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Goals of the lecture

• How to calibrate models using measurements
– Where to place measurements
– Virtual sensors by process models
– Data reconciliation

• correct the values of the measurement
– Parameter identification



Simulation

Process models & decision support

F (X,�unit) = 0

X �Xs = 0

�unit � �s
unit = 0

⇡s
unit

Performances

OptimizationXs

Model

Set points

Specifications

⇡unit

What are the X we want to know ?
• Streams ?
• Unit parameters ?

Model is defining the level of detail



• The process model and the unit models define 
the expected level of detail

– i.e. the data we want to generate with the model 


• Unit models require Parameters with fixed 
values

– What are the values of the parameters ?


• Literature => correlations, experience

• From experiments


– sensors => measured values => calculated parameters


– Calibration on existing equipment



5. Simulation

Measurement and parameter identification
2. Identification

F (X,�unit) = 0

X �Xm = 0

F (X,�unit) = 0

X �Xs = 0

�unit � �s
unit = 0

Xm

⇡s
unit

⇡s
unit = ⇡unit

⇡unit

1. Measured values

6. Performances

7. OptimizationXs

Model

Measurements

3. Identified parameters

Model
Set points

Specifications

4. Specified parameters



Do we have enough measurement/specifications ?



What is the heat transfer coefficient of the heat exchanger?

• Equations: 3 
– 2 energy balances
– Q=UA ΔTlm

• State variables: 8
– 4 temperatures
– 2 flows
– 2 parameters Q, U

• Degrees of Freedom : 5 = 8-3
• Measures : 6

Eau
30 kg/s
20 °C

25 °C

Beer
1.83 kg/s
130 °C

40 °C

Cp = water

Do we have enough measurement ?



Characterizing an industrial process
Energy conversion system

•Flowsheet (level of detail)
•Localisation of measurement

What is the state of the system 
 Performances ? 
 Unit parameters? 
 Maintenance ? 
 Optimisation ?

Measurements system ? 
 Enough ? 
 Accurate ? 
  Correction ? 
 Other needed ? 
  where ? 
  how much ? 
  why ?



Example of a simplified system
Hydrogen combustion with pure oxygen

Canonical form : F(x) = 0   =>   A x = c

H22 
O22 
H2O2 
T2

H25 
O25 

H2O5 
T5

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21 
O21 
H2O1 
T1 H23 

O23 
H2O3 
T3

H24 
O24 
H2O4 
T4

H2 kmols/s 
O2 kmols/s 
H2O kmol/s 
T  °C

T  measured

Unité R
   H23 - U - H24 = 0 

Mass balance:  O23 - 1/2 U - O24 = 0 
   H2O3 + U - H2O4 = 0 

Energy Balance : Σ x3 * (h°x3 
+ hx3

(T3)) - Σ x4 * (h°x4 
+ hx4

(T4)) = 0



Incidence matrix

Incidence Matrix : ai,j = 1 if variable j occures in equation i

Combustion

A x = c

H2 kmols/s 
O2 kmols/s 
H2O kmol/s 
T  °C

T  mesures

Variables : 22 in which 11 measures Δ = 11

E
qu

at
io

ns
 1

2

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21 
O21 
H2O1 
T1

H22 
O22 
H2O2 
T2

H23 
O23 
H2O3 
T3

H24 
O24 
H2O4 
T4

H25 
O25 
H2O5 
T5

only 10 are 
needed



Structural analysis : re-arrange the matrix
N

EQ
 E

qu
at

io
ns

MES
Variables 
Measured
(specs)

M

variables : measured (= specified) or not (to be calculated)
1) NEQ < NMES :no solution 
(NMES-NEQ) Equations are missing 
to calculate unknown variables

2) NEQ = NMES : all the unknows can be 
calulated (just calculable system)

3) NEQ > NMES : too many equations 
(redundant system) 
in this case some measured values can be 
recalculated using the value of the other

NMES
Variables 

not measured
(unknown)

B



Incidence Matrix

Measured variables: 11 

sy
st

em
 e

qu
at

io
ns

: 1
2

Example : combustion
H2 kmols/s 
O2 kmols/s 
H2O kmol/s 
T  °C

T measured

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21 
O21 
H2O1 
T1

H22 
O22 
H2O2 
T2

H23 
O23 
H2O3 
T3

H24 
O24 
H2O4 
T4

H25 
O25 
H2O5 
T5

unknown variabless : 11 

Square system ?



