
Energy Audits

Calculating the energy bill Identifying the energy drivers

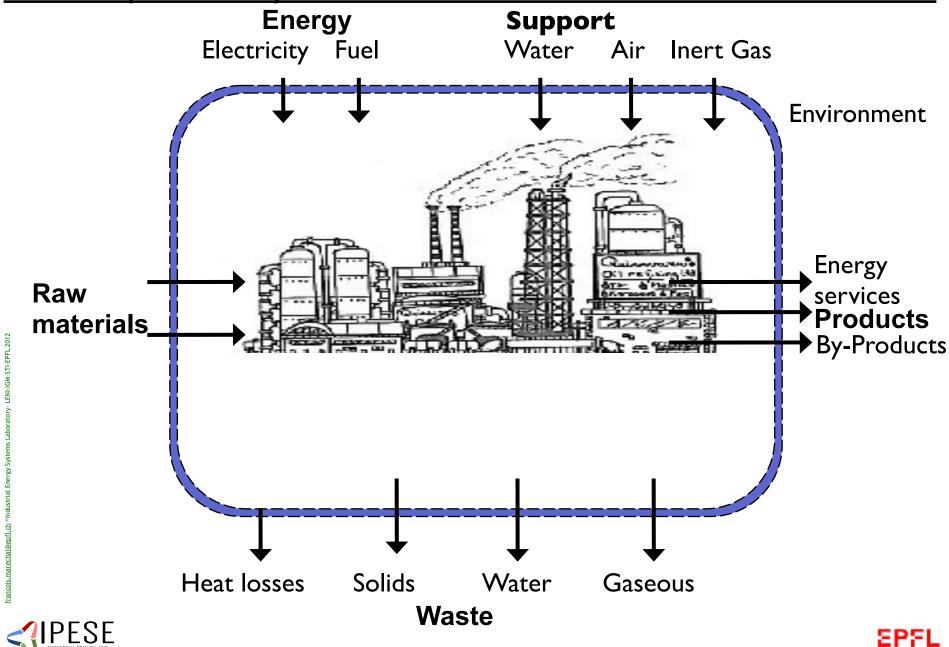
EPFL Steps in decarbonisation

Competences needed?

- Task I: What is the energy usage? => energy audits
 - -energy bill $[CHF/kg_{product}]$ and [CHF/year]?
 - -CO2 emissions and sensitivity to market?
 - -How good are we? => benchmark
 - -How good are we thermodynamically? => exergy analysis
 - -What are the energy requirement of the process?
- Task 2: What are the heat recovery options?
 - -What are the heating and the cooling needs?
 - -Can we recover heat?
 - -What are the heat recovery exchangers to buy
- Task 3: How to supply at best the energy to the process?
 - -What are the (renewable) energy resources to be used to close the energy balance
 - -What are the best energy conversion technologies
 - -Can we convert our waste into products or energy? e.g. biogas
- Task 4 : Can we expand the system boundaries?
 - Convert waste into product (Integration of Rivella production? => look for synergies)
 - -Capture and sequestrate CO2?

is.marechal@epf1.ch ©Industrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 201;

Analysing process systems energetics


Lecture I

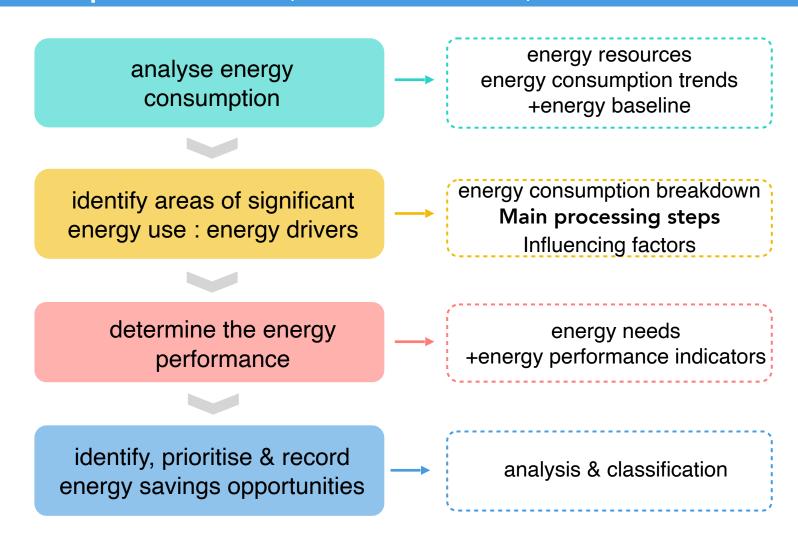
Mass and energy balance to characterize the energy demands

The process system flows

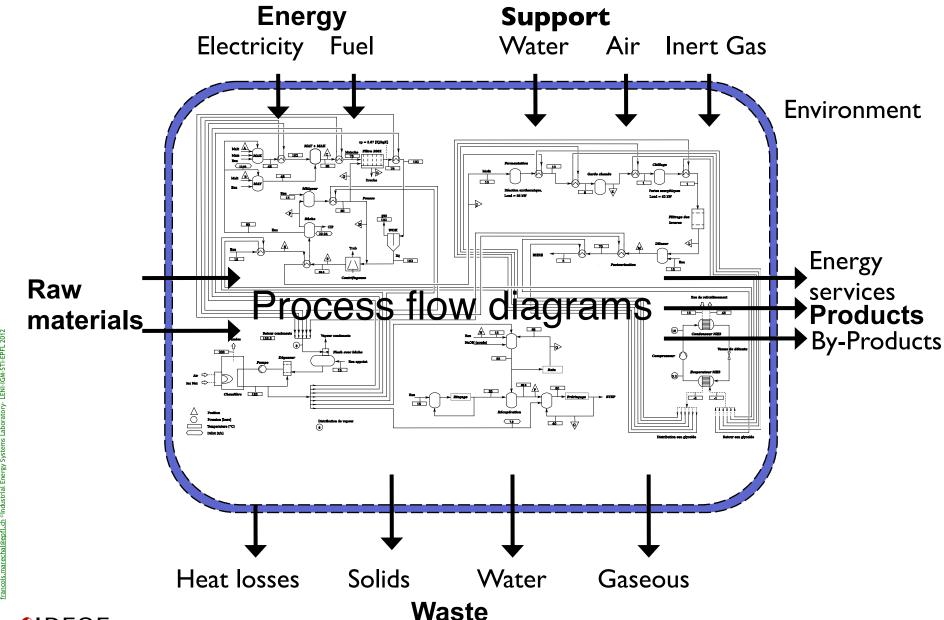
ois.marechal@epfl.ch ©Industrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 201

