

Advanced energetics

2024-2025

Prof Dr. François Marechal

Industrial Process and Energy Systems Engineering

IPESE - http://ipese.epfl.ch

Mechanical Engineering Institute

Ecole Polytechnique Fédérale de Lausanne francois.marechal@epfl.ch

EPFL-Valais-Wallis Industrie 17 - CH-1951 Sion

Prof. François Marechal Industrial Process and Energy Systems Engineering EPFL Valais-Wallis, Energypolis, Sion

Génie Chimique ... Marié, 3 enfants

STI - Sciences et Techniques de l'Ingénieur GM - Section Génie Mécanique

- Orientation Energie
- Mineur Energie

EPFL The team

- Professor François Maréchal
 - http://people.epfl.ch/francois.marechal,
 @francoismarechal.bsky.social, (@fmarech on X (Twitter))

Industrial Process and Energy Systems Engineering

- http://ipese.epfl.ch
- https://www.linkedin.com/company/ipese-epfl

Industrie, 17, CH-1951 Sion

- Assistants
 - Dr. Daniel Flórez-Orrego, Yi Zhao, Dareen Dardor, <u>Pullah Bhatnagar</u>, <u>Vibhu Baibhav</u>

EPFL Schedule of Today

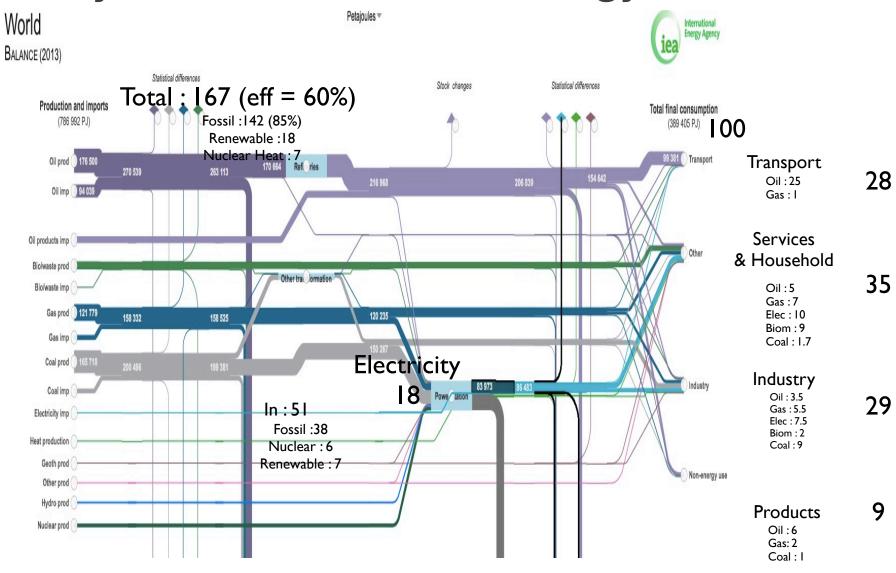
- Advanced energetics : application in the industry
 - Julie Dutoit <u>Hitachi-Zosen-Inova</u>
 - Example of application and possible student projects
- Advanced energetics
 - Organisation and course overview
- Advanced energetics
 - The energy bill and the energy audit

