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=PFL  Part1 : defining the building needs

Buildings stock

Measures

Vs Table 1.1: EPFL Buildings
&Jr‘ ¢ Building Construction Heated Annual heat  Annual electricity
"; " period® surface Ay, [m?]  demand Qq, [k€Wh] demand Qg [kWh]
BC 2 17480 418,491 1,603,596
CO 2 11901 477,008 943,653
BP 2 10442 457,861 691,031
BS 2 10267 509,183 350,860
TCV 2 6095 318,209 2,067,675
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= The president has first asked his colleagues to make some suggestions of the options :
* Prof of Architecture : you have to refurbish the buidlings
 Prof of Heat exchangers : recover the heat of the data centers and the hot air in buildings
 Prof of Compressor : use multi-level heat pumps, choose the right fluid
- Prof of Photovoltaic : use PV panels
 Prof of Fuel cells : use a solid oxide fuel cell
- Prof of Bio-engineering : use biomethane
 Prof of Geology : use deep geothermal sources
- Prof of Water Treatment : use of the heat of the waste water
 Prof of Energy system : look at the system integration
 Prof of power systems : use my battery
- Prof of Climate and economics : take into account the global warming
- Vice-president finance : | do not have money for that
- ETH board : demonstrate the sustainability

M IPESE
Industrial Process ‘q

and Energy Systems ',
Engineering



=PFL The energy system of EPFL
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=PFL The energy conversion system

= For each distribution system d (e.g. ht)

"
Demand: Q,, = Z Oy Vit € lifetime
Electricity £y, Electricity Ey,,qs., b
= For each unit u (e.g. heat pump}

nu
- . I 't : - — . v . .
Electricity Ep,,,, . Supply by unit u Z Quar = Qa, Vi E lifetime

= Cost of the supply
. Srilze of the conversion equipment :

u

Z max (Q'u,d,t): max (Qd,t)

t€lifetime t€lifetime

Power station
. bpy . by .
Epears = COPht,tZ Op.hes + COPlt,tZ Op.its
b b

mwater,t “cp - (TLake,t - TLakeReturn,t)

u=1

. Qu,max = Inhax (Qu,t)
t€lifetime
Lake water Ny N, lifetime .
_ Buy the resources : 2 2 ([ Crp Myt Qv di)
r=1 u lo

M |PESE
Industrial Process
and Energy Systems ',
Engineering




=PFL Energy conversion OPEX 6

lifetime

Z Z ( Crp My s QW - dt) [CHF/lifetime]
r=1 u

[

« ¢,, [CHF/unit,] cost of one unit of resource r at time ¢
= e.g. kg of water, kg of fuel, kd of fuel or KWh of electricity
« ¢, , < 0 for products (e.g. electricity production)
«m, ., lunit./kJ,] unit of resource r used to deliver one [kJ,;] of heat by unit u
at time
. Q'u,t [kW/unit,] heat delivered by unit u at time ¢

« lifetime  [s] expected lifetime of the project
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PFL. OPEX in [CHF/year]

= OPerating EXpenditure (we assume a typical year of operation) :

Mypes 1y year

Cost of resources Z Z ([ Crp "My Q'MJ -dt) [CHFl/year]
r=1 u L

withm, [kg/MJ] is the resource consumption per unit of heat Qu,t

+ Maintenance [CHF/year]

+ Men Power [CHF/year]

+ Taxes [CHF/year] :

fixed : e.g. based on installed power

Npes 1y year
proportional : Z Z ([ t, om0, -dt)y [CHF/year]
r=1 u

)

with ¢, [CHF/unit,] tax per unit of r
e.g. tl’,t — TCOZ[CHF/kgC02] y mc02’r[kgc02/unltr]
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EPFL Calculating m,.,, [unit,./kJ,,] for a Cogeneration unit

= resource use is calculated with a multiplication factor of a reference
production m,.,, ,  [unit./kJ,]

&

_ Thermal efficiency : 77, , = .th’u [kJ,,/kJ ]
mr,u
E,

_ Electrical efficiency : 77, , = — [kJ,/kJ ]
mr,u

: How -

. Eu,t — ) Qu,t
”th,u
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=PFL Calculating m, , ,

sink : CONDENSER

Myink> CPsinks Tsinkin sink,,,

Vapor Liquid

7-]"luia’,cona," Pfluid,cond

Pfluid,cond > Pfluid,evap

Tfluid,evap’ P fluid,evap

Vapor Liquid-Vapor

TSOI/H"C€ m

T

out source? Cpsource’ source;,

source : EVAPORATOR
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[kJ,/kJ,, ] for a heat pump : approximation

