
The Energy Supply System

Prof François Marechal

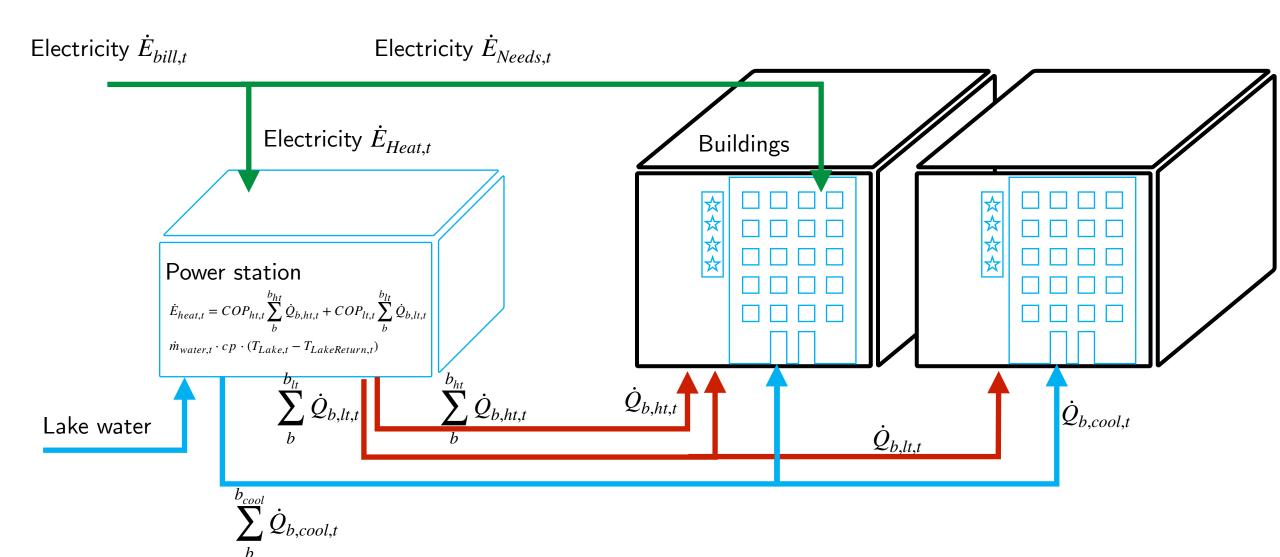
EPFL Part1: defining the building needs

Buildings stock

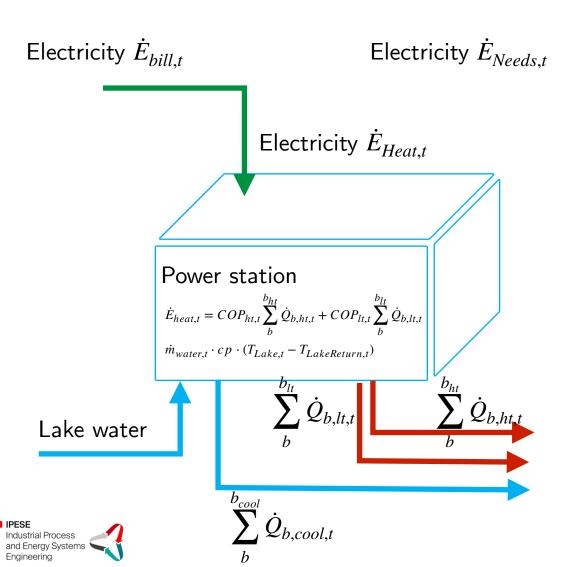
Measures

Table 1.1: EPFL Buildings

Building	Construction	Heated	Annual heat	Annual electricity
	period^a	surface $A_{\rm th}$ [m ²]	demand Q_{th} [kWh]	$demand Q_{el} [kWh]$
BC	2	17480	418,491	1,603,596
CO	2	11901	477,008	$943,\!653$
\mathbf{BP}	2	10442	$457,\!861$	691,031
\mathbf{BS}	2	10267	509,183	350,860
\mathbf{TCV}	2	6095	318,209	2,067,675



