E P II: L Mechanical Engineering

Industrial Process and Energy Systems Engineering

Rosmose

by
IPESE

2024-09-17

Professor: Prof. Francois Maréchal

B School of Engineering

Table of contents

Rosmose
Rosmose engine

I Introduction
Installation

Basics e
Chunk manager L
Category e
FUNCTIONALITY and ARGUMENTS,

Il Categories functionalities and usage

Tags functionalities
Create Tags o o e
Display Tags
Save Tags
Load Tags e

Model functionalities
Create Model e
Define Model inputs
Define Model outputs L
Define Model interfaces
Reset Inputs
Display Model inputs
Display Model outputs
Solve Modelo

Solve vali model locally with an input file

ROsmose functionalities
Create an Energy Technology (ET)
Add Layersto ET
Add units to ET

TABLE OF CONTENTS

Add parameters to units of ETo 18
Add Resource Streams to Unit 18
Add Heat Streams to Unit 18
Display ET 19
Superstructure Heat Pump 20
Superstructure Steam Network 23
Solve optimization 25
Solve options L 26
Generate ET Lua file from chunk 26
Generate frontend Lua file from chunk 26
1l Appendix 28
Calculation of thermodynamic properties in Coolprop’s Python library in Rmarkdown 29
Coolprop library for Pythonin Rmd 29
The State class: all the thermodynamic properties in one Python object 30
Saving data into and retrieving data from a JSONfile. 34
Using State function together with other Python libraries for solving systems of equations 35
Citation of Coolprop software 37
Other examples using Python in Rmarkdown’s Reticulate 37
Graphical representations using Python oL 38
How to install libraries that are not yet installed in the Python virtual environment of
Rmarkdown 41
Logical and mathematical operators in Rosmose language 42
Syntax errors to be avoided 43

CoMmMMON ErIrOFS o o 45

Rosmose

ROSMOSE is a meta-language created to generate energetical optimization problems. This
tool is based on the RMarkdown ecosystem, and allows users to turn their work to a powerfull
report or presentation. The idea of this ecosystem is to execute computer code chunks embedded
in Markdown to latter render output format such as PDF, HTML, LaTeX and so on.

Rmarkdown is a report writing tool that has been developed to make science reproducible.

Compared with conventional reporting in which data are treated as characters and figures as
images, an Rmarkdown report includes in the same report document, the text, the raw data, the
data processing (calculation made with the data) and the plotting instructions to generate the
figures. The report, the figures and the calculation results are therefore generated on the basis of
the raw data considered for your investigation.

Rmarkdown projects can have different forms like :

= A short notice report
= A website like the one you are reading here
» A book compiled using the bookdown package that is built by assembling rmarkdown files

https://rmarkdown.rstudio.com/articles_intro.html
https://bookdown.org

ROSMOSE ENGINE

= A scientific paper to be built using the rticles R package with pre-formated paper format
from various publishers
= A blog post website.

Any Rmarkdown report can be built by assembling collection of child documents (use the rchild
command). This allows to have in the same folder and in a collection of document the content of
the report and all the data needed to generate it.

Rosmose engine
Rosmose technology allows users to:

= define problems

= define energy technologies

= call external energetical software
= solve optimisation problems

The idea here was to create a meta-language also called engines to base the computer code
into energetic related jobs.

ROSMOSE is a package witten in python that can be found on https://gitlab.epfl.ch/
ipese/osmose/tools/pyxosmose and use with reticulate in the RMarkdown ecosystem.

NOTE : This documentation is valid for the rosmose (pyxosmose) library with the
version 1.12.7

https://pkgs.rstudio.com/rticles/
https://gitlab.epfl.ch/ipese/osmose/tools/pyxosmose
https://gitlab.epfl.ch/ipese/osmose/tools/pyxosmose

PART

Introduction

Installation

To use the rosmose library, you can create a RMarkdown file and load

o {r}

source("https://ipese-internal.epfl.ch/rscripts/rosmose-setup.R", local = knitr::knit_gl

That's it.

Basics

There is 3 main categories in rosmose.

1. MODEL that allows you to communicate with external software like (vali, aspen, ...)
2. OSMOSE that design the energy technology with layers, streams, units and solve the

optimization
3. TAGS that is the concept of energetics variables (every model input or output is a tag)

Before going in deep with those categories, let's try to understand how rosmose works
To call rosmose functionalities you will need to use special chunks name

*“{rosmose}

The first line will explain what you want to do to ROSMOSE. The first line looks like following:

>~ {rosmose}
: MODEL INPUTS mymodel

Here we can see 4 elements in the first line:

1. The CHUNK MANAGER, represented by the : sign

2. The CATEGORY, in this example, the MODEL category

3. The FUNCTIONALITY, here we tells rosmose to define INPUTS

4. ARGUMENTS, in this case mymodel that is the model name defined.

Chunk manager

The chunk manager tells the system what to do with the information in the chunk. It's define by a

special character

char Description

Execute the functionality and report the content
Execute the functionality without reporting it
Comment the entire chunk

CATEGORY

Category

The category is defined in the second position of the first line and uppercase

Category Description

MODEL Tells rosmose to use external software functionalities
OSMOSE Tells rosmose to use osmose functionalities
TAGS Tells rosmose to use TAGS functionalities

FUNCTIONALITY and ARGUMENTS

The functionalities tells rosmose what to do with the information bellow the first line. As
functionalies can need arguments, we also have arguments starting from there but not mendatory. As
the functionalities depend on the category, everything will be detailed in the categories functionalities

section, with the possible arguments.

PART

Categories functionalities and usage

Tags functionalities

TAGS is the variable concept of rosmose. As rosmose is a meta-language for generate energetic
systems, a variable is not a simple value but an object containing at least:

* a name
= avalue

= 3 physical unit
= 3 description

for example a energetic value can not be 10 but has to be

temperature_input 10 C with the description: temperature input for heat pump.

Create Tags

As TAGS is the main concept and calculation language in rosmose, you dont need to put any
special first line instruction to create TAGS.
You can create TAGS with the structure

tag_name = tag_value [tag_physical_unit] # tag_description

Let's create a tag
*> " {rosmose}
my_variablel = 2503 [C] # that's my third variable

Currently we need to create tags that are the result of a calculation.

“* " {rosmose}
my_variable2 = (20 + 10) / (100 + 2)*2

Those calculation can also be done with the value of another TAG. To do this, we can specify
the value of the TAGS by surround the TAG name between percentage signs like: %tag_name’,.
That means that we can create more complex tags as following:

DispLAYy TAGS

{rosmose}
my_variable3 = (10 + Ymy_variablely * Ymy_variable2), + 4 /2 *100) / 2000

Display Tags

As explained earlier, ROSMOSE and RMarkdown ecosystem allows user to not only execute code
chunks, but also generate a report. That's why Tags also have a functionality to present TAGS in
your report.

To display tags, we call the category TAGS with the functionality DISPLAY_TAGS and give the
table value as argument. This argument is not mendatory and its written with the [nvuc] style.
That means display the tags in a table with the columns:

= n (name)

= v (value)

= u (physical unit)

= c or d (comment/description)

* >~ {rosmose}
: TAGS DISPLAY TAGS [nvD]

It's possible that you will have a lot of TAGS and you only want to display only a few of them.
You can do so by adding the names of the desired tags in the chunk content as following:

*> " {rosmose}
: TAGS DISPLAY TAGS [nvD]

my_variablel
my_variable2

Save Tags

It's possible to persist tags in order to reload them without recreating them. To save tags, we call
the category TAGS with the functionality SAVE

*> " {rosmose}
I TAGS SAVE

Load Tags

You can reload Tags that have been saved by calling the category TAGS with the functionality LOAD
as following

LoaAD TAGs

{rosmose}
I TAGS LOAD

10

Model functionalities

As explained earlier, MODEL is the category used to call external software. The usage of MODEL
works as following:

1. Define the model by giving a name, a software and a path to this model
2. Define inputs and outputs.
3. Solve the model

The model will be solved with the values of the inputs defined and the outputs that you want
to retrieve after the solve.