EPFL

Advanced Energetics : Goals of the lecture

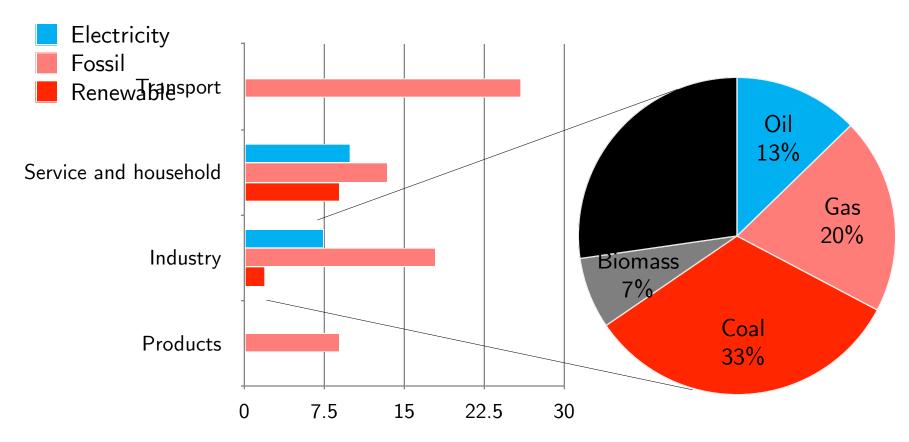
Energy analysis and synthesis of industrial and energy conversion processes

- To be able to propose decarbonisation options in industrial processes by
 - Analyzing the energy requirement of an Industrial process
 - Identifying and quantifying heat recovery options
 - Identifying the decarbonised ways to supply the process energy
 - Defining the associated investment
 - Defining the Economic & Environmental impact key performance indicators for the investment



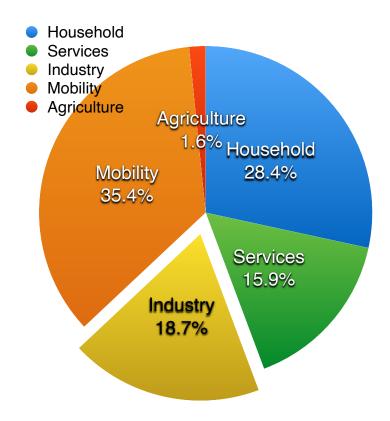
EPFL The energy in the industry

• Why is it important?


EPFL Industry is 29% of the World Energy Balance

EPFL Energy usage in industry

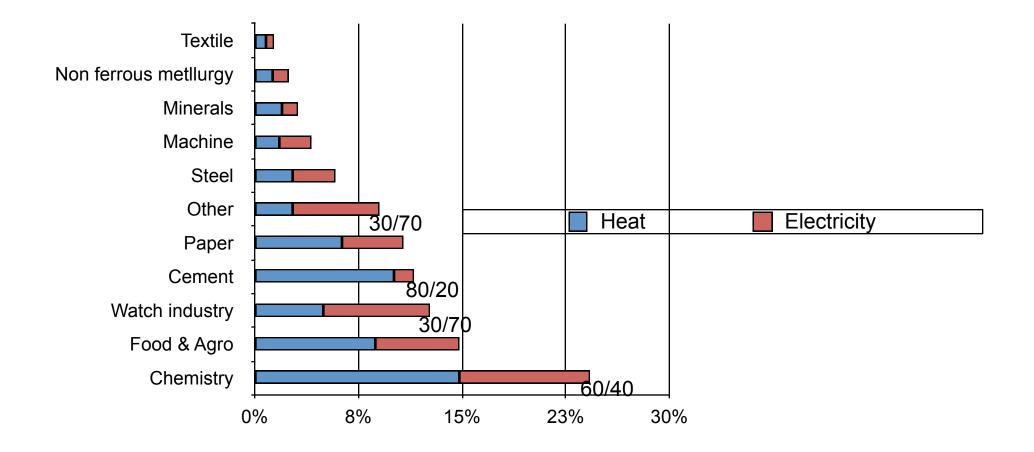
Energy consumption in %



EPFL Final Consumption of Energy (CH)

Switzerland Industry 2011: 507 Wyear/cap

- 18.7% Final Energy consumption
- 56% Heat
 - in which 50 % in Natural Gas
- 44% Electricity


EPFL Example of industrial processes

- Chemical industry
 - e.g. fertilizers, fine chemicals, additives,...
- Pharmaceutical industry
 - drugs, clean rooms,...
- Cement industry
- Petrochemical + refining
 - gasoline, diesel, kerosene, plastics,...
- Steel & Aluminum industry + metals
- Food & Agro industry
- Car manufacturers
- Power production
- Waste management
 - sorting, recycling, incineration
- Urban systems
 - Services : heating-cooling