- The president has first asked his colleagues to make some suggestions of the options:
 - Prof of Architecture : you have to refurbish the buildings
 - Prof of Heat exchangers: recover the heat of the data centers and the hot air in buildings
 - Prof of Compressor: use multi-level heat pumps, choose the right fluid
 - Prof of Photovoltaic : use PV panels
 - Prof of Fuel cells : use a solid oxide fuel cell
 - Prof of Bio-engineering : use biomethane
 - Prof of Geology: use deep geothermal sources
 - Prof of Water Treatment: use of the heat of the waste water
 - Prof of Energy system: look at the system integration
 - Prof of power systems : use my battery
 - Prof of Climate and economics: take into account the global warming
 - Vice-president finance: I do not have money for that
 - ETH board : demonstrate the sustainability



EPFL The energy system of EPFL

EPFL The energy conversion system

For each distribution system d (e.g. ht)

Supply by unit u :
$$\sum_{u=1}^{n_u} \dot{Q}_{u,d,t} = \dot{Q}_{d,t} \quad \forall t \in lifetime$$

and
$$\dot{Q}_{u,t} = \sum_{d}^{n_d} \dot{Q}_{u,d,t}$$

- Cost of the supply
 - Size of the conversion equipment :

$$\sum_{u=1}^{n_u} \max_{t \in lifetime} (\dot{Q}_{u,d,t}) = \max_{t \in lifetime} (\dot{Q}_{d,t})$$

$$\dot{Q}_{u,max} = \max_{t \in lifetime} (\dot{Q}_{u,t})$$

Buy the resources :
$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_u} \left(\int_{t_0}^{lifetime} c_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right)$$

EPFL Energy conversion OPEX

$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_{u}} \left(\int_{t_{0}}^{lifetime} c_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right) \quad [CHF/lifetime]$$

- $c_{r,t}$ [CHF/unit_r] cost of one unit of resource r at time t
 - e.g. kg of water, kg of fuel, kJ of fuel or kWh of electricity
 - $c_{r,t} \leq 0$ for products (e.g. electricity production)
- $m_{r,u,t}$ [$unit_r/kJ_{th}$] unit of resource r used to deliver one [kJ_{th}] of heat by unit uat time t
- $Q_{u,t}$ [$kW/unit_r$] heat delivered by unit u at time t
- *lifetime* [s] expected lifetime of the project

EPFL OPEX in [CHF/year]

OPerating EXpenditure (we assume a typical year of operation) :

Cost of resources
$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_{u}} \left(\int_{t_{0}}^{year} c_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right) \quad [CHF/year]$$

with $m_{r,u,t}$ [kg/MJ] is the resource consumption per unit of heat $Q_{u,t}$

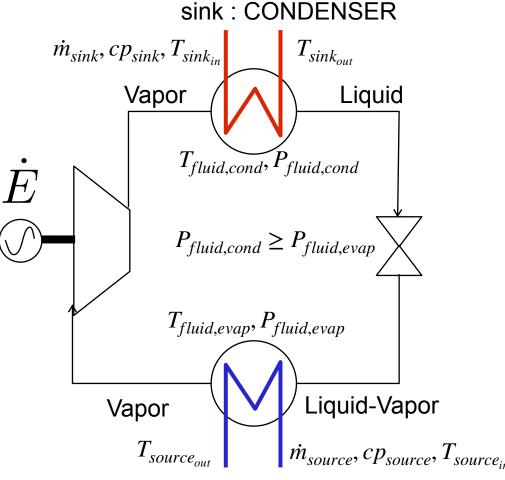
- + Maintenance [CHF/year]
- + Men Power [CHF/year]
- + Taxes [CHF/year]:

fixed: e.g. based on installed power

proportional :
$$\sum_{r=1}^{n_{res}} \sum_{u}^{n_{u}} \left(\int_{t_{0}}^{year} t_{r,t} \cdot m_{r,u,t} \cdot \dot{Q}_{u,t} \cdot dt \right) \quad [CHF/year]$$
 with $t_{r,t}$ [$CHF/unit_{r}$] tax per unit of r e.g. $t_{r,t} = \tau_{CO_{2}}[CHF/kg_{CO_{2}}] \cdot m_{CO_{2},r}[kg_{CO_{2}}/unit_{r}]$

EPFL Calculating $m_{r,u,t}$ $[unit_r/kJ_{th}]$ for a Cogeneration unit

 resource use is calculated with a multiplication factor of a reference production $m_{r,u,t}$ [$unit_r/kJ_{th}$]


Thermal efficiency :
$$\eta_{th,u}=\frac{\dot{Q}_{th,u}}{\dot{m}_{r,u}}$$
 $[kJ_{th}/kJ_r]$ Electrical efficiency : $\eta_{e,u}=\frac{\dot{E}_u}{\dot{m}_{r,u}}$ $[kJ_e/kJ_r]$