Every inputs and outputs are TAGS and can be reused as that.

Let's check how to create the model.

Create Model

For creating a model we dont need to add a special functionaly in the first line, only a model name.
It is follow by a markdown table containing a column software, a column location and a column for
comments. - The software column is needed to tell rosmose which software to use for the model
name. - The location column tells the software model path - The comment column allows user to
add comments.

It looks like this:

*>~{rosmose}
: MODEL myModelName

Software	Location	Comment
g===[g===	g====	
ASPEN	model/myNREL_DAP . bkpl	

In this example, we create a model with the name myModelName that will use ASPEN as external
software and use the model myNREL_DAP . bkp file that is stored in the model folder.
Available Software :

= ASPEN
= VALI

DEFINE MODEL INPUTS

Define Maodel inputs

To define the model inputs, we call the category MODEL with the functionality INPUTS and give

the model name as argument.

The first line is followed by a markdown table containing:

= the tag name of the model (the model value that you want to update)

= the value of the tag name that will be updated

= the physical unit of the input

= a comment to explain what is this tag

In the case of a MODEL using ASPEN, we need to give a path that define where the tag is

placed in the model.

{rosmose}
: MODEL INPUTS myModelName

| g === [
| | /Data/Streams/516/Input/TOTFLOW/MIXED

| Pressure | /Data/Streams/516/Input/PRES/MIXED
| |

Total_flow

Temperature

In the case you are using another software you can just remove the path column

{rosmose}
: MODEL INPUTS myNotAspenModel

| Name | Value | Units
| === | === 3| g
| value_1 | 24846 | kg/hr

| value_2 | 204 | C

| value 3 | 1.4 | C

Comments

/Data/Streams/516/Input/TEMP/MIXED

Value |
I
36340 |
6.1 |

114 |

Units

kg/hr
atm
©

NOTE: Every time you will rerun a chunk that creates input for a model, it will update
the inputs with the same name and create new inputs for the none existing ones.

Define Model outputs

Comments

Outputs are the values that you want to retrieve after solving a MODEL. That works as the INPUTS

but without a value column as we don't have this information.

For defining outputs, we call the category MODEL with the functionality OUTPUTS and give the

model name as argument.

12

DEFINE MODEL INTERFACES

{rosmose}
: MODEL OUTPUTS myModelName

| Name | Path | Units
) g===—mmmem= | R — | —=————-:
| dryfeed_in | /Data/Streams/105/0utput/RES_MASSFLOW | kg/hr
| acid_in | /Data/Blocks/A200/Data/Streams/232S/0utput/MASSFLOW/MIXED/H2S04 | kg/hr
| wi | /Data/Blocks/A200/Data/Streams/211/0utput/MASSFLOW/MIXED/H20 | kg/hr
| w5 | /Data/Blocks/A200/Data/Streams/274/0utput/MASSFLOW/MIXED/H20 | kg/hr
| w2 | /Data/Blocks/A200/Data/Streams/516/0utput/MASSFLOW/MIXED/H20 | kg/hr
| w3 | /Data/Blocks/A200/Data/Streams/215/0utput/MASSFLOW/MIXED/H20 | kg/hr
| wé | /Data/Blocks/A200/Data/Streams/216/0utput/MASSFLOW/MIXED/H20 | kg/hr

If you use a model different to ASPEN, you can remove the column path
>~ {rosmose}
: MODEL OUTPUTS myNotAspenModel

| value 5 |
| value 6 |

|

: : |
| value_4 | kg/hr |
|

|

Define Model interfaces

The interfaces concept allows user to define inputs and outputs using a special language.

The inputs are define with the >> sign and outputs with the << sign. Interfaces are define as
following

Inputs interfaces are defined like this

tag_name >> 505 [C] # comment

and outputs like
tag_name << [C] # comment

In the case of a model that is using ASPEN, you need to define inputs and outputs interfaces
with the path as

tag_name >> /Data/Streams/516/Input/TOTFLOW/MIXED = 101 [kg/hr] # this is a comment
tag_output << /Data/Blocks/A200/Data/Streams/216/0utput/MASSFLOW/MIXED/H20 [kg/hr] #

13

RESET INPUTS

that can be translated as put the tag_name variable in the path /Data/Streams/516/Input/TOTFLOW/MIXE
with the value 101, with the physical unit kg/hr and a comment this is a comment.

Example :
*~“{rosmose}
! MODEL INTERFACES myModelName

Total_flow >> /Data/Streams/516/Input/TOTFLOW/MIXED = 36340 [kg/hr] # that's a comment
Pressure >> /Data/Streams/516/Input/PRES/MIXED = 6.1 [atm]
Temperature >> /Data/Streams/516/Input/TEMP/MIXED = 114 [C]

dryfeed_in << /Data/Streams/105/0utput/RES_MASSFLOW [kg/hr] #

acid_in << /Data/Blocks/A200/Data/Streams/232S/0utput/MASSFLOW/MIXED/H2S04 [kg/hr] #

wl << /Data/Blocks/A200/Data/Streams/211/0utput/MASSFLOW/MIXED/H20 [kg/hr]

wb << /Data/Blocks/A200/Data/Streams/274/0utput/MASSFLOW/MIXED/H20 [kg/hr] #

w2 << /Data/Blocks/A200/Data/Streams/516/0utput/MASSFLOW/MIXED/H20 [kg/hr] #
#
#

e

w3 << /Data/Blocks/A200/Data/Streams/215/0utput/MASSFLOW/MIXED/H20 [kg/hr]
w4 << /Data/Blocks/A200/Data/Streams/216/0utput/MASSFLOW/MIXED/H20 [kg/hr]

Reset Inputs

As said in a NOTE before, everytime you rerun a chunk that creates input for a model, it will
update the inputs with the same name and create new inputs for the none existing ones. Sometimes
we want to reset the inputs in order to redefine all the inputs of our model. In this case, you can
use the RESET-INPUTS functionality for recreating new inputs after. This functionality is written
as following:

*> " {rosmose}

! MODEL RESET-INPUTS myModelName

NOTE: This functionality also exists for outputs with the RESET-0UTPUTS functionality
calls

Display Model inputs

There is a functionality that allows you to display the inputs of a specific model. This functionality
can be useful when you define inputs and outputs with the interfaces language as it is used as a
programming language.

To display model inputs, we call the category MODEL with the functionality DISPLAY_INPUTS
and give the model name as argument. You can give a second argument that define which value
you want to display.

14

DispLAY MODEL OUTPUTS

{rosmose}
: MODEL DISPLAY_INPUTS myModelName [nvd]

Display Model outputs

There is also a MODEL functionality that allows you to display all the model outputs. To do this,
we call the category MODEL with the functionality DISPLAY_INPUTS and give the model name as
argument. As for displaying MODEL INPUTS You can give a second argument that define which
value you want to display with the [nvuc] type.