Characterising flows

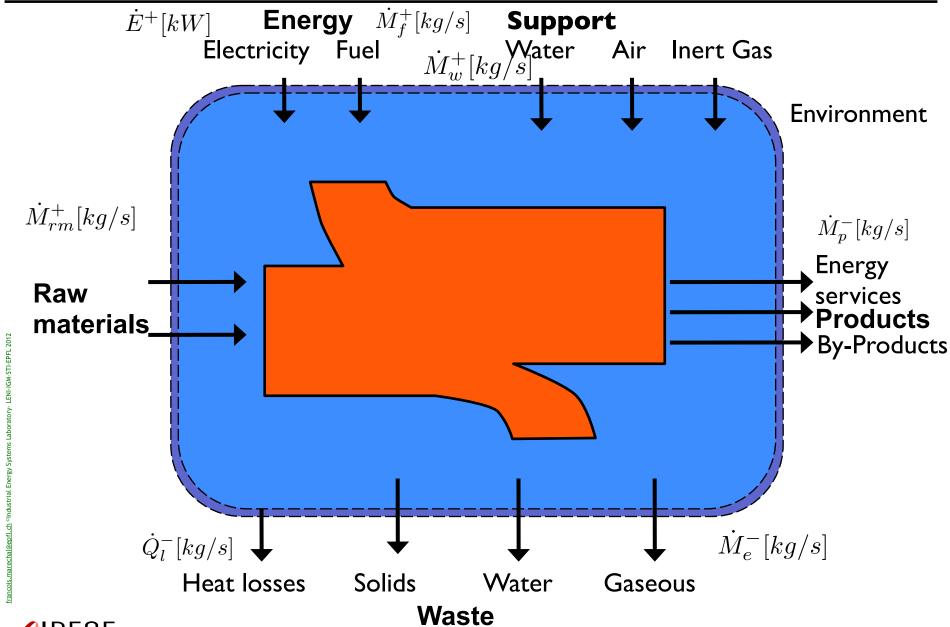
- Using balance equations to calculate values when other values are known (measured) => AGIR
 - A.I Define what you are looking for: the list of the flows + indicators
 - definition
 - physical units
 - expected ranges
 - A.2 Define what you know
 - Knowledge (e.g. thermodynamics, transfer phenomena, unit operation principles)
 - Process Analytics : Measurements
 - **G**.1 Establish the equation system : mass and energy balances $-\dot{Q} = \dot{m} \cdot cp \cdot (T_{in} T_{out})$
 - G.2 Solve the system of equations to calculate what you are looking for from what you know
 - IR: Efficiencies
 - Specific consumptions
 - Energy bills

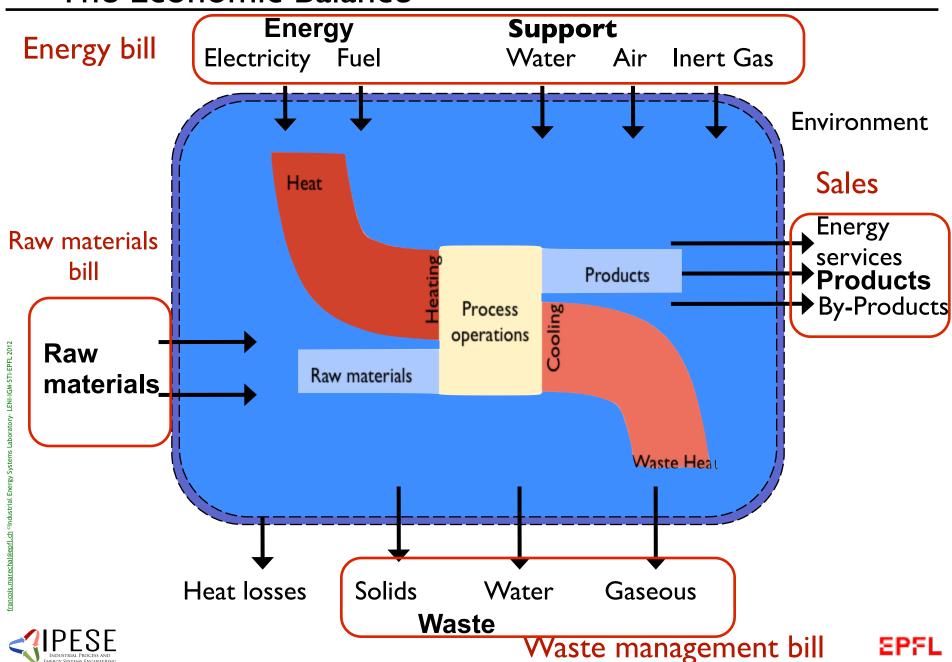


introduction methodology 1. analyse 2. target 3. improve conclusions


energy review

main requirements (ISO 50001:2011)


What do we see first?