Electrical efficiency :
$$\eta_{e,u} = \frac{E_u}{\dot{m}_{r,u}}$$
 $[kJ_e/kJ_r]$

$$\dot{E}_{u,t} = \frac{\eta_{e,u}}{\eta_{th,u}} \cdot \dot{Q}_{u,t}$$

EPFL Calculating $m_{r,u,t}$ $[kJ_e/kJ_{th}]$ for a heat pump: approximation

source: EVAPORATOR

$$\dot{Q}_{sink} = \dot{Q}_{u,t} = \dot{m}_{sink,t} \cdot cp_{sink} \cdot (T_{sink_{out,t}} - T_{sink_{in,t}})$$

$$\dot{E}_{u,t} = \frac{\dot{Q}_{u,t}}{COP_{u,t}}$$

$$COP_{u,t} = \eta_{COP} \cdot COP_{th,u,t}$$

 $\eta_{COP} = 50 \%$ or is a fitted curve

$$COP_{th,u,t} = \frac{\tilde{T}_{sink,t}}{\tilde{T}_{sink,t} - \tilde{T}_{source,t}}$$

$$\tilde{T}_{sink,t} = \frac{T_{sink_{out,t}} - T_{sink_{in,t}}}{ln(T_{sink_{out,t}}) - ln(T_{sink_{in,t}})}$$

$$\tilde{T}_{source,t} = \frac{T_{source_{out,t}} - T_{source_{in,t}}}{ln(T_{source_{out,t}}) - ln(T_{source_{in,t}})}$$

$$\dot{Q}_{source,t} = \dot{m}_{source,t} \cdot cp_{source} \cdot (T_{source_{in,t}} - T_{source_{out,t}})$$

$$\dot{Q}_{source,t} = \dot{Q}_{u,t} - \dot{E}_{u,t}$$

EPFL Total Cost (TOTEX in [CHF/year])

TOTal EXpenditure :

$$TOTEX \quad [CHF/year] = OPEX \quad [CHF/year] + CAPEX \quad [CHF/year]$$

it assumes that the unit will be operated with the same power profile over the lifetime of the equipment

We assume a mean year and the associated costs as being representative of the lifetime of the project

EPFL Mixed Integer Linear Porgamming problem

Objective function

The objective is to minimize the **total annualized cost** function:

$$TOTEX = OPEX + CAPEX + ENVEX$$
 [CHF/year] (1)

where:

Annual operating cost:

$$OPEX = \int_{0}^{t^{\rm op}} \sum_{r}^{\mathbf{R}} c_{r}(t) \dot{m}_{r}(t) dt + \sum_{u}^{\mathbf{U}} c_{u} S_{u} + \int_{0}^{t^{\rm op}} c_{e}^{+}(t) \dot{E}^{+}(t) dt - \int_{0}^{t^{\rm op}} c_{e}^{-}(t) \dot{E}^{-}(t) dt \quad (2)$$

$$\approx \sum_{t}^{\mathbf{T}} \sum_{r}^{\mathbf{R}} \mathbf{c}_{r,t} \dot{\mathbf{m}}_{r,t} \Delta \mathbf{t}_{t} + \sum_{u}^{\mathbf{U}} \mathbf{c}_{u}^{\mathrm{mt}} S_{u} + \sum_{t}^{\mathbf{T}} \mathbf{c}_{e,t}^{+} \dot{E}_{t}^{+} \Delta \mathbf{t}_{t} - \sum_{t}^{\mathbf{T}} \mathbf{c}_{e,t}^{-} \dot{E}_{t}^{-} \Delta \mathbf{t}_{t} \quad [CHF/year] \quad (3)$$

• Annualized investment cost:

$$CAPEX = \frac{1}{\tau} \sum_{u}^{\mathbf{U}} I(s_u) \approx \frac{1}{\tau} \sum_{u}^{\mathbf{U}} \left(c_u^{\text{inv1}} y_u + c_u^{\text{inv2}} s_u \right) \qquad [CHF/year]$$
 (4)

• Annual cost related to emissions:

$$ENVEX = \mathbf{c}_{co_2} \sum_{t}^{T} \left[\dot{m}_{co_2,t} \Delta \mathbf{t}_t + \mathbf{k}_{co_2,t} \left(\dot{E}_t^+ - \dot{E}_t^- \right) \Delta \mathbf{t}_t \right] \qquad [CHF/year] \tag{5}$$