{rosmose}
: MODEL DISPLAY_OUTPUTS myModelName [nvd]

As this will display the model outputs, and the values will only be calculated after solving the
model, this functionality is useful after the solve functionality. let's check that.

Solve Model

For solving the model, we call the category MODEL with the functionality SOLVE and give the model
name as argument.

* >~ {rosmose}
! MODEL SOLVE myModelName

This functionality will call the external software with the model file, the inputs data and the
defined outputs data. This call will be done by calling external servers.

['] NOTES: those servers are in the epfl network and can only be called when you are
in this network (epfl network or vpn).

Solving models can take time and it's interesting to know that, as every inputs and outputs
of models are TAGS, you can use the TAGS SAVE and LOAD functionality to avoid having to
restart the calculation every time.

It is also possible to solve the MODEL locally, of course, if the software is installed on the
user computer. To use this functionality, you can use the SOLVE-LOCAL keyword instead of the
normal SOLVE one.

Solve vali model locally with an input file

In some cases, the input of vali can be given or shared as a .txt / .mea file. Rosmose can run vali
model with an input file by calling the functionality SOLVE-LOCAL with the following arguments:

= model name

15

SOLVE MODEL

= input file path
1. Create the model object

* >~ {rosmose}
: MODEL myValiModel

|Software|Location| Comment |

| VALT |model/model .bls]| |

2. Define the outputs if you dont want all

{rosmose}
: MODEL OUTPUTS myValiModel

|
: |
value_4	kg/hr
value 5	C
value 6	C

3. Solve the model with the input path as parameter

**“{rosmose}
! MODEL SOLVE-LOCAL myValiModel model/my_inputs_file.txt

You can now use the outputs tags for further calculation or usage.

['] NOTES: This functionality is at the moment only available for VALI with the
SOLVE-LOCAL functionality. Also consider that the inputs are not saved as TAGS.

16

ROsmose functionalities

Create an Energy Technology (ET)

* > {rosmose}
: OSMOSE ET myET

| Property | value |

| === Jg==—— I
| capex_weight_factor | 0.4 |
| co2 tax | O |

NOTES: you can put tags value in the value column with the %tag_name, percentage
style

Add Layers to ET

~~~{rosmose}
: OSMOSE LAYERS myET

| Layer | Display name | shortname | Unit | Color |
| immmmmm - | == | === | im=——- | e |
| NATURAL_GAS | Natural Gaz | ng | XW | green |
| ELECTRICITY | Electricity | elec | kW | yellow |

Add units to ET

* >~ {rosmose}
: OSMOSE UNIT myET

| unit name [type |



ADD PARAMETERS TO UNITS OF ET

| myProcessUnit |Process|
| myUtilityUnit |Utility]

Add parameters to units of ET

{rosmose}
: OSMOSE UNIT_PARAM myProcessUnit

costl | cost2 | cinvl | cinv2 | impl | imp2 | fmin | fmax |

0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

NOTES: you can put tags value every column with the %tag_name, percentage style

Add Resource Streams to Unit

{rosmose}
: OSMOSE RESOURCE_STREAMS myProcessUnit

|layer |direction|valuel

| immmmmm - |t == | :———-1
INATURAL_GAS| in 2.5 |

NOTES: you can put tags value in the value column with the %tag_name, percentage
style

Add Heat Streams to Unit

{rosmose}
: OSMOSE HEAT_STREAMS myProcessUnit

name | Tin |Tout| Hin | Hout | DT min/2 |alpha]

cl | 10 | 11 ] O | 200 | 1 | 1 |
c2 | 24 | 43 | 0 | 20 | 12 | 1 |
c3 | 25 [165 | O | 130 | 2 [0.5 |

0 0 > 0 — —

NOTES: you can put tags value in Tin, Tout, Hin, Hout, DT min/2 and alpha column
with the %tag_name} percentage style

18



DispLay ET

Display ET

You can create a graphical representation of every units of the Energy Technology by calling
the functionality DISPLAY_ET of the category OSMOSE. This takes the name of the et as

arguments.
* >~ {rosmose}
OSMOSE DISPLAY_ET myET

this function will create an svg file for displaying it in html output and pdf for displaying it in
pdf file. The output will looks like this:

Electricity_buy
Costs:
Op1: 0 1 [kW] Electricity
Op2: 0.03
Inv1: 0
Inv 2: 0
NGas_buy
Costs:
Op1: 0 1 [KW]  INafiralGa
Op2: 0.09
Inv1: 0
Inv 2: 0
HotUtllity
Heat:
350C 1kW 350C
Costs:
Opt: 0
1.25 [K Op2: 0
Inv 1: 0
Inv 2: (1]

0.42[kW] CoolingWater
Heat:

15C 21kWw 20C

Costs:
Op1i: 0
Op 2: 0.0144
Inv1: 0
Inv 2: 0
processi
Heat:

10C 200kW 11 C
24C 20kW 43C
25C 130kW 114C

Costs:
Op1i:
Op 2:
Inv 1:
Inv 2:

o o oo

19



SUPERSTRUCTURE HEAT PuMmP

Superstructure Heat Pump

{rosmose}

! OSMOSE SUPERSTRUCTURE HEATPUMP heatpump_ss

: OSMOSE FLUIDS refrigerator_ss

|[Fluid

| IsoButane
|Methane
|Ethylene
|water

| Ammonia
|In-Propane
|R1234yf
|Propylene
|R32
|Ethane

| CarbonDioxide

|R245fa
|R1233zd (E)
|R1234ze(Z)
|[R1234ze (E)
|R365MFC
|n-Pentane
| Isopentane
|n-Butane
|R134a
|[R152a

| Parameter

| g [ :=——=
| Temperatures |50

| SuperheatDT
| SubcoolingDT |2
| CompressorDT |2
|2
l1

DT

|[MixForceUse

{rosmose}
: OSMOSE TEMPERATURES heatpump_ss

|2

|Unit

| Comment

|Evaporation and condensation temperatures|

| Superheating temperature difference
IMinimum temperature difference contrib

| Superheating temperature difference
[Minimum temperature difference (dTmin/2)
|Sensible heat contained

20



SUPERSTRUCTURE HEAT PumpP

{rosmose}
: OSMOSE LAYER heatpump_ss

|Balance_type |LayerOfElec |Supercriticall
| immmmmmm - | immmmm - |immmmm - I
|ResourceBalance |Elec | no
**“{rosmose}

: OSMOSE COMPRESSORS_PARAMS1 heatpump_ss

|[Fmin |Fmax |Invl |Inv2 |

|0 [100 126143 [2172.7|

{rosmose}
: OSMOSE COMPRESSORS_QUANTITY heatpump_ss

|Per fluid |Per model |Per cluster |

~ s~

{rosmose}
: OSMOSE COMPRESSORS_EFFICIENCY heatpump_ss

|[Efficiencyl

{rosmose}
: OSMOSE COMPRESSORS_SIZING heatpump_ss

|Param  |Min | Max |Unit| Comment |
| immm—- | immm- | immm I I
|size | 7 500 |kW |Compressor size | |
|pressure| 1.5 | 20 |bar |Range cost linear |
|ratio | 1.2 | 7 |- |Pressure ratio |

21



SUPERSTRUCTURE HEAT PumpP

{rosmose}
: OSMOSE COMPRESSORS_SELECTION heatpump_ss

select >> 0 [-] # Activate selection

linearize >> {10,100} [kW] # Linearize cost between this range

f corr >> 1 [-] # Cost corr factor

ctype >> {1,2,5} [-] # Type of compressor: {l1-liquid_ring, 2-mono_screw, 3-twin_screw, 4
mstages >> 0 [-] # Apply max number of stages per casing: 1-yes, O-no

{rosmose}
: OSMOSE HEX_PARAMS1 heatpump_ss

|Component |Fmin |Fmax [Invl |[Inv2 |

| Evaporator |0 [100 | 1] 2|
|Condenser |0 100 | 3| 4|
~~~{rosmose}

