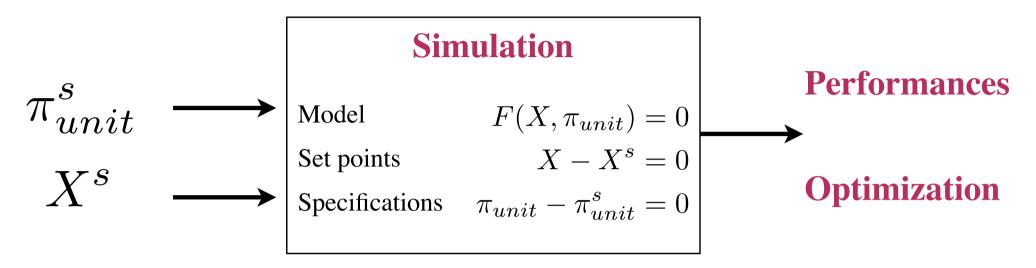
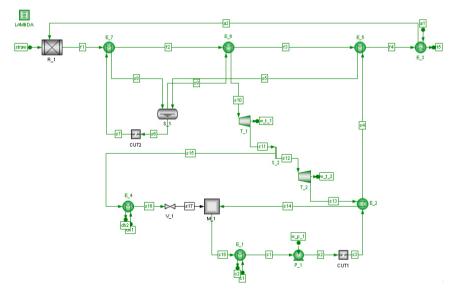

Measurement/specification analysis,

Data reconciliation and Parameter identification

François Marechal
IPESE
EPFL-STI-IGM

Two stage heat pump




Goals of the lecture

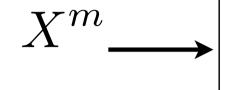
- How to calibrate models using measurements
 - Where to place measurements
 - Virtual sensors by process models
 - Data reconciliation
 - correct the values of the measurement
 - Parameter identification

Process models & decision support

Model is defining the level of detail

What are the X we want to know?

- Streams?
- Unit parameters? π_{unit}



- The process model and the unit models define the expected level of detail
 - i.e. the data we want to generate with the model
- Unit models require Parameters with fixed values
 - What are the values of the parameters?
 - Literature => correlations, experience
 - From experiments
 - sensors => measured values => calculated parameters
 - Calibration on existing equipment

Measurement and parameter identification

1. Measured values

2. Identification

Model $F(X, \pi_{unit}) = 0$

Measurements $X - X^m = 0$

3. Identified parameters

 $ightharpoonup \pi_{unit}$

4. Specified parameters
$$\pi^s_{unit} = \pi_{unit}$$

 $\pi^s_{unit} \longrightarrow \mathbb{R}$ $X^s \longrightarrow \mathbb{S}$

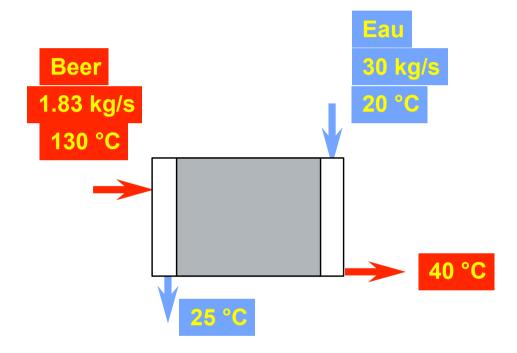
5. Simulation

Model $F(X, \pi_{unit}) = 0$ Set points $X - X^s = 0$

Specifications $\pi_{unit} - \pi_{unit}^s = 0$

6. Performances

7. Optimization


Do we have enough measurement/specifications?

What is the heat transfer coefficient of the heat exchanger?

Do we have enough measurement?

- Equations: 3
 - 2 energy balances
 - Q=UA ΔT_{lm}
- State variables: 8
 - 4 temperatures
 - 2 flows
 - 2 parameters Q, U
- Degrees of Freedom: 5 = 8-3
- Measures : 6

$$Cp = water$$

Characterizing an industrial process

Energy conversion system

- •Flowsheet (level of detail)
- Localisation of measurement

What is the state of the system

Performances? Unit parameters?