EPFL

Mass and Energy Flows of the process

The Economic Balance

ncois.marechal@epfl.ch ©Industrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 2012

Characterising process flows

- For each flow (in and out)
 - Flows [kg/s]
 - Typical production rate
 - Conditions at tanks or entrance
 - Temperature, pressure, quality
 - Energy content [kJ/kg]
 - typically Lower Heating Value
 - $\operatorname{Cost} [CHF/kg]$
 - perspective over 25 years needed
 - Emissions $[kg_{CO2}/kg]$
 - Consider Life Cycle of Supply $[kg_{CO2_{eq}}/kg]$

Economic evaluation

Revenues

Sales (CHF/year)

$$\int_{t_0}^{t_f} (\sum_{P=1}^{n_P} \dot{M}_P^-(t) c_P^-(t) + E^-(t) c_e^-) dt$$

Costs

Operating costs or OPEX (OPerating EXpenditure) (CHF/Year)

$$-\int_{t_0}^{t_f} (\sum_{R=1}^{n_R} \dot{M}_R^+(t) c_R^+(t) + \sum_{F=1}^{n_F} \dot{M}_F^+(t) c_F^+(t) + E^+(t) c_e^+ + \sum_{W=1}^{n_W} \dot{M}_W^-(t) c_W^-(t)) dt$$

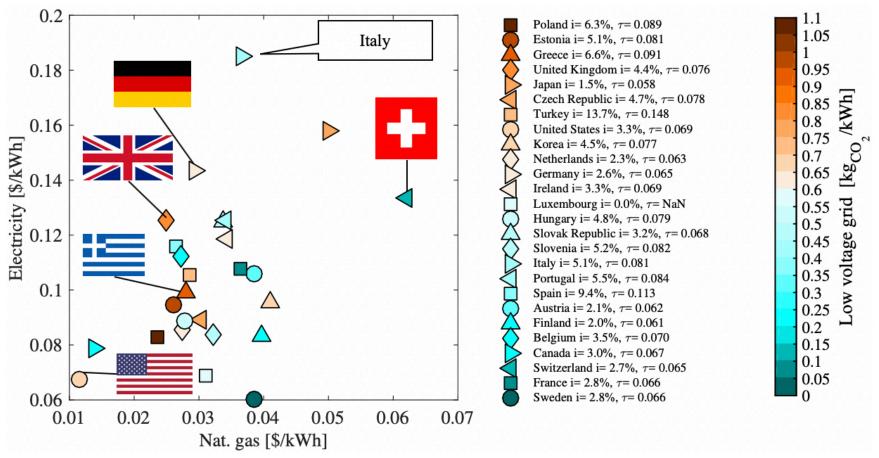
Energy Bill

$$EnergyBill = \int_{t_0}^{t_{year}} (\sum_{F=1}^{n_F} \dot{M}_F^+(t) c_F^+(t) + E^+(t) c_e^+ - E^-(t) c_e^- + \sum_{CO_2=1}^{n_{CO_2}} \dot{M}_{CO_2}^-(t) c_{CO_2}^-(t)) dt \quad [CHF/year]$$

Steady State Operation

• Replace
$$\int_{t_0}^{t_{year}} \dot{m}_t \cdot dt \text{ by } \tilde{\dot{m}} \cdot (t_{end} - t_0)$$

• We will define the time of operation : $t_{op} = t_{year} - t_0$ [s/year]


• In case the baseline has periods

$$-\sum_{period}\dot{m}_{period}\cdot t_{op_{period}}$$

Energy prices

Source: A.S. Wallerand, Thesis EPFL 2018

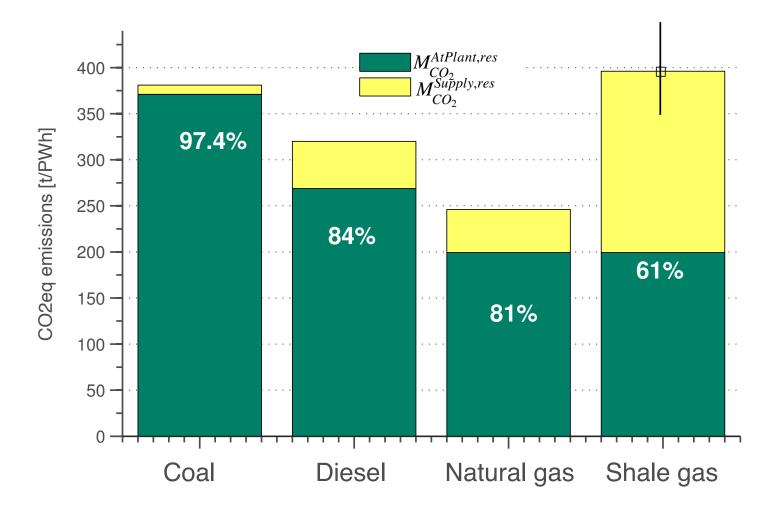
Values from IEA report : Key World Energy Statistics

Environmental impact and its value

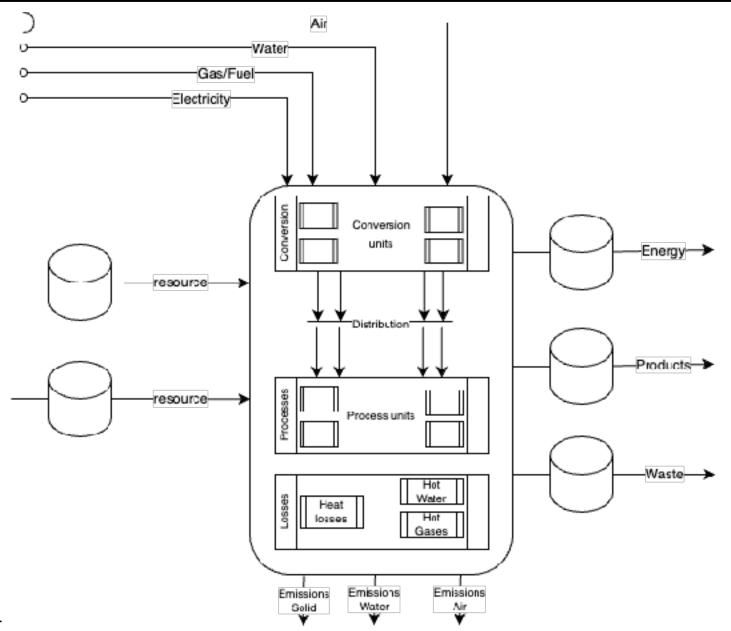
Mass flow :

$$\dot{M}_{CO_2}[kg_{CO_2}/h] = \dot{M}_{res}[kg_{res}/h] \cdot (M_{CO_2}^{AtPlant,res} + M_{CO_2}^{Supply,res})[kg_{CO_2}/kg_{res}]$$