Rearrange the matrix

1) regroup measured and unknowns (M+B)

Exemple : combustion
H2 kmols/s 
O2 kmols/s 
H2O kmol/s 
T  °C

T  mesures

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21 
O21 
H2O1 
T1

H22 
O22 
H2O2 
T2

H23 
O23 
H2O3 
T3

H24 
O24 
H2O4 
T4

H25 
O25 
H2O5 
T5

measured/specified variables: 11 Non measured : 11 

3 1 2 1 1 2 2 1 2 3 4 3 3 R 4 4 4 5 5 5 5 E

H
2O

H
2O

H
2O O
2

H
2

O
2

H
2 T T T T O
2

H
2 U O
2

H
2

H
2O O
2

H
2

H
2O T Q

Bilan Matière M H2O X X X
Bilan Matière M O2 X X X
Bilan Matière M H2 X X X
Bilan thermique M X X X X X X X X X X X X
Bilan Matière R O2 X X X
Bilan Thermique R X X X X X X X X
Bilan Matière R H2 X X X
Bilan Matière R H2O X X X
Bilan Matière E O2 X X
Bilan Matière E H2 X X
Bilan Matière E H2O X X
Bilan thermique E X X X X X X X X X

2) Reorganise the B matrix (unknowns) by line and column permutations in order to have : 
• 1 element on each diagonal position 
• regroup in sub-systems  (square or rectangles)

sy
st

em
 e

qu
at

io
ns

: 1
2



Incidence matrix analysis

3 1 2 1 1 2 2 1 2 3 4 3 3 R 4 4 4 5 5 5 5 E

H
2

O
H

2
O

H
2

O
O

2
H

2
O

2
H

2 T T T T O
2

H
2 U O
2

H
2

H
2

O
O

2
H

2
H

2
O

T Q

Bilan Matière M H2O X X X
Bilan Matière M O2 X X X
Bilan Matière M H2 X X X
Bilan thermique M X X X X X X X X X X X X
Bilan Matière R O2 X X X
Bilan Thermique R X X X X X X X X
Bilan Matière R H2 X X X
Bilan Matière R H2O X X X
Bilan Matière E O2 X X
Bilan Matière E H2 X X
Bilan Matière E H2O X X
Bilan thermique E X X X X X X X X X

Redundant 
nbeq > nb var => possibility to correct measures/
eliminate specification

just calculable 
 NEQ (7) =NMES(7)

not calculable 
 NEQ (1) < NMES(2) 
Add at least 1 measure (2-1) 
T5 or Q

Redundant = 1 (nb equations - nb unmeasured variables)

T4 can not be corrected/eliminated



Generalisation : In case of complex systems

0B1

B2''B2'

Eq
ua

tio
ns

unknowns (not measured)

S1 
redundant
 or calculable  
(B1 vertical)

S2=B2'+B2'' 
Non calculable sub system

 (B2'' horizontale)

S2
S1

1) Reorganise the B matrix ( unknowns - equations)
Reorganise the B matrix (unknowns) by line and column permutations in 
order to have: 

• 1 element on each diagonal position 
• regroup in sub-systems  (square or rectangles)

Missing measurement (rectangle is horizontal)
•add measures to make  B2’’ square or vertical 
rectangle (ncolonnesB2” - nlignesB2”)
•this influences the other permutations => 
iterations

validable sub-system (rectangle is vertical)
more equations than unknowns

variables candidates



Analogy measurements and DOF analysis

Measurements systems analysis 
– Measures 
– Redundancy 

• more information available 

– Missing measurements 
• add measures

DoF analysis 
– Specifications 
– Over-specified 

• Spec to be suppressed 

– under specified 
Add specs



Redundant measurements

00 B1

B2''B2'

Eq
ua

tio
ns

Variables 
measured

S1 
validable
(B1 vertical matrix)

Variables 
unknowns

S1
S2 M2' M2''

M1

{

Redundant measurement may be reconciled
Redundancy number= nlines

B1 - ncolumns
B1

S2 
just calculable
 (B2''  square)

variables just 
   calculable

measurement that can 
not be reconciled

and are considered as 
perfectly known

{ {
A redundant measurement can be corrected using the values of the other measurements and the model equations



• Do we have enough measurement

– can the model be solved ?

– do we need more measurements ?

– what do we do if we have more measurements ?

2. Identification

F (X,�unit) = 0

X �Xm = 0

Xm

⇡unit

1. Measured values

Model

Measurements

3. Identified parameters



Data reconciliation


What is happening when I have more measures 
than the minimum number needed ?



