Optimisation

Heuristic methods
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Optimisation methods : iterative

e Direct search

—Exploring the search space from a location to find the lowest point
* Easy to use and robust
* High computing time
e Indirect search
—Mathematical condition of the optimality

* More efficient
* More complex (derivatives)

e Heuristic methods

—Explore the search space based on a property of the system
*e.g. genetic algorithms
* Global optimum
*Very high computing time
* Highly dependent on the quality of the model
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Black box method

Optimisation : min OBJ(X*decision)
Subject to Ginequality(X decision) =0

BOJ(X*decision)
X" decision G(X*decision) inequality
Status

Model : Solve
|:(Xdependent’ Xspecification Xdecision)=0
S(Xdependent’ Xspecification Xdecision)=0 }

Xdecision -~ X decision =0

then calculate OBJ(X(X*decision))
G(X(X*decision))

=> X(X*decision)
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Heuristic methods
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e Applies only on black box strategy
e Exploring the search domain

—systematically

—based on some analogy
¢ Simulated annealing

—based on the analogy with metallurgy

* heating/cooling of metal to minimize the energy content

e Evolutionary algorithm

—genetic algorithms

* based on the analogy of the evolution
— Best fitted individuals have a higher probability to survive and reproduce
— Reproduction based on sharing gene info

e Particle swarm
—Initial speed + communication between agents
e Ants colony
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Heuristic methods
e Simulated annealing

set k=20
Choose T =1y, 0
Choose Tref = T0
Repeat if k < kmax
Choose x € V (Zrct) <- x in the vicinity of Xrer
5 = F(z) — F(rer)
o f 0 <0
then Tref = X

else select randomly p € {0..1}

if(p < exp(=2))then Tref =&
T

11 Tln?fi—l—(s)

k=k—+1

al Energy Systems Laboratory- LENI-IGM-STI-EPFL 2012

Repeat

Selecting the new point in the vicinity of the best point is the trick and depends on the problem to be solved, can be
permutations or other vectorial moves near the optimal point
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Evolutionary algorithms

e Characteristics
— Population (X)
— Objective Function(s) : Performances Y=F(X)
— No direction ( No derivatives - No “iteration™)
— Heavy duty : Computing time !
— Problem definition is free
— Random nature : explore the search space
— Inequality constraints ?
e Principle
— Initialization (random population generation (e.g. 100 sets))
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— Reproduction => select parents & reproduce

— New individual

* Cross-over (random)
* Mutation
— Update population (maintain population)
— eliminate the worst individuals
— re-group by types to preserve diversity
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reproduction by ‘“Crossing over”

Random selection of parents in the population
= == Random selection of the genes to share
Mother Father
"Crossing over" point "Crossing over" point
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Cross over

e Cross-over can use interpolation techniques

—e.g. quadratic approximation based on a subset
of the population

—select randomly and/or take the bests
e Preserve the random nature !
—e.g. random relaxation
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Mutation

Mutation allows to ensure that the system will not be trapped in a local optimum and that the whole space will be observed
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Elimination

Elitism : preserve the best candidates
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for local and global optimum.

Elitism is defining the population in which the good candidates are
selected : this allows multi-objective optimisation and the search
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Evolutionary algorithms : conditions
e Black box approach

—Equality constraints are solved explicitly

—Inequality constraints transformed into decision variables
bounds

e Fast F(X) calculation
—Search space exploration => huge number of evaluation
. e Robust F(X) calculation
. —search space response

e No efficient mathematical programming methods
- —Non differentiable problems

—MINLP
e Limited number of degrees of freedom
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Evolutionary algorithm : advantages

e Global optimisation

e Exploration of the search space
e Black Box
e Accepts different type of objective function
e incl. observations
e Non differentiable problems
: e [ he objective function can have jumps or steps
e Easy to parallelise
e Freedom in the choice of decision variables
o X | *x2*x3 Is not a problem
e Multi-objective problem
. _Efficient use of the computing time
—Dominancy criteria
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Evolutionary algorithm : drawbacks
e Speed of resolution of F(X)

—Requires a large number of F(X) evaluation

—Use of surrogate models

e Number of decision variables

—Convergence properties Is a combinatorial function
of the number of variables

e Limited Feasible domain

—Probability of finding feasible F(X) is low
—Cholice of the decision variables

e Constraints handling
—Equality or inequality
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Evolutionary algorithm

e Handling inequality constraints

m)%nOBJ(X) %iyOBJ(Xd,Y(Xd)) + P(X?)

st. st.

F(X) = Y (X9) = F(X°)

G(X) <0 P(X%) = (maz(G(X4,Y(X?),0))’
Xiaw < X< X0,
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Evolutionary algorithm

e Choosing the appropriate decision variables

min f(.il?l, ZEQ)
T1,T2

st.
I < i)
ZU]_ ’L’I’L < 331 < xmaa:

$2 min < a,/,2 < :Emaw

Becomes

min f(z1 = 27" + (min(ze, 27 — (min(zq, 7)) — ™)) - 2%, 29)
x17$2

st.
0<x7 <1
T < gy < PO Works well for Evolutionary algorithm
do not use for mathematical programming
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Multi-objective optimisation

Clustering techniques (big data)
* identify decision variable sub-spaces

= ; * generate multiple Pareto curves
) o .
O = Configuration Domlnaany . . .
=  Operating conditions * Remains in the population if at least
L i f i t . .
. Stze ot equipmen better than others for | objective
‘ . .
. * Preserve sub-optimal population
= .
% '9@‘ ) .:. "
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5 /7‘900 ~
i G&&/.
: %
: OB]J |

The goal is indeed to take decisions : being informed about the collection of good solutions allows to have a better
knowledge of what is building a solution and for which reason the filan solution will be selected
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Evolutionary solving strategies

e Hybrid methods

—Use Evolutionary algorithm to find initial point
for mathematical programming

— Global optimization (find min of min )
— Limited number of NLP

—Do 1t In 2 directions | ; noo el
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