	418,491	1,603,596
\mathbf{CO}	2	11901	$477,\!008$	$943,\!653$
\mathbf{BP}	2	10442	$457,\!861$	691,031
\mathbf{BS}	2	10267	509,183	$350,\!860$
\mathbf{TCV}	2	6095	318,209	$2,\!067,\!675$

EPFL What do we know?

+ QA : GAIN BY APPLIANCES

+QH: HEAT TO COMPENSATE LOSSES

+QL: GAIN BY LIGHTING SYSTEM


+ QM: GAIN BY HUMAN

+QI: GAIN BY IRRADIATION

-QV: LOSSES BY VENTILATION

- QR: LOSSES THROUGH THE WALLS

 $T_{ext,t}$

Our knowledge:

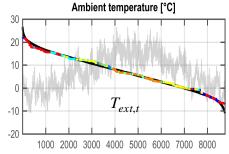
The model of the building envelop heat balance

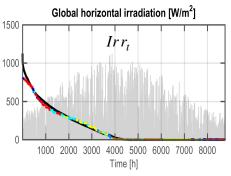
$$\begin{split} \dot{Q}_{A,t}[kW] &= \dot{E}_{A,t} \\ \dot{Q}_{L,t}[kW] &= \dot{E}_{L,t} \\ \dot{Q}_{M,t}[kW] &= \dot{q}_{cap} \cdot \sum_{cap} cap_t \\ \dot{Q}_{I,t}[kW] &= \dot{Ir}r_t \cdot k_{sun} \\ \dot{Q}_{V,t}[kW] &= \dot{m}_V \cdot cp_{air} \cdot (T_{comfort,t} - T_{ext,t}) \\ \dot{Q}_{R,t}[kW] &= \sum_{wall} k_{wall} \cdot S_{wall} \cdot (T_{comfort,t} - T_{ext,t}) \end{split}$$
 Losses
$$\dot{Q}_{V,t} + \dot{Q}_{R,t} = k_{th}(T_{comfort,t} - T_{ext,t})$$

Heat balance:

what is the load to maintain the comfort temperature?

$$\dot{Q}_{H,t}[kW] = max(0,\dot{Q}_{V,t} + \dot{Q}_{R,t} - (\dot{Q}_{A,t} + \dot{Q}_{L,t} + \dot{Q}_{M,t} + \dot{Q}_{I,t}))$$


EPFL What we want : $\dot{Q}_b(t)[kW] = \dot{Q}_H(t)$


+ QA: GAIN BY APPLIANCES +QH: HEAT TO COMPENSATE LOSSES

QL: GAIN BY LIGHTING SYSTEM

HEAT DISTRIBUTION

$$\begin{split} \dot{Q}_{A,t} &= \dot{E}_{A,t} \\ \dot{Q}_{L,t} &= \dot{E}_{L,t} \\ \dot{Q}_{M,t} &= \dot{q}_{cap} \cdot \sum_{cap} cap_{t} \\ \dot{Q}_{I,t} &= \dot{Ir}r_{t} \cdot k_{sun} \\ \dot{Q}_{V,t} &= \dot{m}_{V} \cdot cp_{air} \cdot (T_{comfort,t} - T_{ext,t}) \\ \dot{Q}_{R,t} &= \sum_{wall} k_{wall} \cdot S_{wall} \cdot (T_{comfort,t} - T_{ext,t}) \\ \dot{Q}_{H,t} &= max(0,\dot{Q}_{V,t} + \dot{Q}_{R,t} - (\dot{Q}_{A,t} + \dot{Q}_{L,t} + \dot{Q}_{M,t} + \dot{Q}_{I,t})) \end{split}$$

$$\begin{split} \dot{Q}_{H}(t) &= max(0, k_{th} \cdot (T_{comfort,t} - T_{ext,t}) - k_{sun} \cdot \dot{Irr}_{t} - \dot{Q}_{gain,t}) \\ Q_{H}(t_{0}, t_{end}) &= \int_{t_{0}}^{t_{end}} \dot{Q}_{H,t} \cdot dt = \int_{t_{0}}^{t_{end}} max(0, k_{th} \cdot (T_{comfort,t} - T_{ext,t}) - k_{sun} \cdot \dot{Irr}_{t} - \dot{Q}_{gain,t}) \cdot dt \end{split}$$

EPFL Typical formulation of the needs

- $Need_{k,t} = f(\pi_k, x_{k,i,t})$
 - π_k : parameters for calculation the need k
 - assumptions & knowledge
 - from the description of the Physical/Chemical phenomena
 - observations => parameter fitting
 - $x_{i,k,t}$: variables defining the environment applying to the need k
 - observations

EPFL Temperature of the heat supply

+ QA: GAIN BY APPLIANCES
+QH: HEAT TO COMPENSATE LOSSES
+QL: GAIN BY LIGHTING SYSTEM
+QM: GAIN BY HUMAN
+QI: GAIN BY IRRADIATION
-QV: LOSSES BY VENTILATION

 Temperatures of the heat distribution (hd) system: supply $T_{s,t}$ and return $T_{r,t}$ can be calculated

$$\dot{Q}_{H,t} = \dot{m}_{hd,t} \cdot cp_{hd} \cdot (T_{s,t} - T_{r,t})$$

$$T_{r,t} = T_{s,t} - \frac{\dot{Q}_{H,t}}{\dot{m}_{hd,t} \cdot cp_{hd}}$$

 $T_{s,t}$ is calculated by solving

$$\dot{Q}_{H,t} = UA_{hd} \frac{(T_{s,t} - T_{r,t})}{ln(T_{s,t} - T_{comfort,t}) - ln(T_{r,t} - T_{comfort,t})}$$

with UA_{hd} calculated from the design conditions

$$UA_{hd} = \dot{Q}_{H,design} \cdot \frac{ln(T_{s,design} - T_{comfort,design}) - ln(T_{r,design} - T_{comfort,design})}{(T_{s,design} - T_{r,design})}$$

For each building and each time will obtain the minimum supply and return temperatures of the building.

State the problem to be solved: what needs to be calculated 12

$$Q_{H}(t_{0}, t_{end}) = \int_{t_{0}}^{t_{end}} \dot{Q}_{H,t} \cdot dt = \int_{t_{0}}^{t_{end}} max(0, k_{th} \cdot (T_{comfort,t} - T_{ext,t}) - k_{sun} \cdot Irr_{t} - \dot{Q}_{gain,t}) \cdot dt$$

Calculate k_{sun} and k_{th} if

$$Q^1 = Q_H(January, December)$$

and
 $Q^2 = Q_H(February, March)$

 $Q_H(January, December)(k_{sun}, k_{th}) - Q^1 = 0$ $Q_H(February, March)(k_{sun}, k_{th}) - Q^2 = 0$

2 equations and 2 unknowns: k_{sun} , k_{th}

Activate your knowledge :

Solve a set of equations

$$F(X)=0$$