: OSMOSE HEX_PARAMS2 heatpump_ss

| Param |Value |Unit | Comment

[| g | R ———————~ |
|U | 1 | W/m2K | Heat transfer coefficient

|aT | 10 | K | Minimum temperature difference

la | 500 | Euro | Cost multiplication coefficient

b | 0.8 | - | Cost power coefficient |
[Min | 100 | kW | Minimum size of heat exchangers

| Max | 1000 | kW | Maximum size of heat exchangers

|force | 0 | - | Binary {0,1} to force the sizing of HEX |
|DSH | 0.2 | = | Percent use of desuperheating 7% of a condensation level |
*>"{rosmose}

: OSMOSE VALVES_PARAMS heatpump_ss

[Min |Max |Unit |Comment I
8] g | [S |
[0.5 120 |bard |differential pressure]

{rosmose}
: OSMOSE VESSELS_PARAMS heatpump_ss

22

SUPERSTRUCTURE STEAM NETWORK

|Vessel |Fmin | Fmax | Comment I
| === | immm- | immm | immmmm - I
|FlaD [0 [100 |Flash Drum I
[MixS [0 100 |IMix separator|
IDSHQ |0 1100 |Desuperheater |

Superstructure Steam Network

{rosmose}
! OSMOSE SUPERSTRUCTURE STEAMNETWORK steamnetwork_ss

{rosmose}
: OSMOSE FLUID steamnetwork_ss

fluid >> R365mfc [-] # Fluid selected from the fluid list

~ s~

{rosmose}
: OSMOSE LEVELS steamnetwork_ss

|Parameter L1 L2 L3 L4 L5 |Unit |Comment

| g==——mmmmeee== | g====== | g====== | g====== | g====== | g====== e B e — —— — ——————

|Pressure [1.95632|1.00081|0.56420|0.56420]|0.56420| bar |Pressure levels defined f

|layerofpressure|pl |p2 |p3 | p4 | p5 | = |Layer of pressure

| Temperature |60 | 40 |25 |25 |25 | C |Temperature level, only i

| isturbine [1 [0 [0 [0 |0 | - |Activate turbine at the r

|issteam l1 |0 |0 |0 |0 | - |Activate steam generation

| superheatdT |20 |4 |3 |2 [1 | K |Superheating temperature
|

|layerofdrawoff |droffpl|droffp2|droffp3|droffp4|droffpb

|Layer of draw off for ste

{rosmose}
: OSMOSE DT steam_network_name

|Parameter |DT |Unit |Comment
| :m————————- | :——— | :=————- lfe?iiiiiiiiii i i oo oo

| gas [15 |K Minimum temperature difference contribution related to the ga

I
[liquid |5 |K | Minimum temperature difference contribution related to the 1i
| phasechange |2 |K | Minimum temperature difference contribution related to the ph
|global |10 |K | Minimum temperature difference contribution for the global sc

23

SUPERSTRUCTURE STEAM NETWORK

{rosmose}
: OSMOSE HTCOEFF steamnetwork_ss

| Type |htc |Unit |
|immmmmm - | immmmmm - | :m===—- I
|gas [0.06 | kW/m2K |
|liquid 10.56 | kW/m2K |
| condensing 1.6 | kW/m2K |
| vaporising 3.6 | kW/m2K |
* " {rosmose}

: OSMOSE EFFICIENCY steamnetwork_ss

|Efficiency |Value |
| == - | == |
|eff_backpr_turb|0.90 |
|eff _cond_turb [0.95 |
|eff_pump 10.80 |

{rosmose}
: OSMOSE SIZING steamnetwork_ss

|Equipment |[Fmin |Fmax |
| === | g====|| g===o(
|header [0 [10000 |
|drawoff |0 [10000]|
| turbine drawoff |0 [10000]|
[turbine_ext [0 [10000 |
| pump [0 [10000]|
>~ {rosmose}

: OSMOSE COST steamnetwork_ss

|Equipment |Invl |Inv2 |
| === | :m=——- | :m=——- |

| turbine | 150 [1500 |
| pump |50 [100 |
*>~{rosmose}

: OSMOSE PARAMS steamnetwork_ss

24

SOLVE OPTIMIZATION

layerofelec >> Elec [-] # Layer of electricity

layerofheat >> DefaultHeatCascade [-] # Layer of heat

layerofmakeup >> Makeupfluid [-] # Layer of makeup fluid

layerofmakeupqual >> {1,1} [-] # Quality of the layer of makeup

subcooldT >> -1.1 [K] # Subcooling temperature difference in the condenser, must be <= 0
add_ext_turbine >> 0 [-] # Binary variable to add extraction turbine

{rosmose}
: OSMOSE LAYERTYPE steamnetwork_ss

|LayerType |BalanceType |
| 1m==—mm- | immmmm |

|electricity|ResourceBalance

|
|pressure |ResourceBalanceQuality |
|drawoff |ResourceBalance |
| condensate |ResourceBalance |
| makeup |ResourceBalance |

Solve optimization

For solving the optimization problem, we call the category 0SMOSE with the functionality SOLVE
and give as arguments

= a3 project name
= an objective function
= a list of energy technologies

We also need to give a op_time value in a markdown table. the command we look's as
following.
>{rosmose}
! OSMOSE SOLVE test-project TotalCost [myET]

| name | default |

| === | g==mmmmee |
| op_time | 5000 |

By solving the optimization problem, rosmose will generate osmose files and call an external
server to solve the problem. This server will return a json object and be loaded as a R data.frame
called data. That means that after the SOLVE you can use R chunks and get values from this
data.frame as following

25

GENERATE ET LUA FILE FROM CHUNK

A}
capex <- data$results$KPIs$capex

The json return is stored in a result folder with a report.Rmd file that can be build to check
the execution report of the optimization.

It is also possible to solve the osmose problem locally, of course, if osmose is installed on the
user computer. To use this functionality, you can use the SOLVE-LOCAL keyword instead of the
normal SOLVE one.

Solve options

* > {rosmose}
: OSMOSE OPTIONS mathProg

| Property | Value | Comments |
| immmmmm - | = | === |
| language | ampl | |
| solver | gurobi |

Generate ET Lua file from chunk

For debug/development purpose, there is a functionality that allows you to create the ET lua
files without solving anything in order to control the result of the serialization. When you call the
SERIALIZE_ET functionality you can render ET objects to lua files.

{rosmose}
| OSMOSE SERIALIZE ET [etl, et2]

This will create etl.lua and et2.lua files in the ./temp folder.

Generate frontend Lua file from chunk

It's also possible to check the frontend.lua file by calling the SERTALIZE_PROJECT functionality.
As it's necessary to create a full project object, you have to give the same arguments as you will
do when you solve a project.

{rosmose}
! OSMOSE SERIALIZE_PROJECT test-project TotalCost [etl, et2]

| name | default |

26

GENERATE FRONTEND LUA FILE FROM CHUNK

| op_time | 5000

This will create a frontend.lua file and an operating__data.csv file in the ./temp folder

27

PART

Appendix

28

Calculation of thermodynamic
properties in Coolprop’s Python library
in Rmarkdown

Coolprop library for Python in Rmd

In this course, the thermodynamic properties of the substances could be calculated either using
specialized software (i.e. Aspen or DWSIM), thermodynamic tables or other libraries, such as
Coolprop. The choice of each calculation tool is let to the students, as there is not a mandatory
method, as long as the mass and energy balances are consistent.