Define the flows =>

Define the sizes =>

Energy and mass balances

• Heat distribution $\forall t \in \mathbf{T}$, $\forall d \in \mathbf{D}$ with $T_{d+1,t} \geq T_{d,t}$

$$\sum_{u}^{\mathbf{U}} \dot{\mathbf{q}}_{u,d} f_{u,t} - \dot{Q}_{d,t} = \varnothing \tag{13}$$

Balance demand and supply =>

$$\dot{Q}_{d+1,t}^{\text{res}} + \dot{Q}_{d,t} - \sum_{b}^{\mathbf{B}} \dot{Q}_{b,d,t} = \dot{Q}_{d-1,t}^{\text{res}}$$
 (14)

$$\dot{Q}_{d,t} = \dot{m}_{d,t} cp_d (T_{d,t}^s - T_{d,t}^r)$$
(15)

$$\dot{Q}_{0,t}^{\text{res}} = \varnothing, \quad \dot{Q}_{n_{d+1},t}^{\text{res}} = \varnothing$$
 (16)

$$\dot{Q}_{d,t}^{\text{res}} \ge \emptyset \tag{17}$$

Technology constraints and modeling equations

• Inequality constraints $\forall t \in \mathbf{T}$, $\forall u \in \mathbf{U}$

Choosing the option =>

$$\mathbf{f}_u^{\min} \mathbf{y}_u \le f_u \le \mathbf{f}_u^{\max} \mathbf{y}_u \tag{6}$$

$$f_u^{\min} y_{u,t} \le f_{u,t} \le f_u^{\max} y_{u,t} \tag{7}$$

$$f_{u,t} \le f_u \tag{8}$$

Modeling equations

 $\frac{\text{example: heat pump}}{u = \text{heat pump}}$

$$\dot{\mathbf{e}}_{u}^{+} = \frac{\dot{\mathbf{q}}_{u}^{-}}{\mathsf{COP}} \tag{9}$$

$$COP = \left(\frac{\tilde{T}^{\text{sink}}}{\tilde{T}^{\text{sink}} - \tilde{T}^{\text{source}}}\right) \eta_{\text{carnot}}$$

$$\eta_{Carnot} : \text{fitted curve } \eta_{Carnot}(T_{sink}, T_{source}, \dot{Q})$$
(10)

The heat pump COP can be calculated as a function of the temperature at each time step t and distribution system d considered:

u = heat pump, $\forall t \in \mathbf{T}$, $\forall d \in \mathbf{D}$

$$\dot{\mathbf{e}}_{u,d,t}^{+} = \frac{\dot{\mathbf{q}}_{u,d,t}^{-}}{\mathbf{COP}} \tag{11}$$

Constant for the optimisation =>

$$COP_{d,t} = \left(\frac{\tilde{T}_{d,t}^{\text{sink}}}{\tilde{T}_{d,t}^{\text{sink}} - \tilde{T}_{d,t}^{\text{source}}}\right) \eta_{\text{carnot}}$$
(12)

• Electricity balance $\forall t \in \mathbf{T}$

Flows of resources =>

$$\dot{E}_{t}^{+} - \dot{E}_{t}^{-} + \sum_{u}^{\mathbf{U}} f_{u,t} \dot{\mathbf{e}}_{u}^{-} - \sum_{u}^{\mathbf{U}} f_{u,t} \dot{\mathbf{e}}_{u}^{+} - \sum_{b}^{\mathbf{B}} \dot{\mathbf{E}}_{b,t} = \varnothing$$
(18)

• Resource and material balance $\forall t \in \mathbf{T}$, $\forall r \in \mathbf{R}$

Flows of resources =>

$$\dot{m}_{r,t} = \sum_{u}^{\mathbf{U}} f_{u,t} \dot{\mathbf{m}}_{r,u} \tag{19}$$

example: emissions of CO_2 $\forall t \in \mathbf{T}$, $r = co_2$

Flows of emissions =>

$$\dot{m}_{\text{co}_2,t}^- = \sum_{u}^{U} f_{u,t} \dot{m}_{\text{co}_2,u}$$
 (20)

The goal is to calculate the set of variables $f_{u,t}$, $y_{u,t}$, f_u , y_u , \dot{E}_t^- , \dot{E}_t^+ , $\dot{m}_{r,t}$, $\dot{Q}_{d,t}$, that minimizes the objective TOTEX.