- AtPlant => emissions during combustion
- Supply => emissions for the extraction, the preparation and the distribution
- $-kg_{CO_2} =>$ Only CO2 or equivalent global warming potential (GWP) expressed in kg CO2


Tax: 96 - 220 CHF/ton

$$C_{CO_2}[CHF/year] = \int_{h0}^{h_{year}} (tax_{CO_2}[CHF/kg_{CO_2}] \cdot \dot{M}_{res}[kg_{res}/h] \cdot M_{CO_2}^{res,AtPlant}[kg_{CO_2}/kg_{res}]) dt$$



direct and indirect CO2 emissions of fuels

Understanding the energy bills

<u>ncois.marechal@epfi.ch</u> ©Industrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 201

Connectivity

From the main grids

- list of resources : raw materials, energy, support

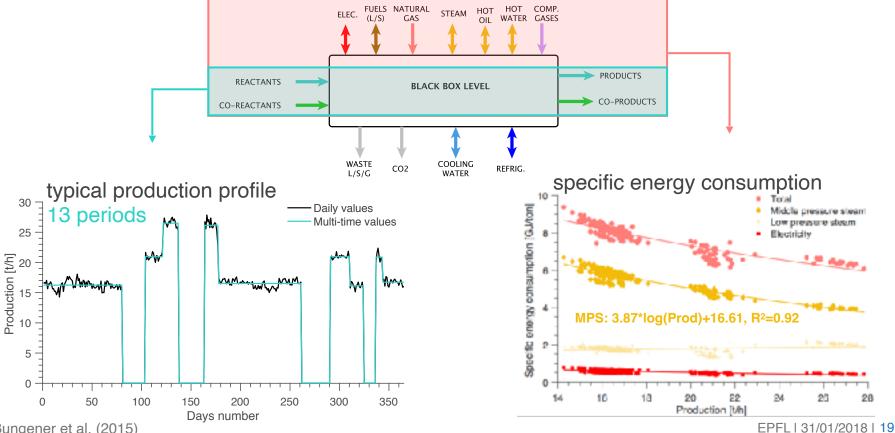
Distributed flows

- Energy sent to the process units
- Material flows

1. analyse

Defining the baseline

$$\dot{m}_p[kg/s] = f_p[\%_{nominal}] \cdot \dot{m}_{nominal}[kg_{nominal}/s] \qquad \dot{m}_{u,p} = f_p \cdot \dot{m}_{nominal} \cdot \eta_u(f_p \cdot \dot{m}_{nominal})$$


production model

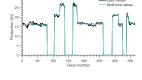
X

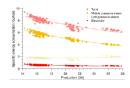
specific energy consumption models

energy baseline

(> to be approved)

NB: Bungener et al. (2015)

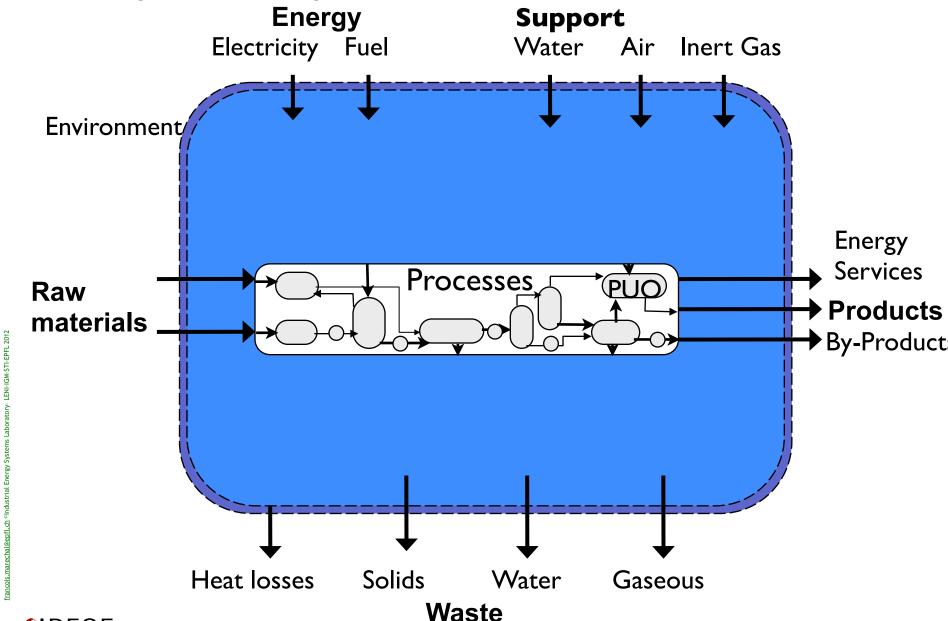

EPFL | 31/01/2018 | 19


s.marechal@epfl.ch ©Industrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 2