Coolprop is a C++ library that implements pure and pseudo-pure fluid equations of state and
transport properties for 122 components, with fully-featured wrappers for Python and MATLAB,
among other languages. It works in 32/64-bit distributions of Windows, in Linux, OSX, Raspberry
Pl, etc.

Coolprop examples can be found here. More complex examples can be also found here to
create web-based calculators or interactive webpages

To use Python chunks in Rmarkdown environment to calculate single thermodynamic properties
of pure substances using Coolprop library, first declare the python.exe path that points to the
virtual environment and activate the reticulate library of R, like this:

#define the path of python virtual environment to use with reticulate
path <- file.path('../venv/Scripts/python.exe') #set the python venv
library(reticulate)

use_python(path)

A very simple code in Python used to calculate the density D of Nitrogen at a temperature T
of 298 K and a pressure P of 101325 Pa using Coolprop is shown next:

from CoolProp.CoolProp import PropsSI
rho = PropsSI('D', 'T', 298.15, 'P', 101325, 'Nitrogen')

However, even if the previous chunk could be used to determine, one by one, each thermodynamic
property of a long list of substances, the verbosity ends up impairing the readability of the calculation
procedure, as well as leading to syntax errors and debugging difficulties.

http://www.coolprop.org/coolprop/examples.html#examples
https://github.com/dvd101x/web-thermodynamics
http://platform.sysmoltd.com/ThermoFluids/ThermodynamicProcessView

THE STATE CLASS: ALL THE THERMODYNAMIC PROPERTIES IN ONE PYTHON OBJECT

The State class: all the thermodynamic properties in one Python
object

(a collab playground to test the State class is here)

For the sake of clarity, it has been provided a class named State, which can be “instantiated”
by passing specific arguments to calculate a set of relevant thermodynamic properties of pure
substances in just few steps. The calculated values of those properties are assigned to a friendly
Python “dictionary”.

The class is internally implemented; thus it just needs to be instantiated. However, in order to
understand how the State class function works, the full code is described below. You can find the
state.py file in a directory similar to \venv\Lib\site-packages\pyxosmose (CAUTION: do not
confuse the State class with the CoolProp.State module described in here)

from CoolProp.CoolProp import PropsSI
class State():

def __init__(self, pair,fluid='Water',temperature=-1.0,pressure=-1.0,density=-1.0, c
########### Define the relevant properties
self.pair = pair
self.fluid = fluid
self.temperature = temperature
self .pressure = pressure
self .density = density
self.cpmass = cpmass
self.cvmass = cvmass
self.enthalpy = enthalpy
self.entropy = entropy
self.vapfrac = vapfrac
#self .Other = Others

def StateCalc(self):

if self.pair == 'TP': # Calculate only for TP
try:
if PropsSI('Q', 'T', self.temperature, 'P', self.pressure, self.fluid) <
self.vapfrac = PropsSI('Q', 'T', self.temperature, 'P', self.pressur

self.enthalpy = PropsSI('H', 'T', self.temperature, 'P', self.pressu
self.entropy = PropsSI('S', 'T', self.temperature, 'P', self.pressur
self.density = PropsSI('D', 'T', self.temperature, 'P', self.pressur
self.cpmass = PropsSI('Cpmass','T', self.temperature, 'P', self.pres
self.cvmass = PropsSI('Cvmass', 'T', self.temperature, 'P', self.pre
#n####### self . Others = PropsSI('Others', 'T', self.temperature, 'P
########## Other properties come here
except ValueError:
print ('Saturation pressure and temperature are dependent. Select another

30

https://colab.research.google.com/drive/1v0oFA37GaRqMdTs3ernYdNM0eHZeJf07
http://www.coolprop.org/py-modindex.html

THE STATE CLASS: ALL THE THERMODYNAMIC PROPERTIES IN ONE PYTHON OBJECT

else: # Calculate for other pair than TP but without Q in pair
if self.pair == 'TD':
self .pressure = PropsSI('P','T', self.temperature,'D',self.density,self.f
self.enthalpy = PropsSI('H', 'T', self.temperature, 'D', self.density, s
elif self.pair == 'TH':
self .pressure = PropsSI('P','T',self.temperature, 'H',self.enthalpy,self.
self.enthalpy = PropsSI('H', 'T', self.temperature, 'H', self.enthalpy,
elif self.pair == 'TS':
self.pressure = PropsSI('P','T',self.temperature,'S',self.entropy,self.f
self.enthalpy = PropsSI('H', 'T', self.temperature, 'S', self.entropy, s
elif self.pair == 'PD':
self.temperature = PropsSI('T', 'P', self.pressure, 'D', self.density, s
self.enthalpy = PropsSI('H', 'P', self.pressure, 'D', self.density, self
elif self.pair == 'PH':
self.temperature = PropsSI('T', 'P', self.pressure, 'H', self.enthalpy,
self.enthalpy = PropsSI('H', 'P', self.pressure, 'H', self.enthalpy, sel
elif self.pair == 'PS':
self.temperature = PropsSI('T', 'P', self.pressure, 'S', self.entropy, s
self.enthalpy = PropsSI('H', 'P', self.pressure, 'S', self.entropy, self
elif self.pair == 'DH':
self.pressure = PropsSI('P', 'D', self.density, 'H', self.enthalpy, self
self.temperature = PropsSI('T', 'D', self.density, 'H', self.enthalpy, s
elif self.pair == 'DS':
self .pressure = PropsSI('P', 'D', self.density, 'S', self.entropy, self.
self.temperature = PropsSI('T', 'D', self.demnsity, 'S', self.entropy, se
self.enthalpy = PropsSI('H', 'P', self.pressure, 'S', self.entropy, self
elif self.pair == 'HS':
self .pressure = PropsSI('P', 'H', self.enthalpy, 'S', self.entropy, self
self.temperature = PropsSI('T', 'H', self.enthalpy, 'S', self.entropy, s

elif self.pair == 'TQ': # verify that Q is in the correct range.
if self.vapfrac < O:
print ('The vapor fraction cannot be negative, verify input to TQ')
elif self.vapfrac <=1:
self .pressure = PropsSI('P', 'T', self.temperature, 'Q', self.vapfra
self.enthalpy = PropsSI('H', 'T', self.temperature, 'Q', self.vapfra
else:
print('The vapor fraction must be lower or equal than 1, verify inpu

elif self.pair == 'PQ': # verify that Q is in the correct range.
if self.vapfrac < O:
print ('The vapor fraction cannot be negative, verify input to PQ')
elif self.vapfrac <=1:
self.temperature = PropsSI('T', 'P', self.pressure, 'Q', self.vapfra