Qsink - Qu,t - msink,t " Clsink (Tsinkom,, -

. 0,
E,, = -
’ COP

u,t
CopP ut — Hcop - CcopP thu,t

Tsinkin,t)

Neop = 30 % or is a fitted curve
T

sinkoytt Tsinkin ¢

~

T. oy =
COP Tsink,t e ln(TSi”kout,t) - ln(TSi"kin,t)
fh,lxt,t _ T T F Tsourceout,t - Tsourcein’t
. — et =
sink,t source,t sources = 7~ Tromreems) — 11 Toourcans )

Qsource,t = Myourcet * €Psource (Tsourcem,t - Tsourceom,,)

Qsource,t = Qu,t - Eu,t



=PFL Total Cost (TOTEX in [CHF/year])
= TOTal EXpenditure :

TOTEX |[CHF/year] = OPEX |[CHF/year]l+ CAPEX [CHF/year]

it assumes that the unit will be operated with the same power profile over
the lifetime of the equipment

We assume a mean year and the associated costs as being representative
of the lifetime of the project
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=PFL Mixed Integer Linear Porgamming problem

Define the flows =>

Define the sizes =>
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Objective function
The objective is to minimize the total annualized cost function:

TOTEX = OPEX + CAPEX + ENVEX  [CHF/year] (D
where:

* Annual operating cost:

toP R U

OPEX = / > ety (t)dt + Y cuSu + / - cF(ET (t)dt — / - c; (DE (H)dt  (2)
0o = = 0 0

T R U T T
~ Z Z Crtty t Aty + Z cotg, + Z cztE:_ Aty — Zc;tEt— Aty [CHF/year] (3)
t t t

T u

¢ Annualized investment cost:

U U
1 1 . .
CAPEX = = ;I(su) ~ - ; (cg“’lyu + cg“’zsu) [CHF/year] 4
¢ Annual cost related to emissions:
T
ENVEX = co, > [rhCOQ,tAtt + Keoyt (Et+ B )Att] [CHF /year] )

t
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cPFL Energy and mass balances

* Heat distribution Vi€ T, VdeDwithTy 1, > Ty

U
un,dfu,t _ Qd,t =9
u

Balance demand and supply =>

. res : res

B
Qd,+1,t £ Qd,t = Z Qb,d,t = Qd—l,t
b

Qd,t = md,tcPd(Tfi,t - Té,t)

~res

>.res
Qo’t - z’ Qnd-l—l)t =

~Tes

Qi =2
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(13)

(14)

(15)
(16)

(17)
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“PEL Technology constraints and modeling equations

[—=

* Inequality constraints Vie T, VueU

Choosing the option => £y, <f, < iy, (6)
fglinyu,t Sfu,t < fglaxyu,t (7)
fu,t Sfu (8)

* Modeling equations
example: heat pump
u = heat pump

o
,Tsink
COP = ~sink _ ~source | 'lcarnot (10)
T —-T

Ncarnot - fitted curve nCarnot(Tsink’ Tsource’ Q)
The heat pump COP can be calculated as a function of the temperature at each time step ¢ and

distribution system d considered:
u=heatpump, Vi€ T, Vde D

= o (11)
Constant for the optimisation =>
Tsink
dt
™ IPESE COPd’t - <~ ink ~source> Tcarnot (12)
Industrial Process dt Td’t

and Energy Systems ‘g,
Engineering

13



= ==
cPFL * Electricity balance @Vic T

U U B
Flows of resources => E —E + > fuibn = furbt =) Epi=2 (18)
U U b

* Resource and material balance VieT, VreR

Flows of resources =>

U
rhr,t — qu,trhr,u (19)

example: emissions of CO, VteT, r=-cos

U
Flows of emissions => Mo, + = qu,tmcoz,u (20)
u

The goal is to calculate the set of variables f,, ;, ¥, ;s fus Yus E, , E: , Myt Qd’t, Qze: that minimizes
the objective TOTEX.
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=PFL Variables (to be calculated) and parameters (fixed) ’

M IPESE
Industrial Process

Index and set |

Description

teT Time T={t;..1tn}

ueU Utility U = {boiler, heat pump, refrigeration, ...}

reR Resource R = {hydrogen, natural gas, chocolate, ...}

deD Distribution system D = {d; ... d,;}

becB Building B = {b; ... by, }

Parameter ] Description

toP Total operating time per year [h/year]