EPFL Variables (to be calculated) and parameters (fixed)

Index and set	Description		
$t \in \mathbf{T}$	Time $\mathbf{T} = \{t_1 \dots t_{n_t}\}$		
$u \in \mathbf{U}$	Utility $\mathbf{U} = \{\text{boiler, heat pump, refrigeration,}\}$		
$r \in \mathbf{R}$	Resource R = {hydrogen, natural gas, chocolate,}		
$d \in \mathbf{D}$	Distribution system $\mathbf{D} = \{d_1 \dots d_{n_d}\}$		
$b \in \mathbf{B}$	Building $\mathbf{B} = \{b_1 \dots b_{n_b}\}$		
Parameter	Description		
t ^{op}	Total operating time per year [h/year]		
$\Delta { m t}_t$	Duration of time interval t [h]		
$c_{r,t}$	Specific cost of resource r at time t [CHF/kg]		
$c_{e,t}^+$	Price for purchased electricity at time t [CHF/kWh]		
$c_{e,t}^{-}$	Price for sold electricity at time t [CHF/kWh]		
c_u^{inv1}	Fixed investment cost of utility u [CHF]		
c_u^{inv2}	Variable investment cost of utility u [CHF/size]		
$egin{array}{l} \mathbf{c}_{r,t} & \mathbf{c}_{e,t}^+ & \mathbf{c}_{e,t}^- & \\ \mathbf{c}_{e,t}^- & \mathbf{c}_{u}^{ ext{inv1}} & \mathbf{c}_{u}^{ ext{inv2}} & \mathbf{c}_{u}^{ ext{tmt}} & \mathbf{c}_{u}^{ ext{tmin}} & \mathbf{f}_{u}^{ ext{min}} & \mathbf{f}_{u}^{ ext{max}} & \mathbf{f}_{u}^{$	Maintenance specific cost of utility per yea u [CHF/size/year]		
$\frac{1}{\tau}$	Annualization factor of investment [1/year]		
\mathbf{f}_u^{\min}	Minimum sizing factor of utility u [-]		
$\mathbf{f}_u^{ ext{max}}$	Maximum sizing factor of utility u [-]		
$\mathbf{k}_{co_2,t}$	CO_2 equivalent emissions of the grid at time $t [ton_{co_2}/kWh]$		
$\dot{\mathrm{m}}_{r,u}$	Reference mass flow of resource r in utility u [kg/s]		
$\dot{\mathtt{q}}_u^-$	Reference heat load produced by utility u [kW]		
$egin{array}{l} \dot{\mathbf{q}}_u^- \ \dot{\mathbf{q}}_u^+ \ \dot{\mathbf{e}}_u^- \ \dot{\mathbf{e}}_u^+ \end{array}$	Reference heat load consumed by utility u [kW]		
$\dot{\mathtt{e}}_u^-$	Reference electrical power produced by utility u [kW]		
$\dot{\mathtt{e}}_u^+$	Reference electrical power consumed by utility u [kW]		
$\mathrm{T}_{d,t}$	Logarithmic mean temperature of the distribution system d at time t [K]		
$T^s_{d,t}$	Supply temperature of the distribution system d at time t [K]		
$T^r_{d,t}$	Return temperature of the distribution system d at time t [K]		
$\dot{ ext{m}}_{d,t}$	Mass flow in the distribution system d [kg/s]		
cp_d	Heat capacity of the fluid in the distribution system d [kJ/K/kg]		
$\dot{\mathbf{q}}_{u,d}$	Reference heat load of utility u fed in the distribution system d [kW]		
$\dot{\mathbf{Q}}_{b,d,t}$	Heat load demand of building b at time t in the distribution system d [kW]		
$\dot{\mathrm{E}}_{b,t}$	Electricity consumption of building b at time t [kW]		
COP	Coefficient Of Performance of the heat pump [-]		
$ ilde{ ext{T}}_{sink}$	Logarithmic mean temperature of the heat sink of the heat pump [K]		
$ ilde{ ext{T}}_{source}$	Logarithmic mean temperature of the heat source of the heat pump [K]		
n	Carnot efficiency [-]		