31

THE STATE CLASS: ALL THE THERMODYNAMIC PROPERTIES IN ONE PYTHON OBJECT

self.enthalpy = PropsSI('H', 'P', self.pressure, 'Q', self.vapfrac,
else:
print ('The vapor fraction must be lower or equal than 1, verify inpu

elif self.pair == 'DQ': # verify that Q is in the correct range.
if self.vapfrac < O:
print('The vapor fraction cannot be negative, verify input to DQ')
elif self.vapfrac <=1:
self .pressure = PropsSI('P', 'D', self.density, 'Q', self.vapfrac, s
self.temperature = PropsSI('T', 'D', self.density, 'Q', self.vapfrac
self.enthalpy = PropsSI('H', 'D', self.density, 'Q', self.vapfrac, s
else:
print ('The vapor fraction must be lower or equal than 1, verify inpu

elif self.pair == 'HQ': # verify that Q is in the correct range.
if self.vapfrac < O:
print ('The vapor fraction cannot be negative, verify input to HQ')
elif self.vapfrac <=1:
self .pressure = PropsSI('P', 'H', self.temperature, 'Q', self.vapfra
self.temperature = PropsSI('T', 'H', self.temperature, 'Q', self.vap
else:
print('The vapor fraction must be lower or equal than 1, verify inpu

elif self.pair == 'SQ': # verify that Q is in the correct range.
if self.vapfrac < O:
print ('The vapor fraction cannot be negative, verify input to SQ')
elif self.vapfrac <=1:
self.pressure = PropsSI('P', 'S', self.entropy, 'Q', self.vapfrac, s
self.temperature = PropsSI('T', 'S', self.entropy, 'Q', self.vapfrac
self.enthalpy = PropsSI('H', 'S', self.entropy, 'Q', self.vapfrac, s
else:
print ('The vapor fraction must be lower or equal than 1, verify inpu

self.entropy
self.density
self.vapfrac

PropsSI('S', 'P', self.pressure, 'H', self.enthalpy, self.flu
PropsSI('D', 'P', self.pressure, 'H', self.enthalpy, self.flu
PropsSI('Q', 'P', self.pressure, 'H', self.enthalpy, self.flu
self.cpmass = PropsSI('Cpmass', 'T', self.temperature, 'P', self.pressure, s
self.cvmass = PropsSI('Cvmass', 'T', self.temperature, 'P', self.pressure, s

As it can be seen, the State class takes few number of arguments. The first is a pair, i.e. two

thermodynamically independent intensive properties (tiip) used to calculate the remaining ones.
It also receives a fluidargument, which has a default value of ‘Water’. Other arguments, such
as temperature (K), pressure (Pa), ‘density (kg/m3), cpmass (J/kgK), cvmass (J/kgK),
enthalpy (J/kmol), entropy (J/kgK), and vapfrac (unitless) can be specified depending on the
selected pair. Those arguments are initialized to -1 in the constructor method (def __init__).

32

THE STATE CLASS: ALL THE THERMODYNAMIC PROPERTIES IN ONE PYTHON OBJECT

Given a pair and the two tiip values, the remaining thermodynamic properties are calculated
using the class method (StateCalc), which retrieves the values of all the thermodynamic properties
in a Python dictionary that looks like this:

{'pair': 'TP', 'fluid': 'Water', 'temperature': 343.1, 'pressure': 31000, 'density': 0.1

Note that the vapor fraction is undefined outside the saturation region and, thus it is reported
as -1 (vapor fraction falls by definition within 0 and 1). A full list of the aliases of the fluids
available in Coolprop can be found here and a list of other properties not specified by the State
class is shown here. In fact, with a little effort, any other property could be included in the ‘State
class (see the annotation #self.Other = Others) and, therefore, it could be used and reported
as any other variable.

The ‘instantiation’ of the State class and the retrieval of the thermodynamic properties is as
simple as executing the following code (NOTE: in the following code, State is a class, Statel is
a dictionary, and Point1 is an instance/object of State class):

from pyxosmose.state import State

First, define the thermodynamic point,

Pointl = State(pair='TP', fluid='Water', temperature=340, pressure=31000)
Then calculate the state using the State class method StateCalc
Point1.StateCalc()

And print the dictionary for revision

Statel = Pointl.__dict__ # Whole dictionary with properties

print(Statel)

{'pair': 'TP', 'fluid': 'Water', 'temperature': 340, 'pressure': 31000, 'density': 979.5
print ("The enthalpy of the water is (J/kg): ", Pointl.enthalpy)
The enthalpy of the water is (J/kg): 279868.6663457518

hl = Pointl.enthalpy # Point.enthalpy is equivalent to Statel["enthalpy"]

Additional Python functions are helpful for calculating ideal mixtures of real substances based
on their mass fraction:

from pyxosmose.state import State
def mixture(T=298, P=101325, frac_water=0.89, frac_fat=0.11):
call Coolprop
statel = State(pair='TP',fluid='Water',temperature=T,pressure=P)

state2 = State(pair='TP',fluid='MethylLinolenate',temperature=T,pressure=P)

statel.StateCalc()

33

http://coolprop.org/fluid_properties/PurePseudoPure.html#list-of-fluids
http://coolprop.org/coolprop/HighLevelAPI.html

SAVING DATA INTO AND RETRIEVING DATA FROM A JSON FILE

state2.StateCalc()

ideal mixture
state _mix = {}
state mix['fluid'] = 'water[' + str(frac _water) + 'J&fat[' + str(frac fat) + 'J'

for key in ['density', 'cpmass', 'cvmass', 'enthalpy', 'entropy'l:
state_mix[key] = frac_water * getattr(statel, key) + frac_fat * getattr(state2, key)
return state_mix

An example of using the mixture function is shown below. Note that it produces not an object
of State class, but a dictionary (State2) with the same keys as the attributes of the State class:

from codes_01_energy_bill.coolprop_functions import mixture

State2=mixture(frac_water=0.8, frac_fat=0.2) # this is a dictionary!!
print (State2)

{'fluid': 'water[0.8]&fat[0.2]', 'demnsity': 976.7940177228429, 'cpmass': 3768.5468846031

h2 = State2["enthalpy"]

Saving data into and retrieving data from a JSON file

The data gathered throughout all the calculations could be dumped into a JSON file, called
e.g. MyJsonFile. json, using the save_states function. Data is stored in JSON format so that
it could be used in other parts of the report. Data in the JSON file can be retrieved using other
function called 1oad_states:

import json
def save_states(states, json_name='MyJsonFileDefault'): #MyJsonFileDefault is just a def
with open('codes_01_energy_bill/results/' + json_name + '.json', 'w') as f:
json.dump(states, f)
return

def load_states(path='codes_01_energy _bill/results/MyJsonFileDefault.json'):
with open(path, 'r') as f:
data = json.loads(f.read())
return data

An example of utilization of these functions is shown below:
Saving data into the JSON

34

USING STATE FUNCTION TOGETHER WITH OTHER PYTHON LIBRARIES FOR SOLVING
SYSTEMS OF EQUATIONS

MyStates_list = {"MyStatel": Pointl.__dict__, "MyState2": State2, "enthalpyl": hl, "enth
save_states(MyStates_list, 'MyJsonFile')

Retrieving data from a JSON file:

data = load_states('codes_01_energy_bill/results/MyJsonFile.json')
print(data) # it is a dictionary of dictionaries and other key:value objects

{'MyStatel': {'pair': 'TP', 'fluid': 'Water', 'temperature': 340, 'pressure': 31000, 'de

Using State function together with other Python libraries for solving
systems of equations

The power of Python and Coolprop could be combined with other programming libraries such
as numpy and scipy to solve systems of equations, which can in practice be mass and energy
balances (NOTE: verify if scipy package is installed before using this chunk, see the last section
of this tutorial to install new Python libraries in the virtual environment):

Example of how to use the State class for calculating properties and solving systems o

import numpy
import scipy
from scipy.optimize import fsolve
from pyxosmose.state import State

mystatel = State(pair='TP',fluid='air',temperature=298,pressure=101325)
mystatel.StateCalc()