EPFL Different industrial sectors profiles

• From the Swiss Industry: share to the total primary energy use in industry

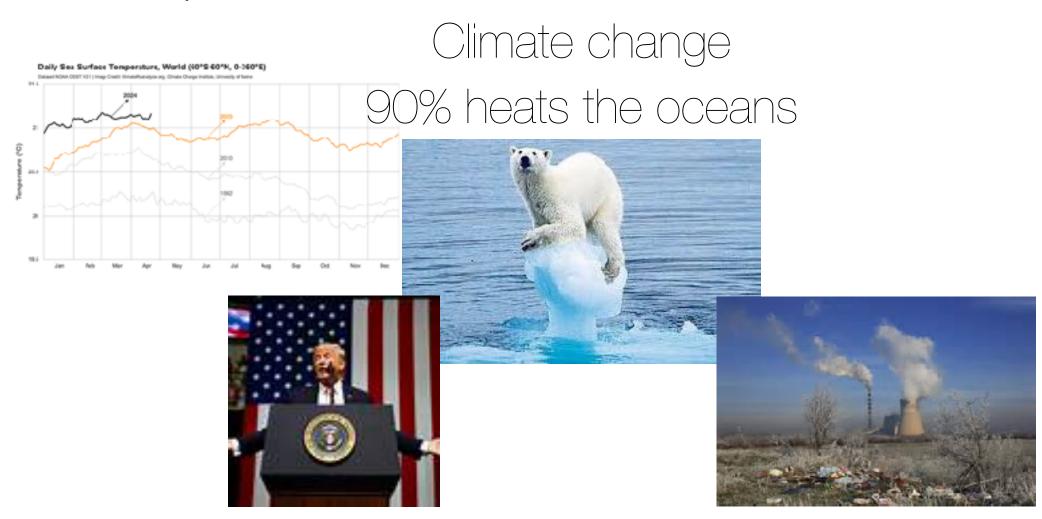
EPFL CO2 emissions is the Key Issue

$$CO_{2p}[kg_{CO_2}/year] = \dot{m}_p[kg/y] \cdot \sum_e (e_p[kJ_e/kg_p] \cdot CO_{2e}[kg_{CO_2}/kJ_e])$$