Aty Duration of time interval ¢ [h]

Crt Specific cost of resource r at time ¢ [CHF/kg]

cj:t Price for purchased electricity at time ¢ [CHF/kWh]

Cet Price for sold electricity at time ¢ [CHF/kWh]

cinvl Fixed investment cost of utility u [CHF]

cilf“’2 Variable investment cost of utility u [CHF/size]

c* Maintenance specific cost of utility per yea v [CHF/size/year]

}—r Annualization factor of investment [1/year]

o Minimum sizing factor of utility v [-]

fex Maximum sizing factor of utility u [-]

Keop t CO, equivalent emissions of the grid at time ¢ [ton.,,/kWh]

my Reference mass flow of resource r in utility v [kg/s]

Q. Reference heat load produced by utility . [kW]

ar Reference heat load consumed by utility u [kW]

€, Reference electrical power produced by utility v [kW]

et Reference electrical power consumed by utility © [kW]

Tat Logarithmic mean temperature of the distribution system d at time ¢t [K]
Tg: Supply temperature of the distribution system d at time ¢ [K]

Tas Return temperature of the distribution system d at time ¢ [K]

mg ¢ Mass flow in the distribution system d [kg/s]

Cpy Heat capacity of the fluid in the distribution system d [kJ/K/kg]

Qu.d Reference heat load of utility « fed in the distribution system d [kW]
Qb!d’t Heat load demand of building b at time ¢ in the distribution system d [kW]
Eb,t Electricity consumption of building b at time t [kW]

COP Coefficient Of Performance of the heat pump [-]

Tsink Logarithmic mean temperature of the heat sink of the heat pump [K]
Tsource Logarithmic mean temperature of the heat source of the heat pump [K]
Nearnat Carnot efficiency [-]

and Energy Systems ‘g,

Engineering

<= SETS : are groups of the same type and scopes in the problem

Variables => min and max bounds

Variable | Description

fu Sizing factor of utility v [-]

Jut Sizing factor of utility u at time ¢ [-]

Yu Binary variable to use or not utility v [-]

Yurt Binary variable to use or not utility v at time ¢ [-]

E, Purchased electrical power at time ¢ [kW]

E; Sold electrical power at time ¢ [kW]

My ¢ Mass flow of resource r at time ¢ [kg/s]

Qus Total utility heat load at time ¢ in the distribution system d [kW]

iné: Heat load cascaded from distribution system d to d + 1 at time ¢ [kW]

)

<= Parameters calculated before solving the MILP problem



m

PFL CAPEX energy conversion system [CHF/year]

= CAPital EXpenditure ;
u 1 .
CAPEX [CHF/year] = Z — 1, Qi
T Ou,max ’

u=1 4

) |CHF'/kW ] specific investment of unit u for size Q

u .u,max umax
. Oumax = max (Q,,) [KW] size of unit u
’ t€lifetime ’
- MILP problem representation: Q,,, - f,,; < O, .ux Vit
1 1

= [year_l] - annualisation factor of unit u
t, (i, lifetime,)
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Calculating i, . |CHF/kW ] for a heat pump

EPFL Oumas 17

Sizing : condenser, evaporator & compressor
CONDENSER

msink, CDginks Tsinkin sink,,, Qu,t — Qsink,t = Mgink,t * €Psink (Tsinkom,t - Tsinkin,t)

Vapor Liquid

Qsink,t = mfluid,t ’ (h(z}luid,cond 1 Pfluid,cond,-n,t - h(Y}luid,condou,,t’ Pfluid,cond t)

ins out>
1 1 Oy
° 7}luia’,cona” P fluid,cond A ondenser = Mmax  (( + ) ikt )
E \ telifetime uSll’lk ufluid,cond (’Z}luid,cond,t - Txinkm,t) - (’Z}luid,cond,t - Txinkom,t)
1 1 ln(]}luid,cond,t - Txinkmé - ln(Y}luid,cond,t - Tsinkom,t)
source,t
@ Pfluid,cond > Pfluid,evap Aevapomtor = max (( + ) (T — Toia —(T — (Ty1i ) )
l€llf€flm€ uSOMI"C@ ufluid,evap sourcegyy,t fluid,evap,t sourcejy,t fluid,evap,t
/ Q ln(Tsourceom,t - T}Iuid,evap,t) - ln(Tsourcel-n,t - 7}”luid,evap,t)
. u,t
E = max (———)
. . max
Ttuidevaps Friuid.evap ctifeiime . COP, ,
. Qsource,t = Mgourcet * CPsource (Tsourcein,t - Tsourceom,t)
Vapor Liquid-Vapor
T . T Qsource,t = mfluid,t ) (h(Tfluid,evapom,t’ Pfluid,evapom,t - h(Tfluid,evapm,t’ Pfluia’,evap,-n,t)
source,,, Msources CPsource source;,