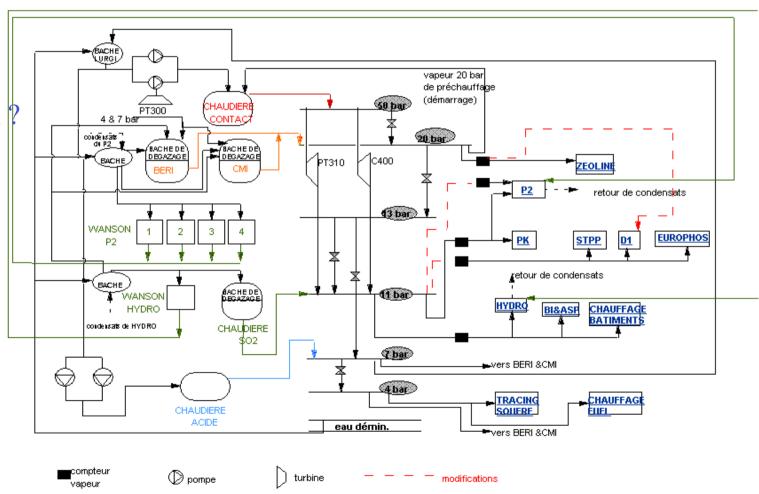
Maintenance?

Optimisation?

Measurements system

Enough?

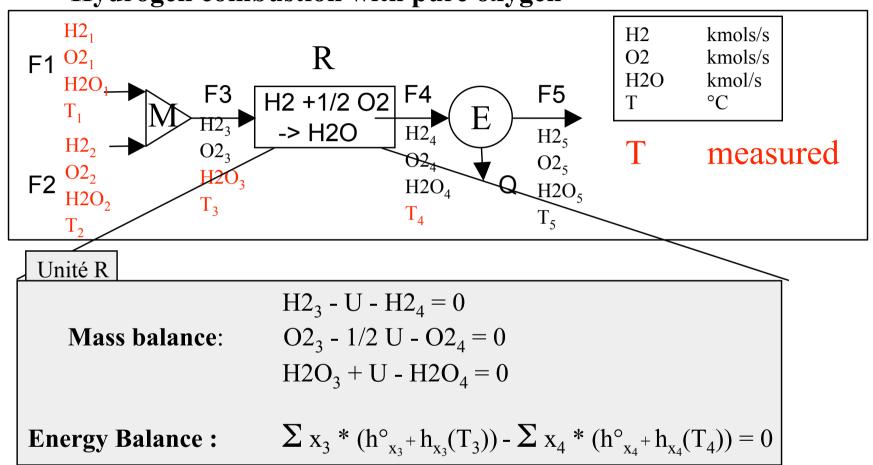
Accurate?


Correction?

Other needed?

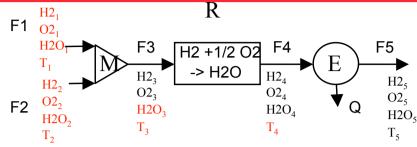
where?

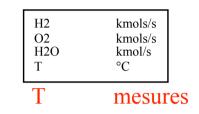
how much?

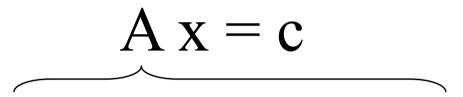

why?