 $CO_{2p}[kg_{CO_2}/year] = CO_2$ intensity of product p

 $\dot{m}_p[kg/y] = \text{production of product p}$

e =Energy resources used

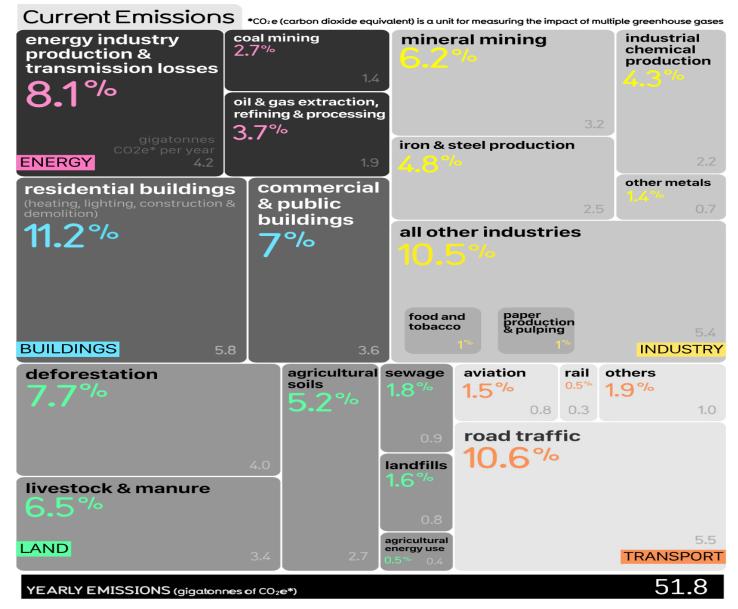

 $e_p[kJ_e/kg_p]$ = Energy intensity of energy ressource e in product p

 $CO2_e[kg_{CO_2}/kJ_e] = CO2$ intensity of energy resource e

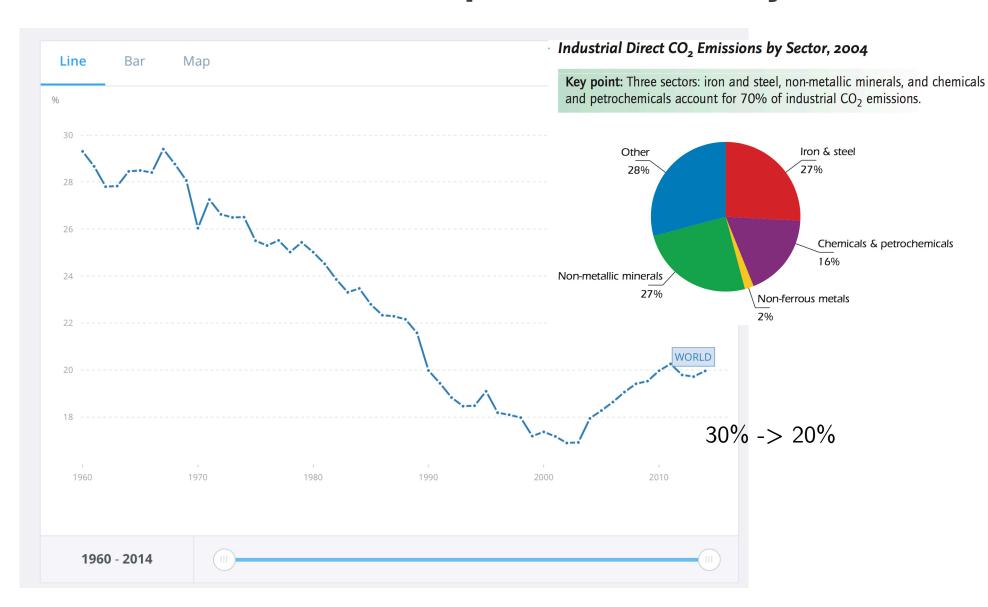
EPFL the other problem ...: CO2 emissions