What is the heat transfer coefficient of the heat exchanger?

• Equations: 3 
– 2 energy balances
– Q=UA ΔTlm

• State variables: 8
– 4 temperatures
– 2 flows
– 2 parameters Q, U

• Degrees of Freedom : 5 = 8-3
• Measures : 6

– do not add losses in as a DOF !

Eau
30 kg/s
20 °C

25 °C

Beer
1.83 kg/s
130 °C

40 °C

Cp = water

Are the measurements consistent ?



Measure 1 2 3 4 5 6
Flow 1 kg/s 30.00 32.95 30.00 30.00 30.00 30.00 30.00

T in °C 20.00 20.00 19.51 20.00 20.00 20.00 20.00
T out °C 25.00 25.00 25.00 25.49 25.00 25.00 25.00
Q 1 kW 627. 689. 689. 689. 627. 627. 627.

Flow 2 kg/s 1.83 1.83 1.83 1.83 1.67 1.83 1.83
T in °C 130. 130. 130. 130. 130. 121.9 130.
T out °C 40.00 40.00 40.00 40.00 40.00 40.00 48.07

Q 2 kW 689.2 689.2 689.2 689.2 627.4 627.4 627.4
ΔT ML °C 51.3 51.3 51.7 51.1 51.3 48.7 58.3

U W/m2/K 134 133 135 122 129 108

Choosing the good measure

Measure Specified Calculatedcorrected

8 variables - 3 equations => 5 measures over 6 have to be fixed



Measurement system

• Classify variables

• Measured - non measured

• Redundant - non redundant

• Calculable - non calculable

• Specified


• Measures => sensors

• Exact (mean value)

• Precision-Accuracy (standard deviation)


• Redundancy

• Multiple sensors

• Mass and energy balances

σ2

µ

Δ



Data reconciliation problem
measured valueState variable value

minX,Y

nmesX

i=1

(
yi � y⇤i

�i
)2

s.t. MassBalance(X,Y ) = 0

EnergyBalance(X,Y ) = 0

Thermodynamic(X,Y ) = 0

ConstituveEquations(X,Y ) = 0

Performance(X,Y,⇡) = 0

Inequalities(X,Y ) � 0

standard deviation

Knowledge about the process
Virtual sensors

F(Y, X) = 0



Problem resolution : constrained NLP Optimisation

  

€ 

Min
xi ,yi ,λ i

L = ( yi − yi
*

σ ii
∑ )2 + 2* λ j * f j( yi , xi)

j
∑ Lagrangien

Min
X ,Y ,Λ

L = (Y −Y * )t Ρ(Y −Y * ) + 2 *Λ*F(X,Y )

⇒ ∇L= 0

soit 
δL
δΛ

=  F(Y ,X) = 0

δL
δX

= 2*Λ*B = 0 avec bi, j =
δfi(Y ,X )
δx j

δL
δX

= (Y − Y *) *P + Λ*A = 0 avec ai, j =
δfi(Y, X)
δy j

Lagrange Formulation

X = non measured, Y = measured

Lagrange multiplier

Matrix representation

Gradient set to zero

F(Y, X) = 0 : Set of modeling+ specification equations

virtual sensor



What is the heat transfer coefficient of the heat exchanger?

• Equations: 3 

– 2 energy balances

– Q=UA ΔTlm


• State variables: 8

– 4 temperatures

– 2 flows

– 2 parameters Q, U


• Degrees of Freedom : 5 = 8-3

• Measures : 6

Eau
30 kg/s
20 °C

25 °C

Beer
1.83 kg/s
130 °C

40 °C



data reconciliation results

Mes. σ Vali. (M-V)/ σ
Flow 1 kg/s M1 30.00 1.50 30.30 -0.197

T in °C T1 20.00 0.50 19.81 0.371
T out °C T2 25.00 0.50 25.19 -0.371

Q 1 kW 627.4 680.6
Flow 2 kg/s M2 1.83 0.10 1.81 0.215

T in °C T3 130.00 1.00 129.96 0.044
T out °C T4 40.00 1.00 40.04 -0.044

Q 2 kW 689.2 680.6
A m2 100
ΔT LM °C 51.40

U W/m2/K 132
SSQ= 0.3643



Mesures 1 2 3 4 5 6
Flow 1 kg/s 30.00 32.95 30.00 30.00 30.00 30.00 30.00

T in °C 20.00 20.00 19.51 20.00 20.00 20.00 20.00
T out °C 25.00 25.00 25.00 25.49 25.00 25.00 25.00
Q 1 kW 627. 689. 689. 689. 627. 627. 627.