Example of a simplified system

Hydrogen combustion with pure oxygen



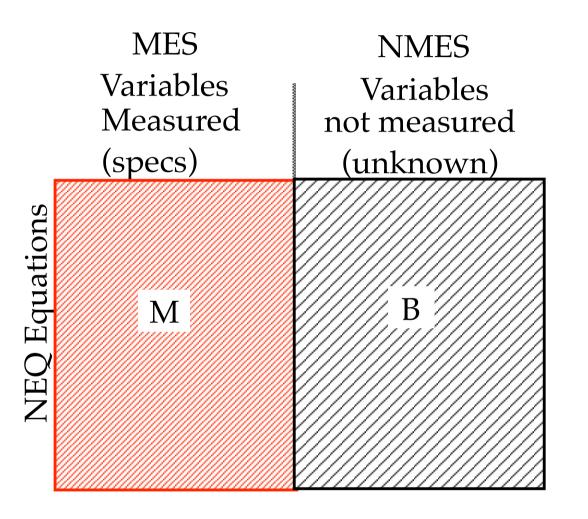

Canonical form:
$$F(x) = 0 \implies A x = c$$


Incidence matrix

Incidence Matrix : $a_{i,j} = 1$ if variable j occures in equation i

Variables : 22 in which 11 measures $\Delta = 11$

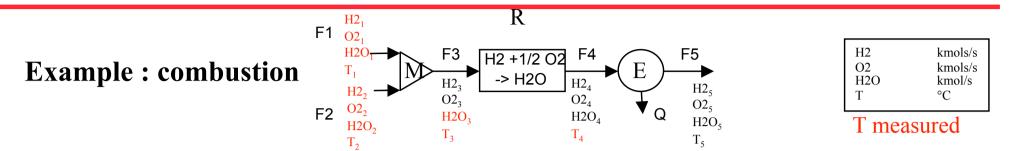
			÷			.	7	Ø	0	7	m	ო	ო	ო	每	ব	4	4	₽	ιΩ	ω	ហេ	ω	ш
			70	모	H20	T	05	모	H20	⊥	05	모	H20	1	05	오	H20	T	n	05	오	120 120	-	Ö
		02	Х				Х				Χ													
Bilan Matière	M	H2		Х				Х				Х												
		H20			Χ				Х				Х											
Bilan thermique	M		Х	Х	Χ	Х	Х	Х	Χ	Х	Χ	Х	Х	Х										
		02									Х				Х				Χ					
Bilan Matière	R	H2	l									Χ				Χ			Х					
		H2O											Х				Χ		Χ					
Bilan Thermique	R										Х	Χ	Х	Х	Х	Х	Χ	Χ						
		02													Х					Х				
Bilan Matière	Е	H2														Х					Χ			
		H2O															Х					Χ		
Bilan thermique	Е														Χ	Χ	Χ	Х		Χ	Χ	Х	Х	Χ

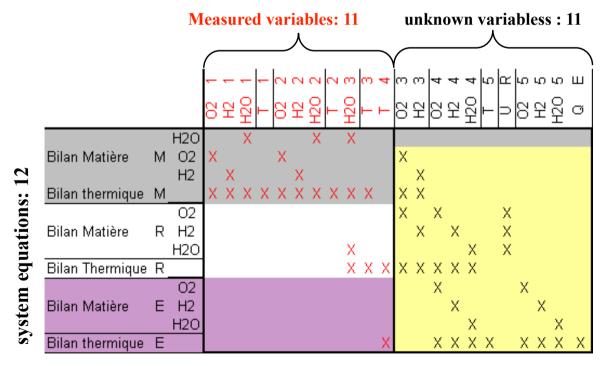

only 10 are needed

Equations 12

Structural analysis: re-arrange the matrix

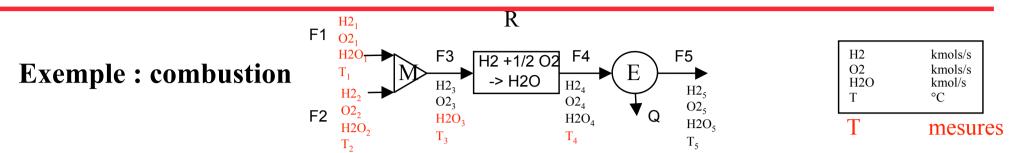
variables: measured (= specified) or not (to be calculated)

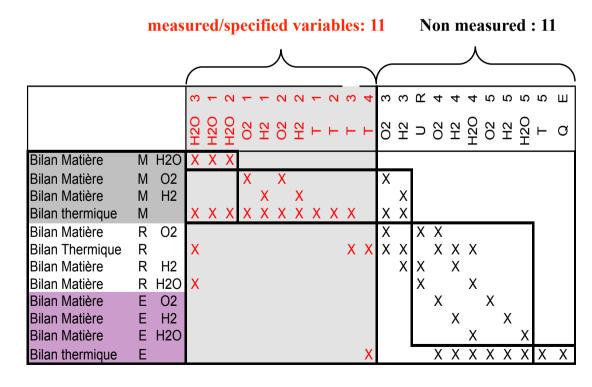



- 1) NEQ < NMES :no solution (NMES-NEQ) Equations are missing to calculate unknown variables
- 2) **NEQ** = **NMES** : all the unknows can be calulated (just calculable system)