NASA Computer model of the CO2 emissions

EPFL Global warming gases emissions

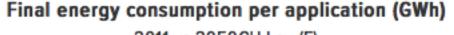

Human activities related

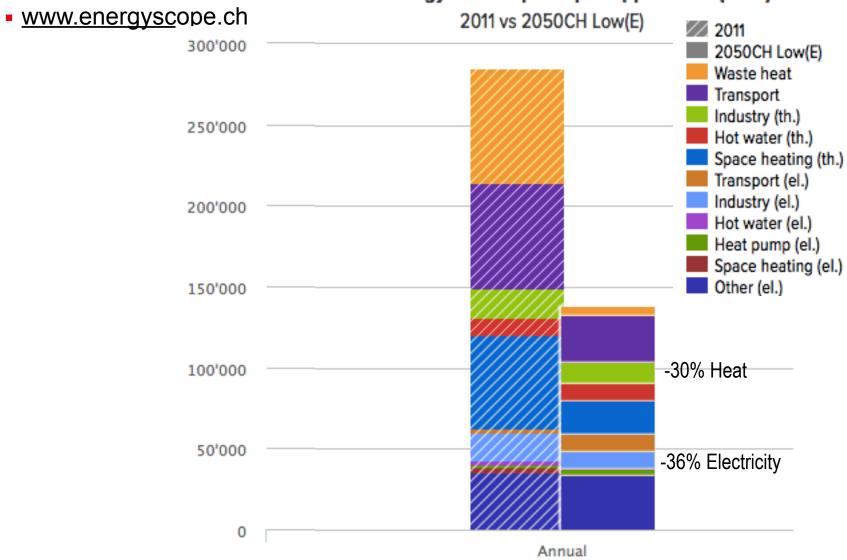
36.5

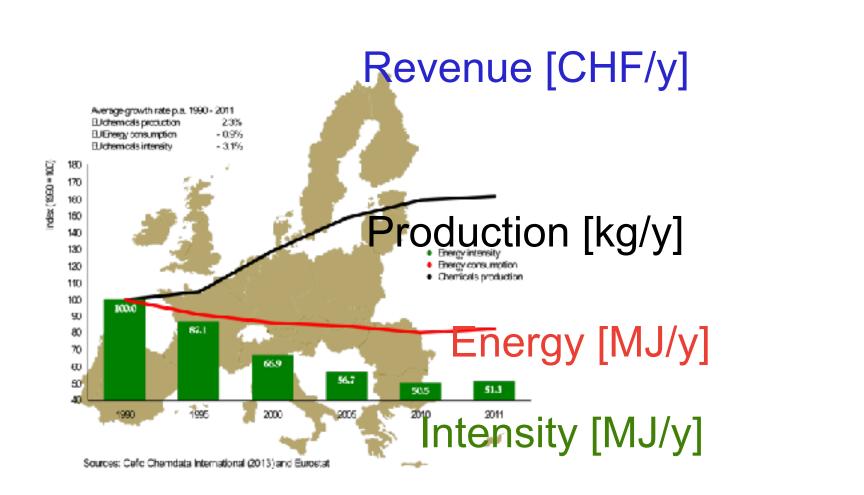

GT CO2/y

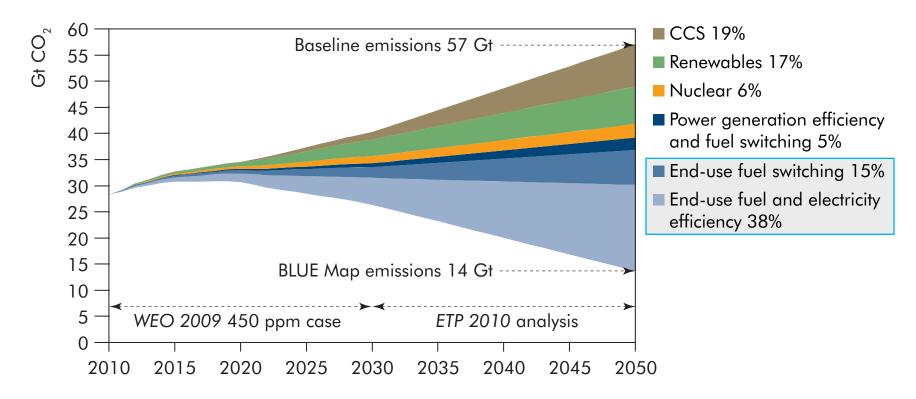
48%

remains in the atmosphere



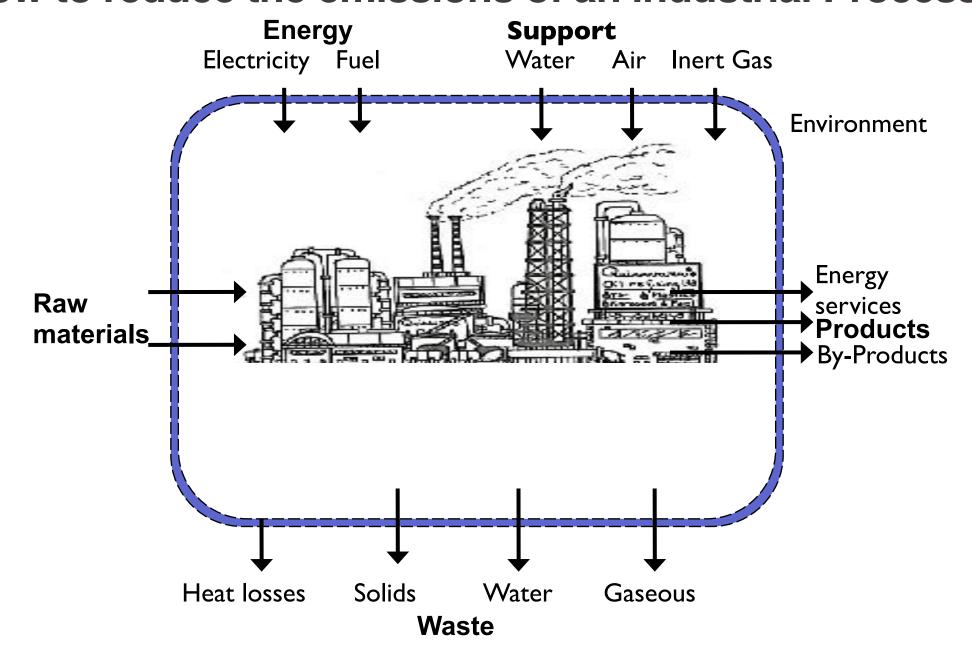