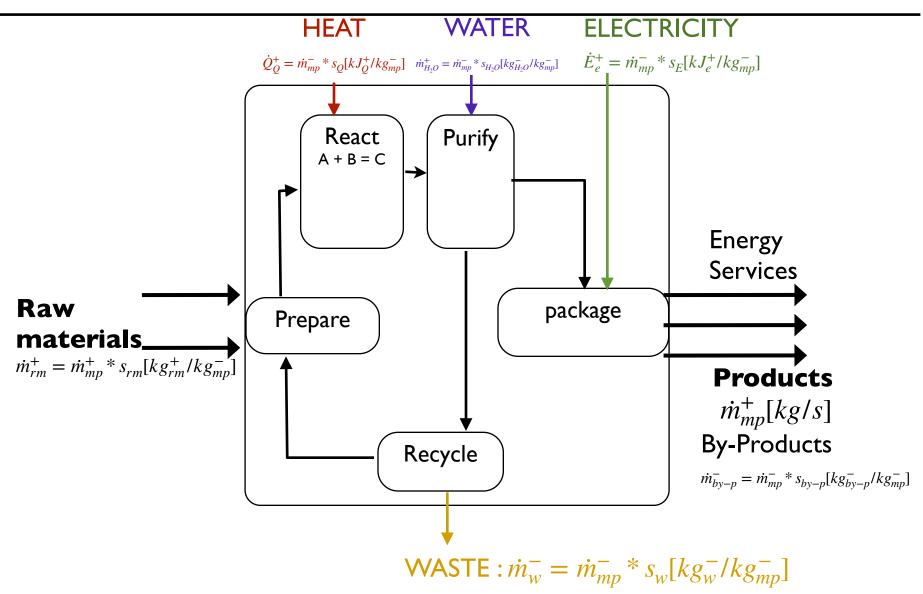
Process performances

Production model

- yearly production of main product $[kg_{product}/year]$
 - Typical flow [kg/s]
 - operating time for each of the typical flow [s/year]

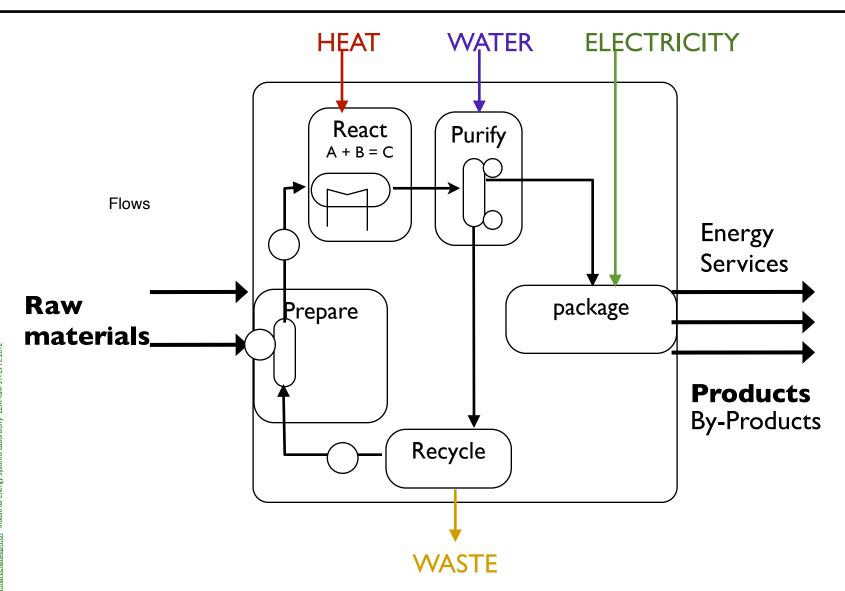

• Consumption models

- Raw Materials
 - Atom/product efficiency $[kg_{rm}/kg_{product}]$
- Products
 - \bullet for each by-product $[kg_{by-product}/kg_{product}]$
- Energy
 - Electricity [$kJ_e/kg_{product}$]
 - ullet Fuels $[kJ_{LVH}/kg_{product}]$
 - ullet Distributed energy $[kJ_{steam}/kg_{product}]$
- Waste and emissions
 - $[kg_{waste}/kg_{product}]$


The process requirements

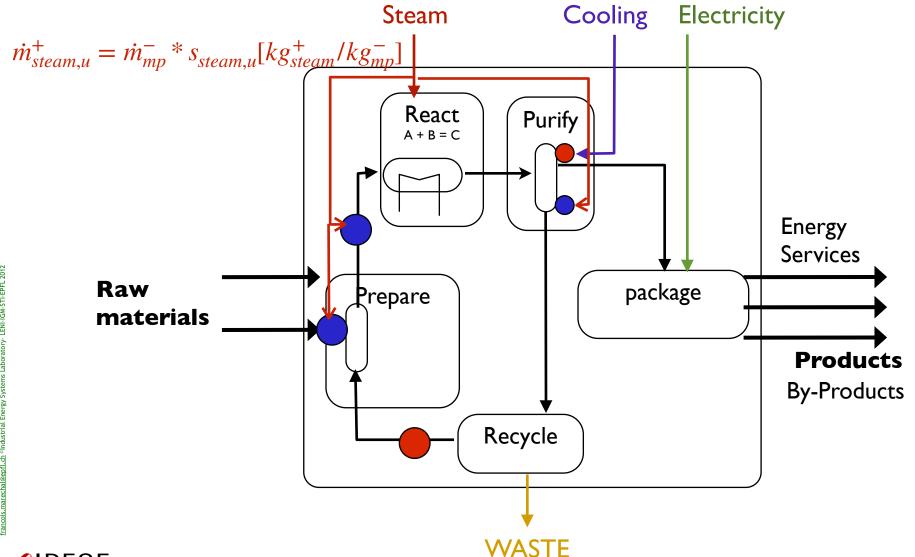
EPFL

Process analysis: block flow diagram: the process recipe



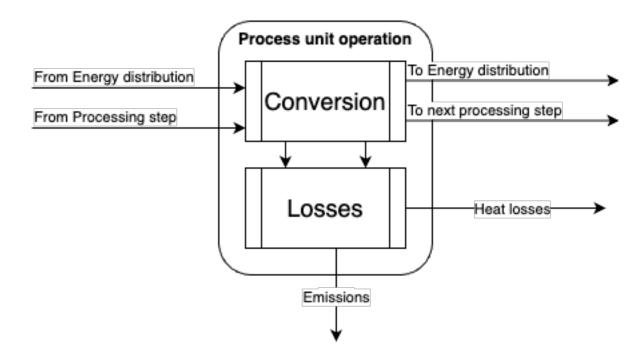
Process steps defined by their function in the production