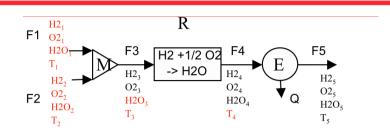
3) **NEQ** > **NMES**: too many equations (**redundant system**) in this case some measured values can be recalculated using the value of the other

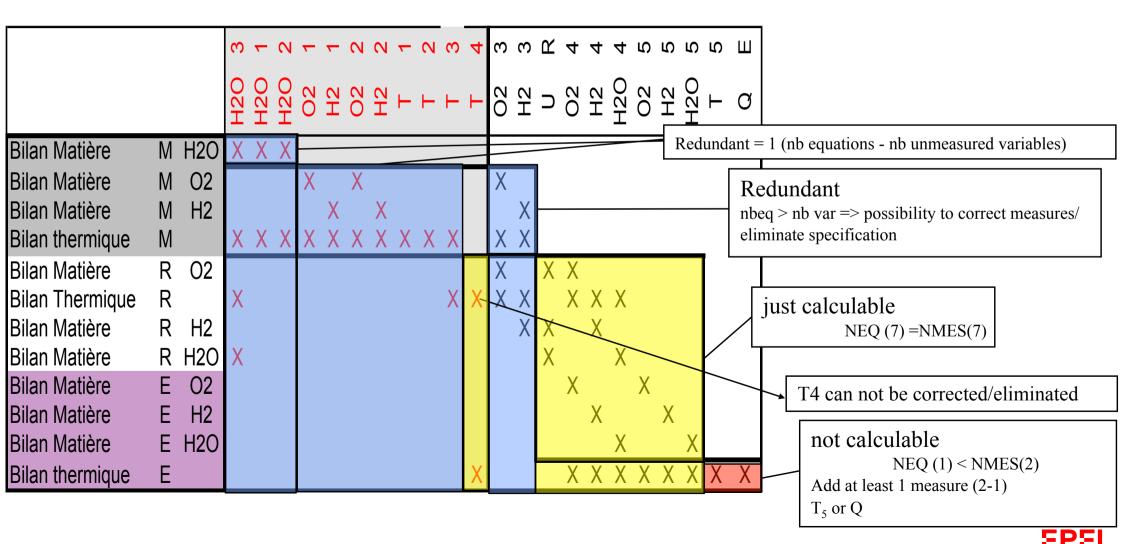
Incidence Matrix



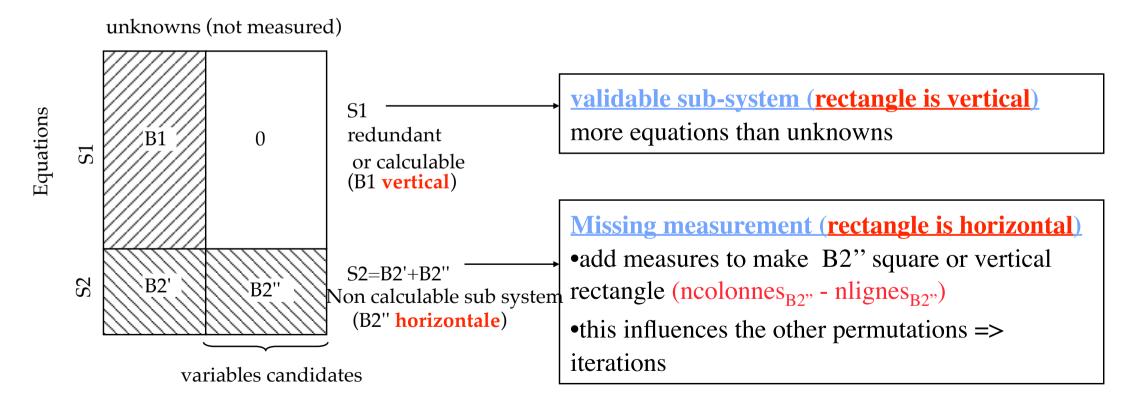

Square system?