Flow 2 kg/s
T in °C 130. 130. 130. 130. 130. 121.9 130.
T out °C 40.00 40.00 40.00 40.00 40.00 40.00 48.07
Q 2 kW 689.2 689.2 689.2 689.2 627.4 627.4 627.4
ΔT ML °C 51.3 51.3 51.7 51.1 51.3 48.7 58.3

U W/m2/K 134 133 135 122 129 108

What are the most probable values of the measured values ?

Measure Specification CalculatedCorrected

30.30
19.81
25.19
680.6
1.81

129.96
40.04
680.6
51.40

132
Validated

All measures are considered

1.83 1.83 1.83 1.83 1.67 1.83 1.83



Results validity
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Results analysis
• How to use the results


– Sum of square residuals

• is there a lot of corrections ?

• Is the model (what we know) valid ?


– e.g. a leakage is apriori not modeled 


– Are the bounds activated

• Is the model valid


– Sensitivity analysis 

• One can calculate the precision of the value of measured and 

unmeasured values

– Corrections analysis


• Failling sensors => Gross errors (if big corrections => remove the sensor)

• Sensor calibration


– Importance of the sensors on the results



Sensitivity

€ 

on a ∇L = 0 ≡

P 0 AT

0 0 BT

A B 0
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Y
X
Λ
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=

P Y *

0
−C
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& 
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) 
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) 

Soit MV = D
Et V = M −1D

When the solution is obtained, we have

Or

And Sensitivity of the calculated variable w.r.t to D 

measure weight

D is the set of measured values

P is the weight of the measures (
1
σ2

)

A =
δF(X, Y )

δY
B =

δF(X, Y )
δX

F(X, Y ) process model



Sensitivity analysis : Variance of the results

In detail

€ 

Yi = M −1( )
ij
D j

j=1

m+ n+ p

∑

= M−1( ) ij
j=1

m

∑ Pjj y j* − M−1( ) i n+ m+k
k=1

p

∑ Ck

€ 

Xi = M−1( )
n+ i j

Dj
j=1

m+n + p

∑

= M −1( )n +i j
j=1

m

∑ Pjj y j
* − M −1( )n +i n +m+ k

k=1

p

∑ Ck

€ 

or si Z = aj X j
j=1

m

∑ alors var Z( ) = aj
2 var X j( )

j=1

m

∑

Measurement

Calculated

Variance calculation if then   

The variance is calculated as a sensitivity to 
the variance of the measurement



A posteriori variance
Standard deviation of the calculated variables =f(P,Y*)

€ 

var Yi( ) = M −1( ) ij Pjj{ }2 var y j*( )
j=1

m

∑

€ 

var Xi( ) = M−1( )nmes + i j
Pjj{ }

2

var y j
*( )

j=1

m

∑

€ 

avec var y j
*( ) = 1

Pjj

€ 

var Yi( ) =
M −1( ) ij

2

var y j
*( )j=1

m

∑

var Xi( ) =
M−1( )

nmes + i j

2

var y j
*( )j=1

m

∑

With



Sensitivity of solutions

€ 

M δV
δY * +

δM
δY * V −
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δY * = 0⇒ δV
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⇒
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to measurement

How much a calculated value is influenced by the value of 
a measurement



Sensitivity of solutions
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How much a calculated value is influenced by the accuracy of a measure



Data reconciliation

– Corrects the measurement values (most probable 
consistent) value


– Consistent with heat and mass balances & 
thermodynamics


– Considers balances as additional measures (virtual 
sensors)


– A posteriori precision of each value (measured and non 
measured)


– Precision of performance indicators

– Sensitivity of measurements on performance indicators

– Quality of sensors 



Parameter identification



Parameter identification

Knowing: 
• System model

• measurement set (k experiments): 

• Objective function :  

deviation


Compute  


  		

L(⇡) = ||y � yM || =
kX

i=1

q
(y(i)(x,⇡)� yM (i))2

y = y(x,⇡)

min⇡L(⇡)

an estimator M̂ = {y(π)} of M = {yi | i = 1..k} such that :

