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▪ Real problems are non linear 
▪ Process unit and Process flowsheet simulation 
▪ Part load operation 
▪ Process unit sizing 
▪ Process unit costing 

▪ Real problem include integer decisions (Yes/No) 

MINLP 
Mixed Integer Non Linear Programming problems

Non linear multi-objective optimisation 2



▪ Master (M) - Slave (S) decomposition

Solving MINLP problems : decomposition method 3

min
XM

Obj(XM , XS(XM ),⇡)

s.t.XS(XM ) min
XS

ObjS(XS , XM ,⇡)

s.t. H(XS , XM ,⇡) = 0

H(XS , XM ,⇡) � 0

XM Master Variables

XS Slave Variables

⇡ Parameters

=> Simple to solve

=> partition variable



Decomposition refers to Black Box strategy 4

min
X∗

decision

TotalCost(X∗
decision, X(X∗

decision))

s.t. G(X∗
decision, X(X∗

decision)) ≤ 0 inequality constraints
where

X∗
decision = {xdecision, ydecisionε{0, 1}}

X(X∗
decision) Calculated by solving:

F (Xstate) = 0⇒ equipment model
L(Xstate) = 0⇒ linking equations
T (Xstate) = 0⇒ constitutive equations
S(Xstate) = 0⇒ Specification equations
Xdecision −X∗

decision = 0⇒ Specification of the value of decision variables
where

Xstate = {xStateV ariables, xUnitParameters, ydecisionε{0, 1}}



▪ Applies only on black box strategy 
▪ Exploring the search domain 

• systematically 
• strategy based on some analogy 
• Use KPIs as fitness of individuals of a population 

▪ Simulated annealing 
• based on the analogy with metallurgy 

▪ heating/cooling of metal to minimize the energy content 
▪ Evolutionary algorithm 

• genetic algorithms 
▪ based on the analogy of the evolution 

• Best fitted individuals have a higher probability to survive and reproduce 
• Reproduction based on sharing gene info 

▪ Particle swarm 
• initial speed + communication between agents 

▪ Ants colony

Heuristic methods to systematically generate optimal configurations 5



• Characteristics : find the members of a population that best fits the goals (KPIs) 
– Population (X) 
– Objective Function(s) : System Performances Y=F(X) 
– No direction ( No derivatives - No “iteration”) 
– Heavy duty : exploration => Computing time ! 
– Problem definition is free 
– Random nature : explore the search space 
– Inequality constraints ? 

• Principle 
– Initialization (random population generation (e.g. 100 initial values of ) 
– Reproduction => select parents that best fits & reproduce to generate new members 
– New member generation 

• Cross-over (random) : choose the shared gene in each parent 
• Mutation : allow for diversity 

– Update population (maintain population) 
– eliminate the worst individuals : the less fitting  
– re-group by types to preserve diversity

XM

Evolutionary algorithms 6



reproduction by  “Crossing over”  7

"Crossing over" point

Father

13.2 82.4 94.523.3 41.6 54.2

Children

Mother

Type to 

13.2 81.6 54.2

Random selection of parents in the population
Random selection of the genes to share

"Crossing over" point



▪ Cross-over can use interpolation techniques 
• e.g. quadratic approximation based on a subset of the population 
• select randomly and/or take the bests 

▪  Preserve the random nature ! 
• e.g. random relaxation

Cross-over operator (how to generate a child) 8



after mutation

5

23.3 81.6 94.5

23.31.6 94.55

Random Mutation 

Mutation : in order to preserve diversity 9

before mutation

Mutation allows to ensure that the system will not be trapped in a local optimum and that the whole space will be observed



▪ Eliminates the worst fitted 
▪ be part of a Pareto for example 
▪ non dominated: be better than the others for at least on OBJ

Selection : non dominated solutions 10



Elimination of the worst fitted 11

Elitism : preserve the best candidates for reproduction

Decision variable

O
bj

ec
ti

ve

Elitism is defining the population in which the good candidates are 
selected : this allows multi-objective optimisation and the search for 
local and global optimum.



▪ Black box approach 
• Equality constraints are solved explicitly 
• Inequality constraints ideally transformed into decision variables bounds 

▪ Fast F(X) calculation 
• Search space exploration => huge number of evaluations 

▪ Robust F(X) calculation 
• search space response 

▪ No efficient mathematical programming methods 
• Non differentiable problems 
• MINLP 

▪ Limited number of degrees of freedom

Evolutionary algorithms : conditions 12



▪ Global optimisation 
• Exploration of the search space  

▪ Black Box 
• Accepts different type of objective function 
▪ incl. observations 

▪ Non differentiable problems 
• The objective function can have jumps or steps 

▪ Easy to parallelise 
▪ Freedom in the choice of decision variables 
• x1*x2*x3 is not a problem 

▪ Multi-objective problem 
• Efficient use of the computing time 
• Dominancy criteria

Evolutionary algorithm : advantages 13



▪ Speed of resolution of F(X) 
• Requires a large number of F(X) evaluation 
• Use of surrogate models  

• Robust and fast F(X) evaluation 
▪ Number of decision variables 
• Convergence properties is a combinatorial function of the number of variables 

▪ Limited Feasible domain  
• Probability of finding feasible F(X) is low 
• Choice of the decision variables 

▪ Constraints handling 
• Equality or inequality

Evolutionary algorithm : drawbacks 14



▪ Handling inequality constraints

Evolutionary algorithm 15

min
X

OBJ(X)

st.

F (X) = 0
G(X) ≤ 0

min
Xd

OBJ(Xd, Y (Xd)) + P (Xd)

st.

Y (Xd) = F (Xd)

P (Xd) =
∑

(max(G(Xd, Y (Xd)), 0))2

Xd
max ≤ Xd ≤ Xd

max

Well chosen penalty function



▪ Choosing the appropriate decision variables

Evolutionary algorithm 16

min
x1,x2

f(x1, x2)

st.

x1 ≤ x2

xmin
1 ≤ x1 ≤ xmax

1

xmin
2 ≤ x2 ≤ xmax

2

Becomes

Works well for Evolutionary algorithm
do not use for mathematical programming

min
x⇤
1 ,x2

f(x1 = xmin
1 + (min(x2, x

max
1 )� (min(x2, x

max
1 )� xmin

1 )) · x⇤
1, x2)

st.

0  x⇤
1  1

xmin
2  x2  xmax

2
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Multi-objective optimisation and evolutionary algorithm 17
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Coûts

Région inaccessible

Configuration 
Operating conditions 
Size of equipment

Costs

Clustering techniques (big data)
• identify decision variable sub-spaces
• generate multiple Pareto curves

Dominancy
• Remains in the population if at least 

better than others for 1 objective
• Preserve sub-optimal population

OBJ1

O
BJ

2

The goal is indeed to take decisions : being informed about the collection of good solutions allows to have a better knowledge 
of what is building a solution and for which reason the filan solution will be selected

The population includes the Pareto set



• Use Evolutionary algorithm to find initial point for mathematical 
programming 

• Global optimization (find min of min ) 
• Limited number of NLP 
• Do it in 2 directions 
▪ min obj1 
▪ min obj2

Hybrid methods 18
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Figure 13. Convergence of MOO. POF for 500, 2000 and 3500 iterations
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Figure 14. NDS for the Mo-NLP and EA methods. NLP method give a better
approximation of the POF

the variable space. Each of the points in the NDS defines a different optimal
configuration, the change in the configuration can be analyzed by drawing the
variables values as a function of one of the objective. The Figure 15 shows
the trends of the 7 variables (which have been normalized between their re-
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Objective 1 : min

(O1k ,O2k)