Rearrange the matrix


- 1) regroup measured and unknowns (M+B)
- 2) Reorganise the B matrix (unknowns) by line and column permutations in order to have :
 - 1 element on each diagonal position
 - regroup in sub-systems (square or rectangles)



system equations: 12

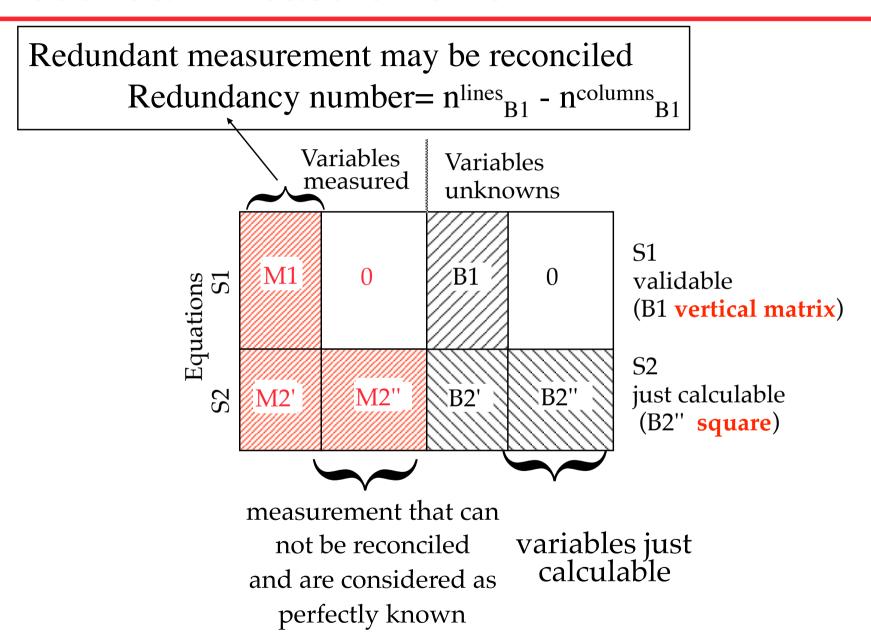

Incidence matrix analysis

Generalisation: In case of complex systems

- 1) Reorganise the B matrix (unknowns equations)
 Reorganise the B matrix (unknowns) by line and column permutations in order to have:
 - 1 element on each diagonal position
 - regroup in sub-systems (square or rectangles)

Analogy measurements and DOF analysis

DoF analysis


- Specifications
- Over-specified
 - Spec to be suppressed
- under specifiedAdd specs

Measurements systems analysis

- Measures
- Redundancy
 - more information available
- Missing measurements
 - add measures

Redundant measurements

$\begin{array}{c} \textbf{1. Measured values} \\ \boldsymbol{X^{m}} \end{array}$

2. Identification

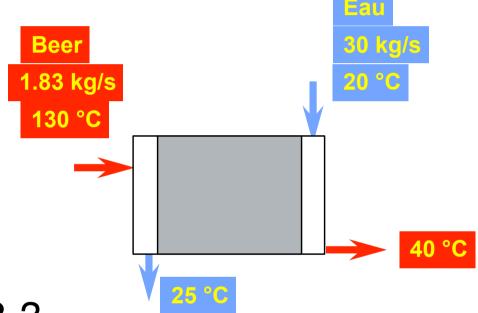
Model $F(X, \pi_{unit}) = 0$ Measurements $X - X^m = 0$

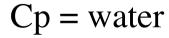
3. Identified parameters

 $\longrightarrow \pi_{unit}$

- Do we have enough measurement
 - can the model be solved?
 - do we need more measurements?
 - what do we do if we have more measurements?

Data reconciliation


What is happening when I have more measures than the minimum number needed?



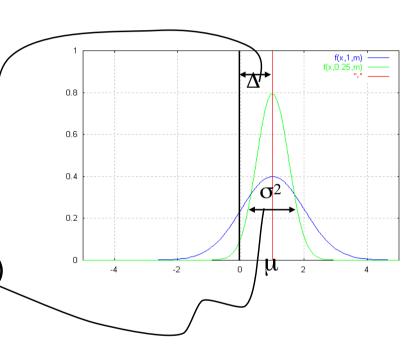
What is the heat transfer coefficient of the heat exchanger?

Are the measurements consistent?

- Equations: 3
 - 2 energy balances
 - Q=UA ΔT_{lm}
- State variables: 8
 - 4 temperatures
 - 2 flows
 - 2 parameters Q, U
- Degrees of Freedom: 5 = 8-3
- Measures : 6
 - do not add losses in as a DOF!

