

Mixed Integer Non Linear Porgamming problems with heuristic methods

Prof. François Marechal

EPFL Non linear multi-objective optimisation

- Real problems are non linear
 - Process unit and Process flowsheet simulation
 - Part load operation
 - Process unit sizing
 - Process unit costing
- Real problem include integer decisions (Yes/No)

MINLP

Mixed Integer Non Linear Programming problems

EPFL Solving MINLP problems : decomposition method

Master (M) - Slave (S) decomposition

 π

\min_{X_M}	$Obj(X_M, X_S(X_M), \pi)$
$s.t.X_S(X_M)$	$\min_{X_S} Obj_S(X_S, X_M, \pi)$
s.t.	$H(X_S, X_M, \pi) = 0$
	$H(X_S, X_M, \pi) \ge 0$

=> partition variable

=> Simple to solve

$$X_M$$
 Master Variables X_S Slave Variables Parameters

EPFL Decomposition refers to Black Box strategy

$$\begin{array}{ll} \underset{X_{decision}}{\min} & TotalCost(X_{decision}^*, X(X_{decision}^*)) \\ s.t. & G(X_{decision}^*, X(X_{decision}^*)) \leq 0 \quad \text{inequality constraints} \\ where & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

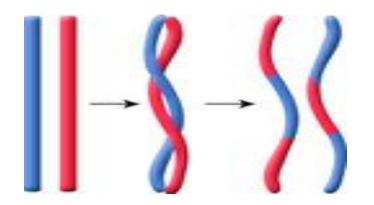
EPFL Heuristic methods to systematically generate optimal configurations

- Applies only on black box strategy
- Exploring the search domain
 - systematically
 - strategy based on some analogy
 - Use KPIs as fitness of individuals of a population
- Simulated annealing
 - based on the analogy with metallurgy
 - heating/cooling of metal to minimize the energy content
- Evolutionary algorithm
 - genetic algorithms
 - based on the analogy of the evolution
 - Best fitted individuals have a higher probability to survive and reproduce
 - Reproduction based on sharing gene info
- Particle swarm
 - initial speed + communication between agents
- Ants colony

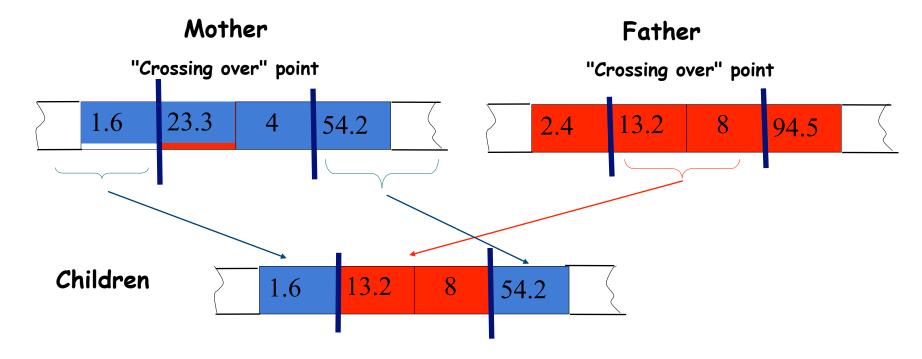
EPFL Evolutionary algorithms

- Characteristics: find the members of a population that best fits the goals (KPIs)
 - Population (X)
 - Objective Function(s): System Performances Y=F(X)
 - No direction (No derivatives No "iteration")
 - Heavy duty : exploration => Computing time !
 - Problem definition is free
 - Random nature : explore the search space
 - Inequality constraints ?
- Principle
 - Initialization (random population generation (e.g. 100 initial values of $X_{\!M}$)
 - Reproduction => select parents that best fits & reproduce to generate new members
 - New member generation
 - Cross-over (random): choose the shared gene in each parent
 - Mutation : allow for diversity
 - Update population (maintain population)
 - eliminate the worst individuals: the less fitting
 - re-group by types to preserve diversity

EPFL reproduction by "Crossing over"



Random selection of parents in the population Random selection of the genes to share

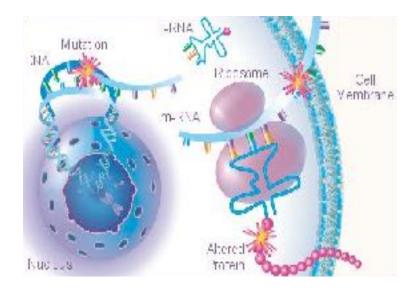


EPFL Cross-over operator (how to generate a child)

- Cross-over can use interpolation techniques
 - e.g. quadratic approximation based on a subset of the population
 - select randomly and/or take the bests
- Preserve the random nature!
 - e.g. random relaxation