Process analysis: Process flow diagram: the kitchen


Each function is replaced by the process unit operation u that realise it

Process analysis: energy distribution

For each distribution system (e.g. steam) and process unit operation u



Process units and losses

- To close the energy balance you have to identify the losses mechanisms
 - Technology Inefficiency
- Heat losses
 - Heat in a pipe : hot water hot air
 - Radiation : released due to lack of insulation

Energy demand characterisation

• Mass flow Mass flow :
$$\dot{M}_i^+$$
 [kg/s]

Molar flow: \dot{N}_i^+ [kmol/s]

Composition: $\dot{x}_{i,j}$ [%]

Energy of mass flows

Thermodynamic State: T_i, P_i, v_i, hi, si

Constitutive equations: $h_i[kJ/kg] = f(T, P, x_j)$

$$H_i[kJ/year] = \int_{year} \dot{M}_i^+(t) \cdot h_i(t)dt$$

Electricity

- compression, pumps, drives : $\check{E}^+[kW_{\rho}]$

How to calculate the enthalpy content

Thermodynamic properties of a flow, knowing its state :T,P,x

- Flowsheeting softwares
 - Aspen, Belsim, gPROMS, Prosim, ThermoCycle,DWSIM
- Software packages
 - Refprop, Simulis, Coolprop
- Data base
 - NIST webbook, DIPPR, wikipedia

Bold are open source

Mass Balance and Energy Balance

- Accumulation = IN OUT
 - I rst principle of thermodynamics

Mass Balance (stationary : No accumulation)

$$\forall a \in atoms : \sum_{i=input} \dot{M}_i^+ \cdot x_{o,a} = \sum_{o=output} \dot{M}_o^- \cdot x_{o,a}$$

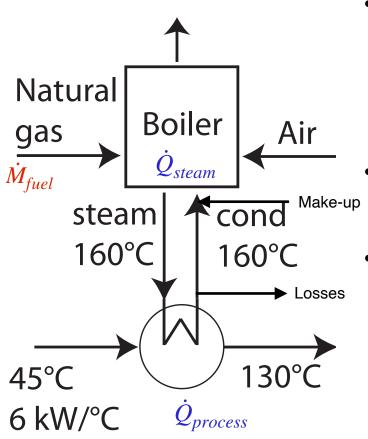
• Energy Balance (steady state : No accumulation)

$$\sum_{i=el_{input}} \dot{E}_{i}^{+} + \sum_{i=input} \dot{M}_{i}^{+} \cdot h_{i} = \sum_{o=el_{output}} \dot{E}_{o}^{-} + \sum_{o=output} \dot{M}_{o}^{-} \cdot h_{o} + \sum_{l=losses} \dot{Q}_{l}^{-}$$

Mass Balance and Energy Balance: important to note

- Mass balance
 - No mass losses
 - Chemical reactions
- Energy Balance
 - Energy is conserved but can be lost in the environment
 - Enthalpy includes energy of formation (chemical reactions)
 - Lower Heating Value is the energy of formation of a fuel
 - Losses ≠ Ignorance (i.e. not the error of the energy balance)
 - Energy flows to the environment to be characterized

• Mass flows:
$$\sum_{o=output\notin products} \dot{M}_o^- \cdot h_o$$


• Heat

$$\sum_{losses} \dot{Q}_l^-$$

Energy conversion & Distribution

- Conversion => efficiencies
 - **Fuel** $(\dot{M}_{fuel}$ [kg/s]) to heat $[kW_{heat}]$
 - Heat $[kW_{heat}]$ to steam $[kW_{steam}]$
 - $-\dot{Q}_{steam} = \dot{m}_{steam} \cdot (h_{steam,condreturn}(T_c, P_c, \alpha_c) h_{steam,supply}(T_s, P_s, \alpha_s))$ $\dot{Q}_{steam} = \dot{m}_{steam} \cdot (h_{steam,condreturn}(T_c, P_c, \alpha_c) h_{steam,supply}(T_s, P_s, \alpha_s))$

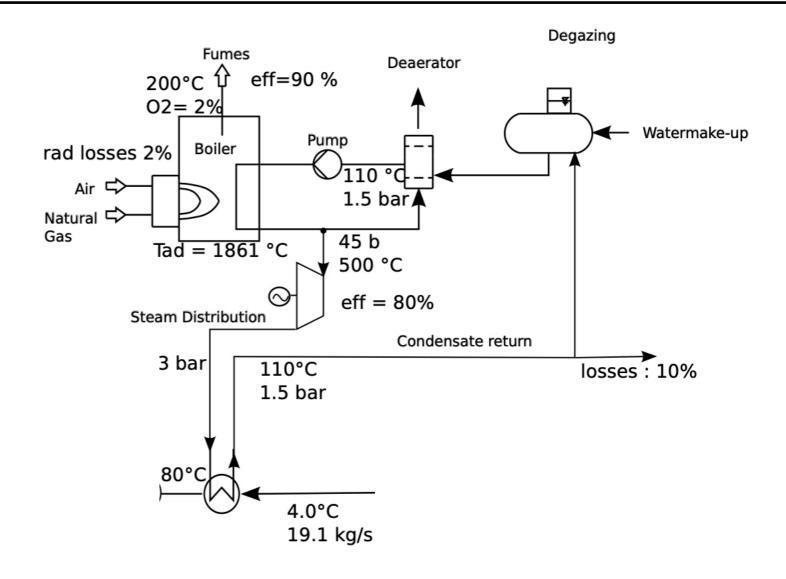
$$\eta_b = \frac{Q_{steam}}{\dot{M}_{fuel} \cdot LHV_{fuel}}$$