Choosing the good measure

8 variables - 3 equations => 5 measures over 6 have to be fixed


		Measure	1	2	3	4	5	6
Flow 1	kg/s	30.00	32.95					30.00
T in	°C	20.00		19.51				20.00
T out	°C	25.00			25.49			25.00
Q 1	kW	627.	689.	689.	689.	627.	627.	627.
Flow 2	kg/s	1.83				1.67		1.83
T in	°C	130.					121.9	130.
T out	°C	40.00						48.07
Q 2	kW	689.2	689.2	689.2	689.2	627.4	627.4	627.4
ΔT ML	°C	51.3	51.3	51.7	51.1	51.3	48.7	58.3
U	W/m2/l	<	134	133	135	122	129	108
Measure	corr	ected Sp	ecified		Cal	culated	b	

Measurement system

Classify variables

- Measured non measured
- Redundant non redundant
- Calculable non calculable
- Specified
- Measures => sensors
 - Exact (mean value)
 - Precision-Accuracy (standard deviation)
- Redundancy
 - Multiple sensors
 - Mass and energy balances

Data reconciliation problem

State variable value

$$min_{X,Y} \sum_{i=1}^{n_{mes}} (\frac{y_i - y_i^*}{\sigma_i})^2$$

s.t.
$$MassBalance(X,Y) = 0$$

$$EnergyBalance(X,Y) = 0$$

$$Thermodynamic(X,Y) = 0$$

$$ConstituveEquations(X,Y) = 0$$

$$Performance(X, Y, \pi) = 0$$

$$Inequalities(X,Y) \ge 0$$

standard deviation

$$F(Y,X) = 0$$

Knowledge about the process Virtual sensors

Problem resolution: constrained NLP Optimisation

$$\underset{x_{i},y_{i},\lambda_{i}}{\textit{Min } L} = \sum_{i} (\frac{y_{i} - y_{i}^{*}}{\sigma_{i}})^{2} + 2* \sum_{j} \lambda_{j} * f_{j}(y_{i},x_{i}) \qquad \text{Lagrange Formulation}$$

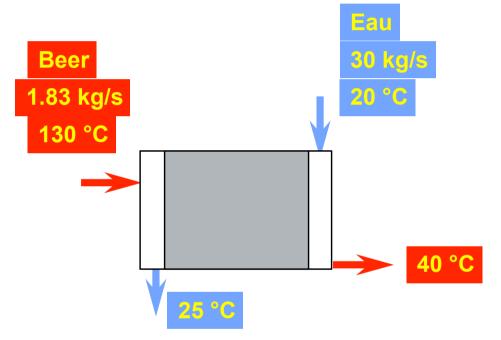
$$\underset{x_{i},y_{i},\lambda_{i}}{\textit{Min } L} = (Y - Y^{*})^{t} P(Y - Y^{*}) + 2* \Lambda * F(X,Y) \qquad \text{Matrix representation}$$

$$\Rightarrow \nabla L = 0 \qquad \qquad \text{Gradient set to zero}$$

$$soit \qquad \frac{\delta L}{\delta \Lambda} = F(Y,X) = 0$$

$$\frac{\delta L}{\delta X} = 2* \Lambda * B = 0 \qquad avec \qquad b_{i,j} = \frac{\delta f_{i}(Y,X)}{\delta x_{j}}$$

$$\frac{\delta L}{\delta X} = (Y - Y^{*}) * P + \Lambda * A = 0 \ avec \qquad a_{i,j} = \frac{\delta f_{i}(Y,X)}{\delta y_{i}}$$


X = non measured, Y = measured

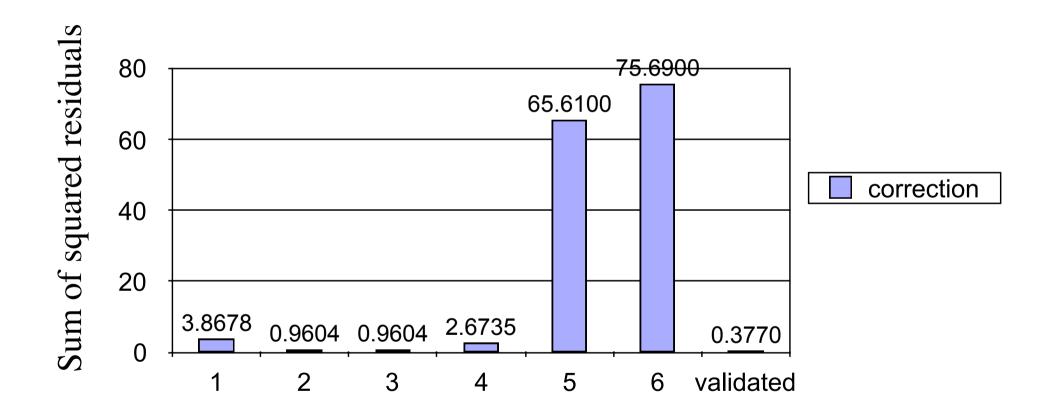
F(Y,X) = 0: Set of modeling+ specification equations