EPFL Share of the CO2 emissions of process industry

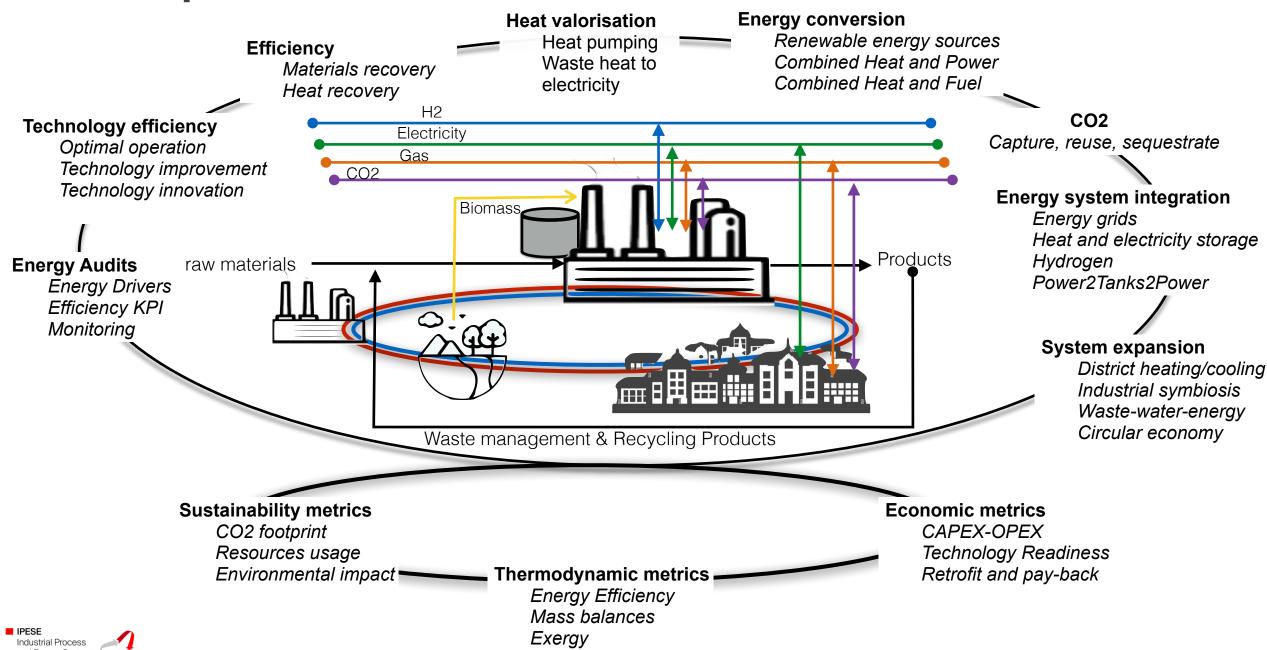

EPFL Industry and the energy transition


EPFL The problem of the industry

EPFL Impact of Energy system engineering

Figure ES.1 Key technologies for reducing CO₂ emissions under the BLUE Map scenario




EPFL How to reduce the emissions of an industrial Process?