M[1..k] = {yi | i = 1..k}



Parameter identification

€ 

min
Θ

yi − yi
*(xi ,Θ)( )2

σ i
2

i=1

nexp

∑

€ 

min
Θ, x j ,i j=1

nvar

∑
xi, j − xi, j

*( )2

σ i, j
2

i=1

nexp

∑

Soumis à h(xi, j ,Θ) = 0 modèleModelSubject to

When the model is not explicit

Not all variables are measured
The problem is a Non linear Programming problem

• Quadratic
• Constrained



Validity of the parameter identification

• Number of parameters (p)

• Number of measurement set (n)

• Regression coefficient


• Regression validity : Fischer test

The coe⇥cient of determination R2 is a popular indicator of the quality of a
regression:

R2 =
�

(Ŷi � Ȳ )2�
(Yi � Ȳ )2

(11)

where

Ȳ =
1
n

n⇥

i=1

Yi (12)

R2 is always a figure between 0 and 1. A perfect fit of the data by the model
(Ŷi = Yi) will result in a R2 of 1 while if b1 = b2 = ... = bp the resulting R2 will
be 0.

However a high R2 does not guarantee that the regression is statistically
significant. This is especially true when the number of observations n is small.
In the extreme case, a model with n � 1 independent variables perfectly fits n
observations (R2 = 1). This shows that R2 can be improved by adding indepen-
dent variables which will not necessarily means that the quality of our model has
improved. Consequently, the coe⇥cient of determination of a regression gives
a first indication of its quality but is insu⇥cient to validate its significance. In
order to validate the developed correlation, we should take into account the
degrees of freedom of the regression (p� 1) and of the residuals (n� p). This is
achieved using the F statistic defined as:

F =
(n� p)R2

(p� 1)(1�R2)
(13)

If the F value is higher than F (p � 1, n � p, 1 � �) at a given level of sig-
nificance �, the regression can be considered as statistically significant and the
null hypothesis (H0) in the test below can be rejected.

H0: ⇥j = 0 against H1: not all ⇥j = 0 j = 1, ..., p� 1

2.2.1 Determining if a given factor as a significant impact on energy
consumption

We have seen above that adding independent variables to a model will improve
the R2 of the regression. However, this will not improve the quality of the
model. Indeed, the impact of significant variables might be diluted by the
presence of variables that are unsignificant and consequently not desired. This
might also create confusion in our comprehension of the system we are modelling.
Consequently, the regression should include only significant variables in order
to have good predictive capability. In that context, we might ask ourselves if all
the independent variables we have included in the model are relevant to predict
the energy consumption and how to know it?

The way to deal with that question is to test the validity of each of the
coe⇥cients of the model using the following hypothesis:

9

The coe⇥cient of determination R2 is a popular indicator of the quality of a
regression:

R2 =
�

(Ŷi � Ȳ )2�
(Yi � Ȳ )2

(11)

where

Ȳ =
1
n

n⇥

i=1

Yi (12)

R2 is always a figure between 0 and 1. A perfect fit of the data by the model
(Ŷi = Yi) will result in a R2 of 1 while if b1 = b2 = ... = bp the resulting R2 will
be 0.

However a high R2 does not guarantee that the regression is statistically
significant. This is especially true when the number of observations n is small.
In the extreme case, a model with n � 1 independent variables perfectly fits n
observations (R2 = 1). This shows that R2 can be improved by adding indepen-
dent variables which will not necessarily means that the quality of our model has
improved. Consequently, the coe⇥cient of determination of a regression gives
a first indication of its quality but is insu⇥cient to validate its significance. In
order to validate the developed correlation, we should take into account the
degrees of freedom of the regression (p� 1) and of the residuals (n� p). This is
achieved using the F statistic defined as:

F =
(n� p)R2

(p� 1)(1�R2)
(13)

If the F value is higher than F (p � 1, n � p, 1 � �) at a given level of sig-
nificance �, the regression can be considered as statistically significant and the
null hypothesis (H0) in the test below can be rejected.

H0: ⇥j = 0 against H1: not all ⇥j = 0 j = 1, ..., p� 1

2.2.1 Determining if a given factor as a significant impact on energy
consumption

We have seen above that adding independent variables to a model will improve
the R2 of the regression. However, this will not improve the quality of the
model. Indeed, the impact of significant variables might be diluted by the
presence of variables that are unsignificant and consequently not desired. This
might also create confusion in our comprehension of the system we are modelling.
Consequently, the regression should include only significant variables in order
to have good predictive capability. In that context, we might ask ourselves if all
the independent variables we have included in the model are relevant to predict
the energy consumption and how to know it?

The way to deal with that question is to test the validity of each of the
coe⇥cients of the model using the following hypothesis:
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(11)

where
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