<= SETS : are groups of the same type and scopes in the problem

Variables => min and max bounds

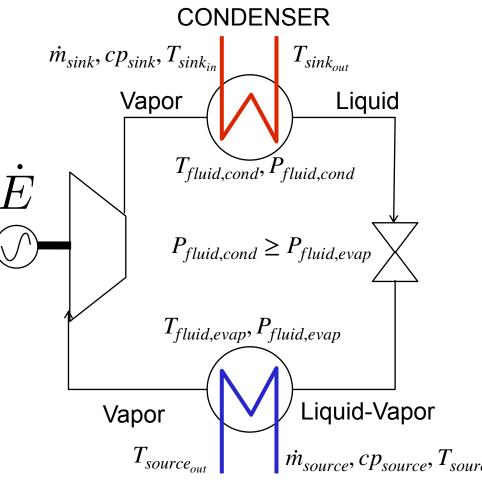
Variable	Description		
f_u	Sizing factor of utility u [-]		
$f_{u,t}$	Sizing factor of utility u at time t [-]		
y_u	Binary variable to use or not utility u [-]		
	Binary variable to use or not utility u at time t [-]		
\dot{E}_t^+	Purchased electrical power at time t [kW]		
\dot{E}_t^-	Sold electrical power at time t [kW]		
$\dot{m}_{r,t}$	Mass flow of resource r at time t [kg/s]		
$\dot{Q}_{d,t}$	Total utility heat load at time t in the distribution system d [kW]		
$egin{array}{l} egin{array}{l} egin{array}{l} egin{array}{l} \dot{E}_t^+ \ \dot{E}_t^- \ \dot{m}_{r,t} \ \dot{Q}_{d,t} \ \dot{Q}_{d,t} \end{array}$	Heat load cascaded from distribution system d to $d+1$ at time t [kW]		

<= Parameters calculated before solving the MILP problem

EPFL CAPEX energy conversion system [CHF/year]

CAPital EXpenditure

$$CAPEX \quad [CHF/year] = \sum_{u=1}^{n_u} \frac{1}{\tau_u} \cdot i_{u_{\dot{Q}_u,max}} \cdot \dot{Q}_{u,max}$$

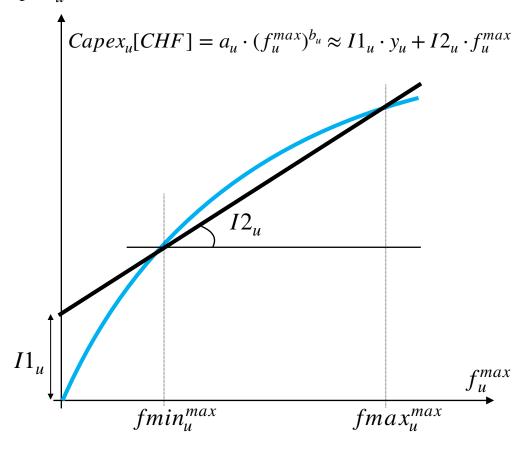

- $oldsymbol{i}_{u_{\dot{Q}_{u,max}}}$ [CHF/kW] specific investment of unit u for size $\dot{Q}_{u,max}$
 - $\dot{Q}_{u,max} = \max_{t \in lifetime} (\dot{Q}_{u,t})$ [kW] size of unit u
 - MILP problem representation : $\dot{Q}_{u,t} \cdot f_{u,t} \leq \dot{Q}_{u,max}$ $\forall t$

$$\frac{1}{\tau_u} = \frac{1}{\tau(i, lifetime_u)}$$
 [year⁻¹]: annualisation factor of unit u

Sizing : condenser, evaporator & compressor

EVAPORATOR

Calculating $i_{u_{\dot{Q}_{u,max}}}$


$$\begin{split} \dot{Q}_{u,t} &= \dot{Q}_{sink,t} = \dot{m}_{sink,t} \cdot cp_{sink} \cdot (T_{sink_{out},t} - T_{sink_{in},t}) \\ \dot{Q}_{sink,t} &= \dot{m}_{fluid,t} \cdot (h(T_{fluid,cond_{in},t}, P_{fluid,cond_{in},t} - h(T_{fluid,cond_{out},t}, P_{fluid,cond_{out},t}) \\ A_{condenser} &= \max_{t \in lifetime} ((\frac{1}{u_{sink}} + \frac{1}{u_{fluid,cond}}) - \frac{\dot{Q}_{sink,t}}{\frac{(T_{fluid,cond,t} - T_{sink_{in},t}) - (T_{fluid,cond,t} - T_{sink_{out},t})}{\frac{(I_{fluid,cond,t} - T_{sink_{in},t}) - I_{fluid,cond,t} - T_{sink_{out},t})}{\frac{(T_{source_{out},t} - T_{sink_{in},t}) - I_{fluid,cond,t} - T_{sink_{out},t})}{\frac{(T_{source_{out},t} - T_{fluid,evap,t} - (T_{source_{in},t} - (T_{fluid,evap,t}))}{\frac{(T_{source_{out},t} - T_{fluid,evap,t} - (T_{source_{in},t} - T_{fluid,evap,t})}{\frac{(T_{source_{out},t} - T_{fluid,evap,t} - T_{fluid,evap,t}) - I_{fluid,evap,t})}} \\ \dot{Q}_{source,t} &= \dot{m}_{source,t} \cdot cp_{source} \cdot (T_{source_{in},t} - T_{source_{out},t}}) \\ \dot{Q}_{source,t} &= \dot{m}_{fluid,t} \cdot (h(T_{fluid,evap_{out},t}, P_{fluid,evap_{out},t} - h(T_{fluid,evap_{in},t}, P_{fluid,evap_{in},t})}) \\ \dot{Q}_{source,t} &= \dot{Q}_{sink,t} - \dot{E}_{u,t} \end{split}$$