EPFL Steps in decarbonisation

Engineering

EPFL

Advanced Energetics : Goals of the lecture

Energy analysis and synthesis of industrial and energy conversion processes

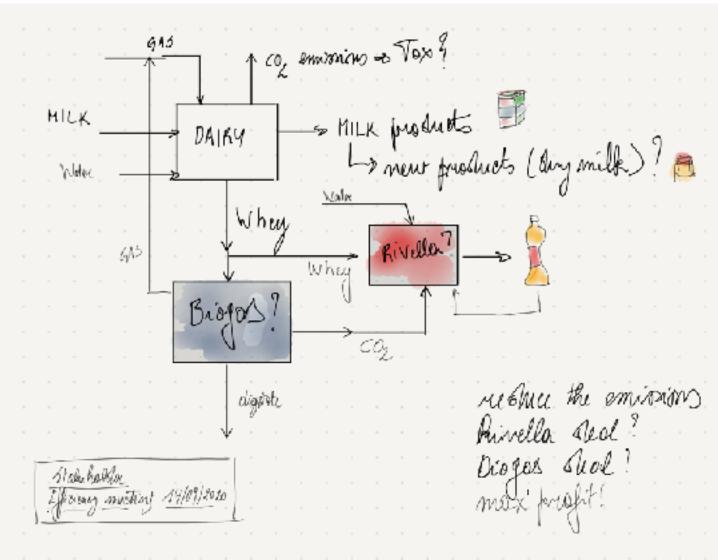
- Be able to propose energy efficiency improvement in industrial systems by
 - Analyzing the energy requirement of an Industrial system
 - Identifying heat recovery options
 - Defining the investment for the heat recovery
 - Analyzing and integrating the energy conversion system
 - energy resources to useful process energy
 - Making a thermo-economic and environmental evaluation of the solutions

EPFL Teaching concept

- Project-oriented: you are supposed to realise a guided industrial process energy efficiency analysis project. This project covers the whole duration of this course, and will help you better understand the theory concepts.
- Theory Application Flip class: Theory is first presented and put in perpsective of the project realisation.
 - Lectures by professor : in class + slides + lecture notes + videos
 - Application by applying theory in the project: a project report template
 with suggestions on how to solve the problems and FAQ is made
 available to support the project realisation.
 - Flip Class: Typical questions of the exam prepared and illustrated by students on Miro boards: "The theory and how it was applied in your project " + feed-back discussion by professor.

EPFL Project based learning

- Forget about...
 - listening religiously to your professor
 - take the exercice &... the correction and go home
 - Reproduce
- You are entering the Active learning world!
 - Theory is given on how to solve the problems => structure your reasoning
 - The project scenario is built to learn & apply the theory
 - A-G-I-R
 - Project steps are used to guide/inspire your reasoning
 - Problem solving : facing problems by solving problems
 - Example are given as an inspiration and to speed-up the application
- Computational thinking
 - Computer Aided Engineering
 - Professional tools: MS word and excel should not be the tools for your professional life


EPFL A project based teaching concept

- You are an engineer in a dairy...
 - and your boss comes with this ...

•

• and tells you

"what do I have to answer to our shareholders?"

EPFL Competences needed?

- Task 1 : What is the energy usage ? => energy audits
 - energy bill $[CHF/kg_{product}]$ and [CHF/year] ?
 - CO2 emissions and sensitivity to market?
 - How good are we? => benchmark
 - How good are we thermodynamically? => exergy analysis
 - What are the energy requirement of the process?
- Task 2 : What are the heat recovery options ?
 - What are the heating and the cooling needs?
 - Can we recover heat?
 - What are the heat recovery exchangers to buy
- Task 3: How to supply at best the energy to the process?
 - What are the (renewable) energy resources to be used to close the energy balance
 - What are the best energy conversion technologies
 - Can we convert our waste into products or energy? e.g. biogas
- Task 4: Can we expand the system boundaries?
 - Convert waste into product (Integration of Rivella production ? => look for synergies)
 - Capture and sequestrate CO2 ?