EVAPORATOR Qsource,t = Qsink,t _ Eu,t

1 :
CAP EXu — ;(IHTX(Acondenser) + IHTX(AEvaporator) + Icompressor(Emax))
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=PrL |nvestment linearised

N 1 Capex, |CHF]
CAPEX CHF ear| = _ Ilu w + IQ’LL ZZ’LCL% A
[ /y ] ; T(ny,u’ ’L) ( Yy f ) Capexu[CHF] =a,- (fbrtnaX)bu ~ Ilu -y, + IZM ‘flzmx

1
T(ny,u, Z)
nyw |year] expected life time of unit u

I1, [CHF)] fixed investment of unit u

Yu [—-]  existence unit u

annualisation factor of unit u

[yelar]

I12,, |CHF] proportional investment cost of unit u

fre [—] size of unit u

fmax
u

max
u

fmaxmax

fmin !

fmin'** .y < fI' < fmax) -y,

f, < frax Vt € periods
W IPESE ut — Ju p
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EPFL  QOptions for the building b

« The building b has noboptions to suppl the heat (e.g. air heat recovery)

= Heat Ioadnof the building on distribution system d
0,b

Qb,d,t = Z yOb ’ QOb,d,t

. (%hoosing the option
%p
Z Yo, = 1
Op

. Electri%ity consumption
0,b

Eb - Zyob . EObJ
Op
= Capital cost

op
CAPEX, = ) CAPEX, -y,

Op
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=PFL  Option for multi-stage heat pump

= Heat supplied by u on distribution level d :

Qu dt = fud,t ) Qud,hp,

n Electrlc:lty in the compressor of u :

qu t - COP Ugyd,t

Md,d,t

« Size of the unit u : E™4 > Eu,t Vi
= CAPEX of unit u :
CAPEX,=—-(I1,-y,+ 12, - E"%)
Tl/t
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=PFL  Multi objective optimisation with MILP problem

= As the cost of energy is really uncertain, it is difficult to claim that there is
one cost optimal solution

= What if government is imposing a CO2 tax ?
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ePFL Generating ordered list of system configurations

= Integer cut constraint on the equipment set {y, }

- assuming that we know already the solution k

- The problem k + 1 is defined by adding to the previous MILP problem
the integer cut constraint

Problem® 1 -

Problem”

where yf value of y; in solution of problem k
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=PFL  Example of multi-objective optimisation

= Cost of reducing the emissions
- OBJ1 = total cost
« OBJ2 = emissions
= Investment to increase the renewable energy usage
« OBJ1 = investment
- OBJ2 =RES
= Thermo-economic trade-off
- OBJ1 = investment
« OBJ2 = operating cost
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=PFL Multi objective optimization

Trade-off between one objective and another one

Generation of the Pareto Front

A

Pareto Front

AN
3 min OBJ1(X*?)
,,,,,,, 6/(3 st
%6/ OBJ2(X%) < OBJ2"¢/
%
min OB.J2(X) OBJ1
st.

OBJ1(X% < OBJ1™/
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Vilfredo Pareto

Born

Died

Nationality

Institutions
Field

15 July 1848
Paris, France

19 August 1923 (aged 75)
Céligny, Switzerland

ltalian

University of Lausanne

Microeconomics
Socioeconomics

source : wikipedia

24



=PFL Muti-objective optimisation

= Single objective parametric
- Weighting factor
Xg(w) :minx, (1 —w)-OBJ1(Xq) +w-OBJ2(Xy)
Vw € |0, 1]
 Note : if OBJ1 is a cost function

w

is a tax on OBJ3(Xy)
1 —w

e.g. CO2 tax if OBJ2 is the CO2 emissions and OBJ+ the total cost

Engineering
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=PFL Parametric programming
for P € {OBJZ(Xd\rglfiglOBJl(Xd))..OBJQ(Xd\rglcianBJZ(Xd))}

X4P) : minOBJ1(X?)
Xd

st.
OBJ2(X%) <P

OBJ1

Note : the Lagrange multiplier of the inequality
constraints gives the slope of the Pareto curve
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