 $CAPEX_{u} = \frac{1}{\tau} (I_{HTX}(A_{condenser}) + I_{HTX}(A_{Evaporator}) + I_{compressor}(\dot{E}_{max}))$ TOCCESS

EPFL Investment linearised

$$CAPEX[CHF/year] = \sum_{u=1}^{n_u} \frac{1}{\tau(n_{y,u}, i)} (I1_u y_u + I2_u f_u^{max})$$

$Capex_u[CHF]$

$$fmin_u^{max} \cdot y_u \le f_u^{max} \le fmax_u^{max} \cdot y_u$$

$$f_{u,t} \le f_u^{max} \quad \forall t \in periods$$

Options for the building b

- $_{\bullet}$ The building b has n_{o_b} options to suppl the heat (e.g. air heat recovery)
 - \bullet Heat load of the building on distribution system d

$$\dot{Q}_{b,d,t} = \sum_{o_b}^{n_{o,b}} y_{o_b} \cdot \dot{Q}_{o_b,d,t}$$

• Choosing the option

$$\sum_{o_b}^{n_{o_b}} y_{o_b} = 1$$

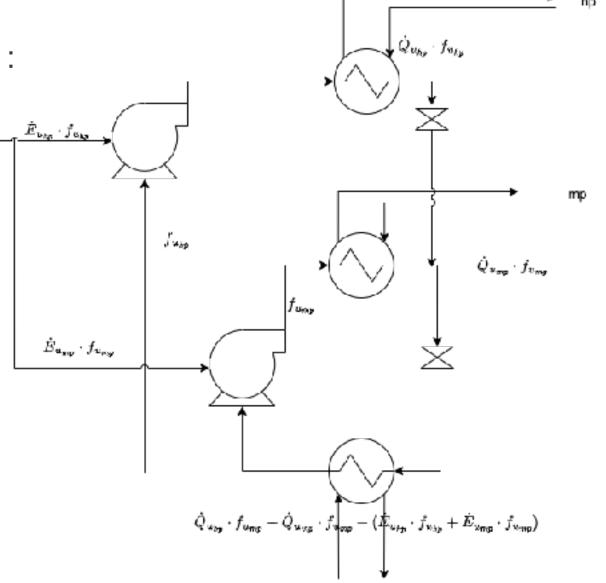
• Electricity consumption $n_{o,b}$

$$\dot{E}_b = \sum_{o_b}^{n_{o,b}} y_{o_b} \cdot \dot{E}_{o_b,t}$$

$$\dot{E}_b = \sum_{o_b}^{n_{o,b}} y_{o_b} \cdot \dot{E}_{o_b,t}$$
• Capital cost
$$CAPEX_b = \sum_{o_b}^{n_{o_b}} CAPEX_{o_b} \cdot y_{o_b}$$

EPFL Option for multi-stage heat pump

Heat supplied by u on distribution level d :


$$\dot{Q}_{u,d,t} = f_{u_d,t} \cdot \dot{Q}_{u_d,hp,t}$$

• Electricity in the compressor of u :

$$\dot{E}_{u,t} = \sum_{d}^{u,t} f_{u_d,t} \cdot \dot{Q}_{u_d,d,t} \cdot COP_{u_d,d,t}$$

- Size of the unit $u: \dot{E}_u^{max} \ge \dot{E}_{u,t}$
- CAPEX of unit u :

$$CAPEX_{u} = \frac{1}{\tau_{u}} \cdot (I1_{u} \cdot y_{u} + I2_{u} \cdot \dot{E}_{u}^{max})$$

EPFL

Multi objective optimisation with MILP problem

- As the cost of energy is really uncertain, it is difficult to claim that there is one cost optimal solution
- What if government is imposing a CO2 tax ?