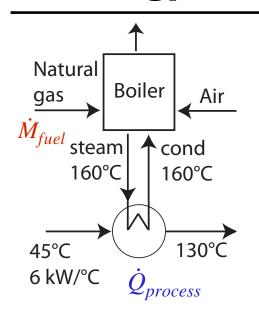
- Distribution
 - Steam [kW_{steam}] to **process heat** [$kW_{process}$]
 - $-\dot{Q}_{steam,d} = \dot{m}_{steam,d} \cdot (h_{steam,supply}(T_s, P_s, \alpha_s) h_{steam,return}(T_r, P_r, \alpha_r))$
- Process Heat needs
 - $-\dot{Q}_{p}[kW_{process}] = q_{process}[kJ/kg_{nominal}] \cdot f_{p} \cdot \dot{m}_{nominal}$ $q_{process}[kJ/kg_{nominal}] = (h_{pf,in} h_{pf,out}) \cdot \frac{\dot{m}_{pf}}{\dot{m}_{nominal}}$

Efficiency of distribution

$$\eta_{dist} = \frac{Q_p}{\dot{Q}_{steam}}$$

Losses can be on the return line, e.g. due to flash steam and purges Make-up is mixed with the return to calculate


$$h_{steam,condreturn}(T_{cr}, P_{cr}, \alpha_{cr}) = \frac{(\dot{m}_{steam} - \dot{m}_{losses}) \cdot h_{steam,return}(T_r, P_r, \alpha_r)) + \dot{m}_{make_up} \cdot h_{make_up}(T_{mu}, P_{mu}, \alpha_{mu}))}{\dot{m}_{steam}}$$


dustrial Energy Systems Laboratory- LENI-IGM-STI-EPFL 2012

Boiler system can be more complex

Energy bill from energy distribution

Process heat

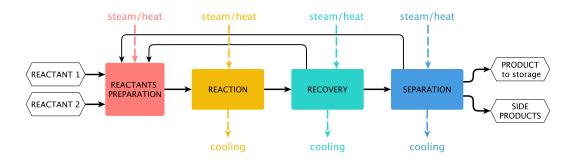
$$\dot{Q}_{process,fuel} \quad [kW_{process}] = \dot{M}_{process}[kg/s] \cdot cp_{process}[kJ/kg/C] \cdot (T_{out} - T_{in})[C]$$

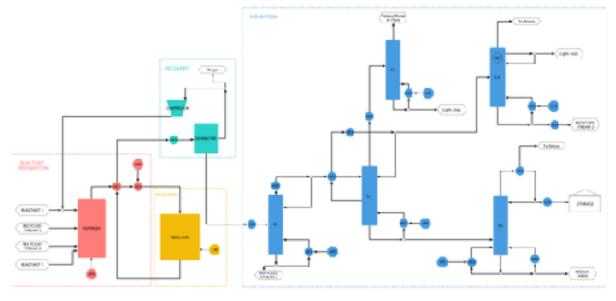
Fuel Conversion Efficiency

$$\eta_{conv,fuel}[\frac{kW}{kW_{fuel}}] = \frac{\dot{Q}_{process,fuel}[kW]}{\dot{M}_{fuel}[kg_{fuel}/h] \cdot LHV_{fuel}[kWh_{fuel}/kg_{fuel}]}$$

Cost of energy supply

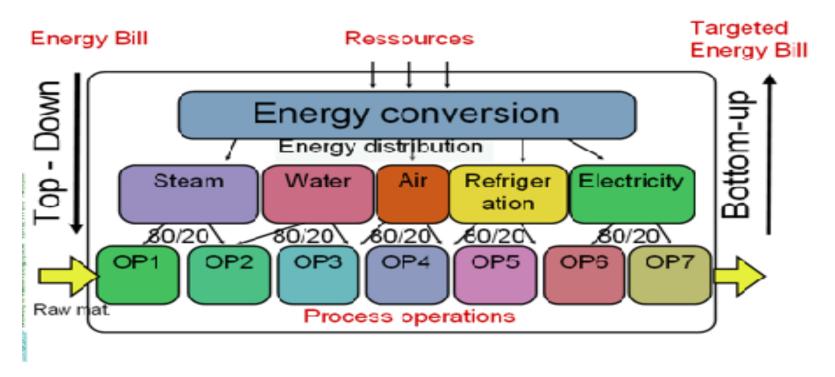
$$OPEX[CHF/year] = \sum_{fuel} \frac{Q_{process,fuel}[kW]}{\eta_{conv,fuel}[kW/kW_{fuel}]} [kW_{fuel}] \cdot t_{op}[h/year] \cdot c_{fuel}[CHF/kWh]$$




ntroduction methodology 1. analyse 2. target 3. improve conclusions

The process energy interfaces

- energy is the driving force of the process unit operations
- block flow diagram
 - grey box level
 - utility/process
- flowsheet
 - white box level
 - heat transfer



Process energy drivers

- A top-down approach
 - What is the function of energy in the process

Pareto Principle

- What are the most important units?
 - 80/20 Rule (80 % of consumption explained with 20% of your effort)
 - Apply on each distributed energy sub-system
- Characterise the units that are the most important consumers/producers
 - for every type of the energy needs (energy requirement)

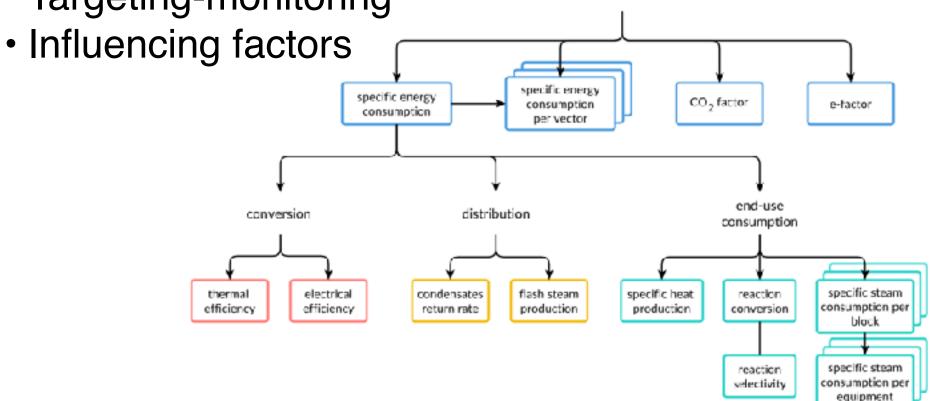
stroduction methodology 1. analyse 2. target 3. improve conclusions