EPFL Mutation: in order to preserve diversity

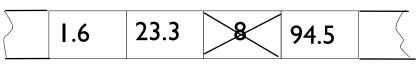
Mutation allows to ensure that the system will not be trapped in a local optimum and that the whole space will be observed



before mutation

after mutation

5



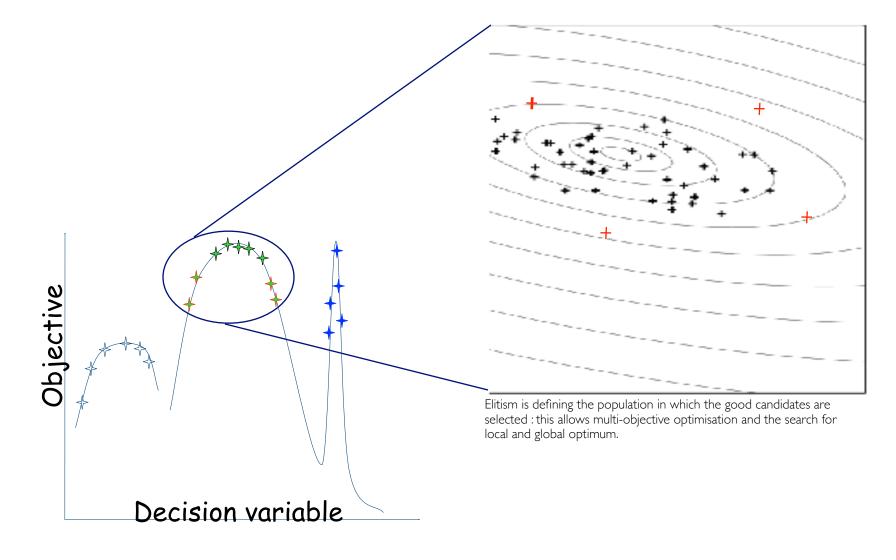
	1.6	23.3	5	94.5	
--	-----	------	---	------	--

EPFL Selection: non dominated solutions

- Eliminates the worst fitted
 - be part of a Pareto for example
 - non dominated: be better than the others for at least on OBJ

EPFL Elimination of the worst fitted

Elitism: preserve the best candidates for reproduction



EPFL Evolutionary algorithms: conditions

- Black box approach
 - Equality constraints are solved explicitly
 - Inequality constraints ideally transformed into decision variables bounds
- Fast F(X) calculation
 - Search space exploration => huge number of evaluations
- Robust F(X) calculation
 - search space response
- No efficient mathematical programming methods
 - Non differentiable problems
 - MINLP
- Limited number of degrees of freedom

EPFL Evolutionary algorithm: advantages

- Global optimisation
 - Exploration of the search space
- Black Box
 - Accepts different type of objective function
 - incl. observations
- Non differentiable problems
 - The objective function can have jumps or steps
- Easy to parallelise
- Freedom in the choice of decision variables
 - x1*x2*x3 is not a problem
- Multi-objective problem
 - Efficient use of the computing time
 - Dominancy criteria

EPFL Evolutionary algorithm: drawbacks

- Speed of resolution of F(X)
 - Requires a large number of F(X) evaluation
 - Use of surrogate models
- Robust and fast F(X) evaluation
- Number of decision variables
 - Convergence properties is a combinatorial function of the number of variables
- Limited Feasible domain
 - Probability of finding feasible F(X) is low
 - Choice of the decision variables
- Constraints handling
 - Equality or inequality

EPFL Evolutionary algorithm

Handling inequality constraints

$$\min_{X} OBJ(X) \qquad \min_{X^d} OBJ(X^d, Y(X^d)) + P(X^d)$$

$$st. \qquad st.$$

$$F(X) = 0 \qquad Y(X^d) = F(X^d)$$

$$G(X) \leq 0 \qquad P(X^d) = \sum_{1}^d (\max(G(X^d, Y(X^d)), 0))^2$$

$$X^d_{max} \leq X^d \leq X^d_{max}$$

EPFL Evolutionary algorithm

Choosing the appropriate decision variables

$$\min_{x_1, x_2} f(x_1, x_2)$$

$$st.$$

$$x_1 \le x_2$$

$$x_1^{min} \le x_1 \le x_1^{max}$$

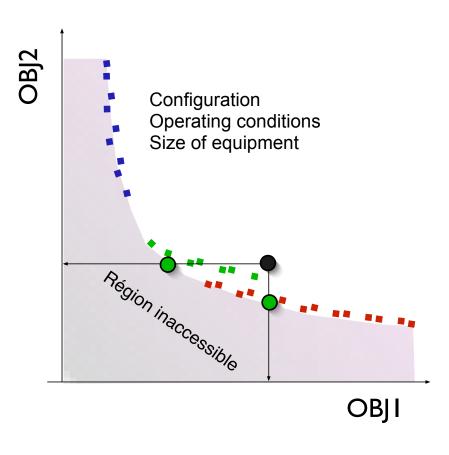
$$x_2^{min} \le x_2 \le x_2^{max}$$

Becomes

$$\begin{split} \min_{x_1^*,x_2} f(x_1 &= x_1^{min} + (min(x_2,x_1^{max}) - (min(x_2,x_1^{max}) - x_1^{min})) \cdot x_1^*, x_2) \\ st. \\ 0 &\leq x_1^* \leq 1 \\ x_2^{min} &\leq x_2 \leq x_2^{max} \end{split} \quad \text{Works well for Evolutionary algorithm do not use for mathematical programming} \end{split}$$

EPFL Multi-objective optimisation and evolutionary algorithm

The population includes the Pareto set



Clustering techniques (big data)

- identify decision variable sub-spaces
- generate multiple Pareto curves

Dominancy

- Remains in the population if at least better than others for I objective
- Preserve sub-optimal population

The goal is indeed to take decisions: being informed about the collection of good solutions allows to have a better knowledge of what is building a solution and for which reason the filan solution will be selected

EPFL Hybrid methods

- Use Evolutionary algorithm to find initial point for mathematical programming
- Global optimization (find min of min)
- Limited number of NLP
- Do it in 2 directions
 - min obj1
 - min obj2