EPFL Generating ordered list of system configurations

- Integer cut constraint on the equipment set $\{y_u\}$
 - assuming that we know already the solution k
 - The problem k + 1 is defined by adding to the previous MILP problem the integer cut constraint

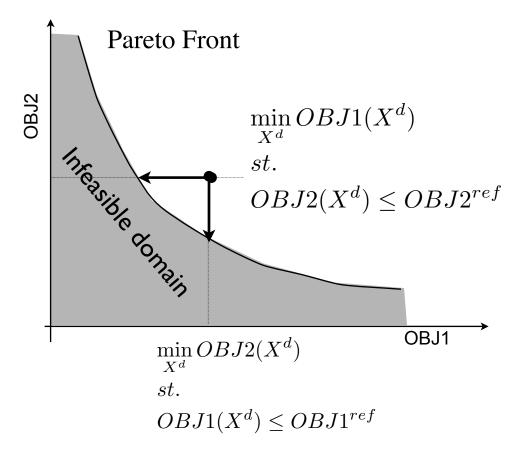
 $Problem^{k+1}:$

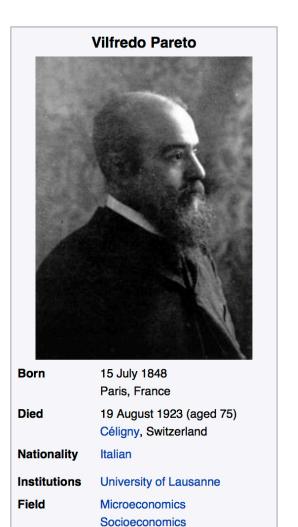
 $Problem^k$

$$\sum_{i=1}^{n_y} (2y_i^k - 1) * y_i \le \sum_{i=1}^{n_y} y_i^k$$

where y_i^k value of y_i in solution of problem k

EPFL Example of multi-objective optimisation


- Cost of reducing the emissions
 - OBJ1 = total cost
 - OBJ2 = emissions
- Investment to increase the renewable energy usage
 - OBJ1 = investment
 - OBJ2 = RES
- Thermo-economic trade-off
 - OBJ1 = investment
 - OBJ2 = operating cost



EPFL Multi objective optimization

Trade-off between one objective and another one

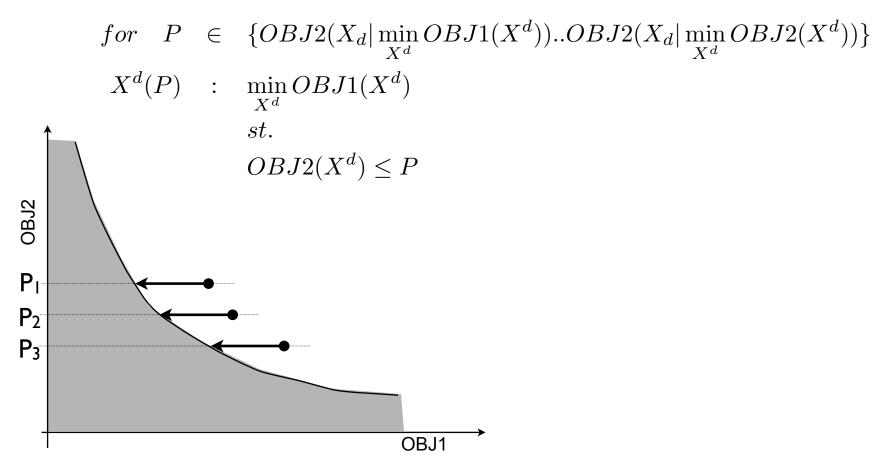
Generation of the Pareto Front

source: wikipedia

EPFL Muti-objective optimisation

- Single objective parametric
 - Weighting factor

$$X_d(w) : min_{X_d}(1 - w) \cdot OBJ_1(X_d) + w \cdot OBJ_2(X_d)$$
$$\forall w \in [0, 1]$$


Note: if OBJ1 is a cost function

$$\frac{w}{1-w}$$
 is a tax on $OBJ_2(X_d)$

e.g. CO₂ tax if OBJ₂ is the CO₂ emissions and OBJ₁ the total cost

EPFL Parametric programming

Note: the Lagrange multiplier of the inequality constraints gives the slope of the Pareto curve