#print (mystatel.__dict__)

hl = mystatel.enthalpy

sl = mystatel.entropy

#print ('Enthalpy of state 1: ', hl, 'Entropy of state 1: ', sl)
P2s = 300000

mystate2s = State(pair='PS',fluid='air',pressure=P2s,entropy=sl)
mystate2s.StateCalc()

#print (mystate2s.__dict__)

eff = 0.8

#print ('Enthalpy of state 2s: ', mystate2s.enthalpy)

def equations(vars):
h2s, h2a = vars

#equations

35

USING STATE FUNCTION TOGETHER WITH OTHER PYTHON LIBRARIES FOR SOLVING
SYSTEMS OF EQUATIONS

eql = h2s-hl-eff*(h2a-hl)
eq2 = h2s-mystate2s.enthalpy
return eql, eq2

seeds = numpy.array([100000, 100000])
[h2s, h2a] = fsolve(equations, seeds)

print ('These are the solutions', [h2s, h2a])

These are the solutions [533127.757776997, 560338.4226996723]
print ('Checking residuals:',equations([h2s, h2a]))

Checking residuals: (0.0, 0.0)

print('This is hil: ',hl, ' and this is h2s: ',h2s)

This is hl: 424285.09808629606 and this is h2s: 533127.757776997

This is another example of how to use directly Coolprop for calculating properties and solving
systems of linear equations

from CoolProp.CoolProp import PropsSI
def equations(vars):

#variables
hil, sl1, h2a, h2s = vars # the variables are pre-declared here, meaning that they com

#parameters

P1 = 101325 #bar
T1 = 298 #K

P2s = 300000 #bar
eff = 0.8
#equations

eql = hl - PropsSI('H', 'T', T1, 'P', P1, 'air')

eq2 = sl - PropsSI('S', 'T', T1, 'P', P1, 'air')
eq3 = h2s - PropsSI('H', 'P', P2s, 'S', sl, 'air')
eq4 = h2s - hl - eff * (h2a - hl)

return eql, eq2, eq3, eqd

seeds = numpy.array([0,0,0,0])
hl, s1, h2a, h2s = fsolve(equations, seeds)

36

CITATION OF COOLPROP SOFTWARE

print('This are the solutions: ', [h1l, s1, h2a, h2s])
This are the solutions: [424285.09808629606, 3879.982762572455, 560338.4226996723, 5331
print ('Checking residuals:', equations([hl, s1, h2a, h2s]))

Checking residuals: (0.0, 0.0, 0.0, 0.0)

Citation of Coolprop software

Naturally, Coolprop is the result of the intellectual effort of researchers and programmers, and thus
it needs to be cited properly if used. The bibtex citation for Coolprop suggested in its website is:

@article{doi:10.1021/1e4033999,
author = {Bell, Ian H. and Wronski, Jorrit and Quoilin, Sylvain and Lemort, Vincent}
title = {Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and
the Open-Source Thermophysical Property Library CoolProp},
journal = {Industrial \& Engineering Chemistry Research},
volume = {53},
number = {6},
pages = {2498--2508},
year = {2014},
doi = {10.1021/1e4033999},
URL = {http://pubs.acs.org/doi/abs/10.1021/ie4033999},
eprint = {http://pubs.acs.org/doi/pdf/10.1021/1e4033999}
b

Other examples using Python in Rmarkdown’s Reticulate

Python and R objects can be used interchangeably thanks to an R library called Reticulate:
An R variable

#library(reticulate)

x = 42
print(x)

[1] 42

In the following chunk, the value of x on the right hand side is 42, which was defined in the
previous chunk.

37

GRAPHICAL REPRESENTATIONS USING PYTHON

x =x + 12
print(x)

[1] 54

This works fine and as expected.

x =42 * 2
print(x)
84

The value of x in the Python session is 84. It is not the same x as the one in R.

x =x + 18
print (x)

102

Retrieve the value of x from the Python session again:
py$x
[1] 102

Assign to a variable in the Python session from R:
py$y = 1:5

See the value of y in the Python session:

print (y)

(1, 2, 3, 4, 5]

Graphical representations using Python

You can draw plots using the matplotlib library in Python (NOTE: if you get an error using
MatPlotLib, check this out).

import matplotlib.pyplot as plt

plt.plot ([0, 2, 1, 4])
plt.show()

38

https://stackoverflow.com/questions/29320039/python-tkinter-throwing-tcl-error

GRAPHICAL REPRESENTATIONS USING PYTHON

4.0 A
3.5 1
3.0 1
2.5 A
2.0 A
1.5 A
1.0
0.5 A

0.0 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

As it can be seen, Python is not only used to retrieve thermodynamic properties using the
Coolprop library, but could be also used to plot more elaborated plots, such as the Composite
Curves (CC) of the studied systems.

import matplotlib.pyplot as plt
import json
import numpy as np

read json for heat integration data
file_name = open('codes_02_heat_recovery/result/brewery-1.json')
integ = json.loads(file_name.read())

we used .keys() and json-reader to locate the data of interest (hot and cold composite
hotcc = integ["results"] ["graph"][0] [0] [1] ["data"] [0] ["curve"]
coldcc = integ["results"] ["graph"] [0] [0] [1]["data"] [1] ["curve"]

extract the temperature (T in Kelvin) and heat (Q in kW)

T_hc = [i["T"] for i in hotccl
Q_hc = [i["Q"] for i in hotcc]
T cc = [i["T"] for i in coldcc]
Q_cc = [i["Q"] for i in coldcc]

compute the shifted carnot factor (1 - TO/T) and Treference = 298.15K
Tref = 298.15

ca_hc = [(1-Tref/i) for i in T_hc]

ca_cc = [(1-Tref/i) for i in T_cc]

39

GRAPHICAL REPRESENTATIONS USING PYTHON

compute back the original carnot factors given a deltaT_min
deltaT_min = 40

T hc_ori [(i+deltaT min/2) for i in T_hc]

T_cc_ori [(i-deltaT_min/2) for i in T_cc]

ca_hc ori = [(1-298.15/i) for i in T_hc_ori]

[(1-298.15/i) for i in T_cc_ori]

ca_cc_ori

prepare the second y-axis for plotting

the minim carnot value is extracted from the original cooling. Round it to the lowest
the maximum carnot carnot value is extracted from the original heating. Round it to th
ca_min = round(min(ca_cc_ori) - 0.05, 1)

ca_max = round(max(ca_hc_ori) + 0.05, 1)

generate an array with the carnot list from min to max

ca_values = np.arange(ca_min, ca_max, 0.2)

compute the corresponding temperature values in celcius

Tref _ce = 25

T ce = [int(Tref_ce/(1-i)) for i in ca_values]

plot the composite curves
figure, ax = plt.subplots(figsize = (8,6))

both cold curves (blue): dashed --> shifted, solid --> original
ax.plot(Q_cc, ca_cc, "--b")

ax.plot(Q_cc, ca_cc_ori, "-b")

both hot curves (red): dashed --> shifted, solid --> original
ax.plot(Q_hc, ca_hc, "--r")

ax.plot(Q_hc, ca_hc_ori, "-r")