data consistency check

- Key heat and mass balances
- Objective:
 - minimise the system inconsistencies
 - Maximise your process understanding : minimise the errors + identify the losses

imbalance = errors + losses

troduction methodology 1. analyse 2. target 3. improve conclusions


site-level

key performance indicators

- Specific consumptions
- Mass and Energy Efficiency

Targeting-monitoring

Indicators can be developed for the whole process or for a process unit

Key Performance indicators: Energy efficiency

Cost (CHF energy/ CHF products)

$$\frac{\int_{t_0}^{t_f} (\sum_{F=1}^{n_F} \dot{M}_F^+(t) c_F^+(t) + E^+(t) c_e^+) dt}{\int_{t_0}^{t_f} (\sum_{P=1}^{n_P} \dot{M}_P^-(t) c_P^-(t) + E^-(t) c_e^-) dt}$$

Specific Cost (CHF/kg products)

$$\frac{\int_{t_0}^{t_f} (\sum_{F=1}^{n_F} \dot{M}_F^+(t) c_F^+(t) + E^+(t) c_e^+ - E^-(t) c_e^-) dt}{\int_{t_0}^{t_f} (\sum_{P=1}^{n_F} \dot{M}_P^-(t)) dt}$$

Energy (kJ/kg) ?

$$\frac{\int_{t_0}^{t_f} (\sum_{F=1}^{n_F} \dot{M}_F^+(t) lh v_F + E^+(t) - E^-(t)) dt}{\int_{t_0}^{t_f} (\sum_{P=1}^{n_P} \dot{M}_P^-(t)) dt}$$

Exergy (kJ/kJ)

$$\frac{\int_{t_0}^{t_f} (\sum_{F=1}^{n_F} \dot{M}_F^+(t) k_F(t) + E^+(t)) dt}{\int_{t_0}^{t_f} (\sum_{P=1}^{n_P} \dot{M}_P^-(t) k_P(t) + E^-(t)) dt}$$

Comparing different forms of energy

Electricity

- -kJe?
- Energy mix
 - Compute the primary energy required to produce the electricity (efficiency, emissions)
 - Natural combined cycle (60%, 0.376 kg CO2/kWhe)
 - Coal power plant (46%, 0.828 kg CO2/kWhe)
 - Hydro power plant (85%, 0.00534 kg CO2/kWhe)
 - PV => LCA (16%, utilisation rate 13%, 0.0625 kg CO2/ kWhe)
 - Wind (utilisation rate: 23%, 0.0161 kg CO2/kWhe)
- Availability / Substitution
 - Annual energy vs power

Allocation when multiple products

Overall energy consumption per unit of product

$$-MJ/kg$$

$$\frac{\int_{t_0}^{t_f} (\sum_{F=1}^{n_F} \dot{M}_F^+ lh v_f + \dot{E}^+ - \dot{E}^-) dt}{\int_{t_0}^{t_f} (\sum_{p=1}^{n_p} \dot{M}_p^-)} \cdot K_p$$

Allocation by

– Mass

$$K_p = 1$$

- Market Value

Market value of product p
$$K_p = \frac{\int_{t_0}^{t_f} (\dot{M}_p^- \cdot c_p^-)}{\int_{t_0}^{t_f} (\sum_{k=1}^{n_p} \dot{M}_k^- \cdot c_k)}$$

Exergy Value

$$K_p = \frac{\int_{t_0}^{t_f} (\dot{M}_p^- \cdot k_p)}{\int_{t_0}^{t_f} (\sum_{k=1}^{n_p} \dot{M}_k^- \cdot k_k)}$$

Conclusions

- Systemic analysis
 - Define inlet and outlet flows
 - Apply and Verify mass and energy balances (Sankey)
 - Power: kg/s kW from nominal production in kg/s
 - Energy bill :
 - value [CHF/kg] * quantity $[kg/kg_{nominal}]$ * rate $[kg_{nominal}/s]$ * operating time $[s_{nominal}/year]$
- Production process
 - Process recipe => block flow diagram
 - Process steps for 1 kg of main product
 - Process flow sheet (the kitchen) => Process flow diagram
 - Process unit operation
 - Role of energy for the transformation in the unit
- Performances
 - System Specific consumptions
 - Energy drivers
 - Process unit operations

Module I questions

B1: Mass and energy balance

- 1. Explain the calculation of Mass and energy balance (First law of thermodynamics) for process units in a flowsheet.
- 2. Explain what is the meaning of the assumption of steady-state operation (no accumulation)?
- 3. Explain the use of a Sankey diagram for understanding energy flows in a process
- 4. Explain heat and mass balances of Mixer and splitters
 - a. Energy and mass balance
 - b. What is happening with pressures, concentration and phase changes?
- c. If the heat capacities are considered constant, how can it be simplified? Is it still applicable in case of a phase change?
- 5. Heat exchanger
 - f. Draw the hot and cold streams. How is the slope defined?
 - g. Define and explain the minimum temperature difference in a heat exchanger
 - h. Explain the energy balance of a heat exchanger
- 6. Evaporator
 - g.explain the mass and energy balances of an evaporator
 - h.explain the phase equilibrium calculation
 - i.explain the energy balance and the energy efficiency of a multi-effect evaporator.

B1: Current Energy Bill

- a. Explain how to calculate the operating costs of a refrigeration cycle
- b. Explain how to calculate the operating cost of the heat supply by using steam
- c.Explain how to calculate the operating cost of a process
- d. Explain how to calculate the impact of a CO2 tax on a process