What is the heat transfer coefficient of the heat exchanger?

- Equations: 3
 - 2 energy balances
 - Q=UA ΔTlm
- State variables: 8
 - 4 temperatures
 - -2 flows
 - 2 parameters Q, U
- Degrees of Freedom : 5 = 8-3
- Measures: 6

data reconciliation results

			Mes.	σ	Vali.	(M-V)/ ^O
Flow 1	kg/s	M1	30.00	1.50	30.30	-0.197
T in	°C	T1	20.00	0.50	19.81	0.371
T out	°C	T2	25.00	0.50	25.19	-0.371
Q 1	kW		627.4		680.6	
Flow 2	kg/s	M2	1.83	0.10	1.81	0.215
T in	°C	Т3	130.00	1.00	129.96	0.044
T out	°C	T4	40.00	1.00	40.04	-0.044
Q 2	kW		689.2		680.6	
			Α	m2	100	
			∆T LM	°C	51.40	
			U	W/m2/K	132	
					SSQ=	0.3643


What are the most probable values of the measured values?

All measures are considered

		Mesures	1	2	3	4	5	6	
Flow 1	kg/s	30.00	32.95					30.00	30.30
T in	°C	20.00		19.51				20.00	19.81
T out	°C	25.00			25.49			25.00	25.19
Q 1	kW	627.	689.	689.	689.	627.	627.	627.	680.6
Flow 2	kg/s	1.83				1.67		1.83	1.81
T in	°C	130.					121.9	130.	129.96
T out	°C	40.00						48.07	40.04
Q 2	kW	689.2	689.2	689.2	689.2	627.4	627.4	627.4	680.6
Δ T ML	°C	51.3	51.3	51.7	51.1	51.3	48.7	58.3	51.40
U Measure	W/m2/l		134 ecificat	133	135 Cal	122 Iculated	129 d	108	132 Validated

Results validity

Results analysis

- How to use the results
 - Sum of square residuals
 - is there a lot of corrections?
 - Is the model (what we know) valid?
 - e.g. a leakage is apriori not modeled
 - Are the bounds activated
 - Is the model valid
 - Sensitivity analysis
 - One can calculate the precision of the value of measured and unmeasured values
 - Corrections analysis
 - Failling sensors => Gross errors (if big corrections => remove the sensor)
 - Sensor calibration
 - Importance of the sensors on the results

Sensitivity

When the solution is obtained, we have

measure weight

$$\nabla L = 0 \qquad \equiv \begin{bmatrix} P & 0 & A^T \\ 0 & 0 & B^T \\ A & B & 0 \end{bmatrix} * \begin{bmatrix} Y \\ X \\ \Lambda \end{bmatrix} = \begin{bmatrix} P & Y^* \\ 0 \\ -C \end{bmatrix}$$

Or MV = D

D is the set of measured values

And $V = M^{-1}D$ Sensitivity of the calculated variable w.r.t to D

P is the weight of the measures $(\frac{1}{\sigma^2})$

$$A = \frac{\delta F(X, Y)}{\delta Y}$$
 $B = \frac{\delta F(X, Y)}{\delta X}$ $F(X, Y)$ process model

Sensitivity analysis: Variance of the results

In detail

The variance is calculated as a sensitivity to the variance of the measurement

Measurement
$$Y_i = \sum_{j=1}^{m+n+p} (M^{-1})_{ij} D_j$$

$$= \sum_{j=1}^{m} (M^{-1})_{ij} P_{jj} y_j^* - \sum_{k=1}^{p} (M^{-1})_{i} \sum_{n+m+k}^{n+m+k} C_k$$