£ill the area between the original and shifted curves
ax.fill_between(Q_cc, ca_cc_ori, ca_cc, color="blue", alpha=0.25)
ax.fill_between(Q_hc, ca_hc, ca_hc_ori, color="red", alpha=0.25)

add the lables and title

ax.set_xlabel('$Heat \ Load \ (kW)$', labelpad=12)

ax.set_ylabel('$Carnot \ Factor \ (1 - T_{0}/T)$")

ax.set_title('$System \ Heat \ Integration$')

ax.legend(["Corrected Cold Composite Curve", "Cold Composite Curve", "Corrected Hot Comp
ax.set_ybound(ca_min, ca_max)

secondary axis. In this case we don't plot anything, we simply set the secondary axis
ax2 =ax.twinx()

ax2.set_yticks(np.arange(0, len(T_ce), 1), T_ce)

ax2.set_ylabel('$Temperature \ (\uOObOC)$', labelpad=10)

plt.show()

40

HOwW TO INSTALL LIBRARIES THAT ARE NOT YET INSTALLED IN THE PYTHON VIRTUAL
ENVIRONMENT OF RMARKDOWN

System Heat Integration
0.3 31

—=—=- Corrected Cold Composite Curve
—— Cold Composite Curve
—=—= Corrected Hot Composite Curve
—— Hot Composite Curve /| /oo m———n
0.2 1
&
N0+ o
c g
5 2
£ F 25 g
s 3
Q 4
g 0.0 3
[§
O
_01 -
-0.2 T 20

0 5000 10000 15000 20000

Heat Load (kW)

save the plot as a png
figure.savefig("composite_curves.png", format="png", dpi=600)

How to install libraries that are not yet installed in the Python virtual
environment of Rmarkdown

Lastly, if Coolprop or any other library is not installed yet or needs to be updated, use the following
command to avoid installation outside of the venv, i.e. to force the installation in the target
directory. First, open a cmd console in the Scripts folder, where is the pip.exe. Then type the
following command pointing to the 1ib/site-packages of the respective venv:

pip install scipy -t "D:\brewery_process-main\venv\Lib" (use your path)

This command should install the missing Python libraries in the targeted folder of the virtual
environment

41

Logical and mathematical operators in
Rosmose language

Similar to the OSMOSE Lua language, in Rosmose language, it can be also used different
mathematical and logical operators:

= Sum: %foo%--+2

» Substraction: %bar%-2

= Multiplication: %foo%*2

= Division: %bar%*2

= Potentiation: %foo%**%bar%

Special mathematical functions:

= exponential: e"x = 2.7182818**%x%
= logarithm:

= sin:

= cosine:

= tan:

= sinh:

= square root: %foo%**0.5

= n root of m: %m%**%n%

Logical and boolean expressions:

= |f/Else:

= For:

= Greater than:
= Lower than:
= And/Or/Not:

Transference of variables from:

= pythontor: .

= rto python: $

= r to rosmose:

= romose to r:

= python to rosmose:
= rosmose to python:

Syntax errors to be avoided

When using Rosmsose language, avoid doing the following syntax errors:

= Do not use INPUTS functionality, unless it is an ASPEN model. Common inputs do not
require any declaration, and it throws error:

{rosmose}
MODEL INPUTS myModel
fooTag = 2 [unit] #comment

= NEVER change the names of the JSON files generated in the folder result. NEVER. For
example, never put suffix like hps, furn, vend, etc. after the numbering of the files and the
.Json extension:

tixothermop-1hps.json tixothermop-2furn.json tixothermop-3vend.json

= Do not use # or leave spaces at the beginning of a chunk:

{rosmose}
This is a bad comment

= Be careful using tags and layer names:

Do not put spaces or dashes in the tags, only use (_). However, _ should be also avoided in
the layer names

= Do not assign one tag to another tag

For instance tagl=Ytag2% may seem helpful when willing to use the tag in other part of the
code with a more easy to remember name. If for any reason this is necessary, multiply the tag by
1, i.e. tagl=1*Ytag2),

SYNTAX ERRORS TO BE AVOIDED

= If using MER as objective function, it is required to solve Rosmose only loading the Process
Models in the SOLVE execution.

= When defining the UNIT field, be aware that this defines the Units of the ET, thus it needs
to be defined as OSMOSE UNIT MyET, instead of OSMOSE UNIT MyUnit

44

Common errors

When using Rosmsose language, avoid doing the following logical errors:

= Infeasible problem: In this case, the utilities defined in the problem cannot satisfy the
demand of the process units. It could happen if they are restricted in terms of maximum size
or temperature level. To tackle this issue, one must recall the process needs and make sure
suitable utilities in the problem definition are provided.

= AMPL connection not established: In case the AMPL license is not correctly configured
on the computer, ROSMOSE will not be able to connect to the specified solver. To solve
this error, correct the path mapping in the environmental variables definition in the computer
configuration settings so that it can adjust the AMPL solver directory.

= Expected value near symbol %: In this case, one of the tags has not been correctly defined
in the Quarto environment. This is either due to a typo or importing data from the wrong
location (path) when connected to external flowsheeting software such as Aspen Plus. To
eliminate this error, revise the definition of tags throughout your problem formulation.

= No file found with this name or location: This occurs when a file path or name is not
defined correctly in the fronted file. To address this issue, check your repository information
(directory location, file names, access rights for Quarto, etc.)

= Unexpected trend or shape of composite curve: When defining heat streams, it is
important to respect the thermodynamic rules of temperature levels and heat duty. A
negative heat flow must correspond to a decrease in temperature and vice versa. Otherwise,
OSMOSE Lua cannot arrive at the correct heat integration results or returns error messages
stating incorrect problem definition.

= Utility units never activated, or masses not transported correctly: As ROSMOSE
relies on layers for exchanging mass and energy flows, the correct definition of layers names
and units is crucial for the seamless flow of streams through these “pipes”. In case there is
discrepancy between layers defined in different ETs, then certain flows will never be balanced
within the units, and it hinders the optimization process due to infeasible solutions.

= Activate the serialization feature: In case you face a persisting error, that does not
fit into the description of any of the above cases, you can use the : 0OSMOSE SERIALIZE
functionality to retrieve the backend Lua files describing the project and ET files. This offers
an opportunity for debugging deeper errors conveyed from ROSMOSE to the platform solving
the optimization problem.

	Rosmose
	Rosmose engine

	I Introduction
	Installation
	Basics
	Chunk manager
	Category
	FUNCTIONALITY and ARGUMENTS

	II Categories functionalities and usage
	Tags functionalities
	Create Tags
	Display Tags
	Save Tags
	Load Tags

	Model functionalities
	Create Model
	Define Model inputs
	Define Model outputs
	Define Model interfaces
	Reset Inputs
	Display Model inputs
	Display Model outputs
	Solve Model
	Solve vali model locally with an input file

	ROsmose functionalities
	Create an Energy Technology (ET)
	Add Layers to ET
	Add units to ET
	Add parameters to units of ET
	Add Resource Streams to Unit
	Add Heat Streams to Unit
	Display ET
	Superstructure Heat Pump
	Superstructure Steam Network
	Solve optimization
	Solve options

	Generate ET Lua file from chunk
	Generate frontend Lua file from chunk

	III Appendix
	Calculation of thermodynamic properties in Coolprop's Python library in Rmarkdown
	Coolprop library for Python in Rmd
	The State class: all the thermodynamic properties in one Python object
	Saving data into and retrieving data from a JSON file
	Using State function together with other Python libraries for solving systems of equations
	Citation of Coolprop software
	Other examples using Python in Rmarkdown's Reticulate
	Graphical representations using Python
	How to install libraries that are not yet installed in the Python virtual environment of Rmarkdown

	Logical and mathematical operators in Rosmose language
	Syntax errors to be avoided
	Common errors