Calculated
$$X_i = \sum_{j=1}^{m+n+p} (M^{-1})_{n+i \ j} D_j$$

= $\sum_{j=1}^{m} (M^{-1})_{n+i \ j} P_{jj} y_j^* - \sum_{k=1}^{p} (M^{-1})_{n+i \ n+m+k} C_k$

Variance calculation if
$$Z = \sum_{j=1}^{m} a_j X_j$$
 then $var(Z) = \sum_{j=1}^{m} a_j^2 var(X_j)$

A posteriori variance

Standard deviation of the calculated variables $=f(P,Y^*)$

$$var(Y_{i}) = \sum_{j=1}^{m} \left\{ (M^{-1})_{ij} P_{jj} \right\}^{2} var(y_{j}^{*})$$

$$var(X_{i}) = \sum_{j=1}^{m} \left\{ (M^{-1})_{n_{mes}+ij} P_{jj} \right\}^{2} var(y_{j}^{*})$$

$$var(Y_{i}) = \sum_{j=1}^{m} \frac{(M^{-1})_{ij}^{2}}{var(y_{j}^{*})}$$

$$\operatorname{var}(X_i) = \sum_{j=1}^{m} \frac{\left(M^{-1}\right)_{n_{mes}+i \ j}^{2}}{\operatorname{var}(y_j^*)}$$

Sensitivity of solutions

to measurement

How much a calculated value is influenced by the value of a measurement

$$M\frac{\delta V}{\delta Y^*} + \frac{\delta M}{\delta Y^*}V - \frac{\delta D}{\delta Y^*} = 0 \Rightarrow \frac{\delta V}{\delta Y^*} = M^{-1} \begin{bmatrix} P \\ 0 \\ 0 \end{bmatrix}$$

Sensitivity of solutions

How much a calculated value is influenced by the accuracy of a measure

to measurement accuracy

$$M\frac{\delta V}{\delta P} + \frac{\delta M}{\delta P}V - \frac{\delta D}{\delta P} = 0$$

$$\Rightarrow \begin{bmatrix} \frac{\delta Y}{\delta P} \\ \frac{\delta X}{\delta P} \\ \frac{\delta A}{\delta P} \end{bmatrix} = M^{-1} \begin{bmatrix} Y^* \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} Y \\ X \\ A \end{bmatrix}^*$$

Data reconciliation

- Corrects the measurement values (most probable consistent) value
- Consistent with heat and mass balances & thermodynamics
- Considers balances as additional measures (virtual sensors)
- A posteriori precision of each value (measured and non measured)
- Precision of performance indicators
- Sensitivity of measurements on performance indicators
- Quality of sensors

Parameter identification

Parameter identification

Knowing:

System model

$$y = y(x, \pi)$$

 $M[1..k] = \{y^i | i = 1..k\}$ measurement set (k experiments):

 Objective function : deviation

$$L(\pi) = ||y - y^M|| = \sum_{i=1}^k \sqrt{(y(i)(x, \pi) - y^M(i))^2}$$

Compute an estimator $\hat{M} = \{y(\pi)\}\$ of $M = \{y^i | i = 1..k\}$ such that :

$$min_{\pi}L(\pi)$$

Parameter identification

$$\min_{\Theta} \sum_{i=1}^{n_{\text{exp}}} \frac{\left(y_i - y_i^*(x_i, \Theta)\right)^2}{\sigma_i^2}$$

When the model is not explicit

min
$$\sum_{i=1}^{n_{\text{var}}} \sum_{i=1}^{n_{\text{exp}}} \frac{\left(x_{i,j} - x_{i,j}^*\right)^2}{\sigma_{i,j}^2}$$
Subject to $h(x_{i,j},\Theta) = 0$ Model

Not all variables are measured

The problem is a Non linear Programming problem

- Quadratic
- Constrained

Validity of the parameter identification

- Number of parameters (p)
- Number of measurement set (n)
- Regression coefficient

$$R^{2} = \frac{\sum (\hat{Y}_{i} - \bar{Y})^{2}}{\sum (Y_{i} - \bar{Y})^{2}} \qquad \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

Regression validity: Fischer test

$$F = \frac{(n-p)R^2}{(p-1)(1-R^2)} > \frac{Fisher value}{F(p-1,n-p,1-\alpha)}$$

$$\alpha : \text{significativity level}$$