EPFL Course organisation

https://moodle.epfl.ch/course/view.php?id=141

Week	Planning for Lecture	Planning for Projects	Milestone/Quiz
1. 09.Sep - 13.Sep	 Presentation by Hitachi-Sozen- Innova Introduction to the course 	Tools set up (Quarto, Git, Mattermost, Virtual machine) Group Formation	
2. 16.Sep - 20.Sep (Break)			
3. 23.Sep - 27. Sep	Mass and energy balanceEnergy bill calculation	Task 1 in the project description	
4. 30.Sep - 04.Oct	Exergy analysis	Task 2 and Task 3	Quiz 1 - Mass and Energy balance, energy bill
5. 07.Oct - 11.Oct	No lectures	Wrap-up for task 1, 2 and 3.	Quiz 2 - Exergy analysis
6. 14.Oct - 18.Oct	Delta T minimum	Taks 4 (to be updated in the project description)	
7. 21.Oct - 25.Oct (Break)			
8. 28.Oct - 01.Nov	Composite curve	Task 5 (example to be changed)	 Milestone 1 for your report Mass and energy balance Energy bill Exergy analysis Composite curve
9. 04.Nov - 08.Nov	HEN design	Task 6 and task 7	Quiz 3 - Maximum heat recovery
10. 11.Nov - 15.Nov	No lectures	Wrap-up of task 5, 6, and 7	Quiz 4 - Heat exchanger network design
11. 18.Nov - 22.Nov	Heat pump introduction	Report writing and organization	
12. 25.Nov - 29.Nov	Utility integration	• Task 8	Milestone 2 for your report
13. 02.Dec - 06.Dec	No lecture	Task 8	Quiz 5 - Utility integration
14. 09.Dec - 13.Dec	No lecture	• Task 9	Intermediate report review submission
15. 16.Dec - 20.Dec	 Dry-run for the oral exam Discussion with Prof. Maréchal by Group 	Finalize your project report	Milestone 3 for your report • Utility integration

EPFL Organisation: Theory 3 ECTS + project 2 ECTS

- Lectures (50 %) + Project (50 %)
 - moodle.epfl.ch for the detailed schedule
- Lecture notes
 - available on moodle.epfl.ch
- Computational thinking tools

we use <u>Quarto</u>: reproducible science & open source use Jupyter / Python or R scripting language

- Slides
 - available on moodle.epfl.ch
 - may be more slides than the one presented
 - ! just on time preparation
- Video of lectures
 - moodle.epfl.ch

EPFL Theory in the course

For realising those tasks, you will activate knowledge and theory and apply the concepts to your project.

- 1. The **theory** will be delivered as in class lectures that explain the theoretical background of the tools and methods to be applied. The list of topics is given below with associated lectures and support materials.
- 2. A discussion **forum** is proposed for the theory topics.

 Questions will be discussed in an interactive session with the professor.
- 3. Team of two students will be asked to prepare an illustration of the **application** of the theory to realise the task. The following discussion will be the occasion of experimenting the oral exam.
- 4. The **teaching assistants** have prepared the supporting materials and the necessary data to realise the tasks.
- 5. They will also present examples on how they have solved the different tasks in other projects.

At the end of the semester, you will have to deliver a **final report** and **present** your results.

EPFL Transversal skills from the guided project

- Apply the theory on a real industrial example
 - real numbers & validity of the solutions
 - use of professional tools
- Team work
 - Organise your work
 - Share tasks and information
- Write a report (transversal skills)
 - Clear Concise
 - Uses <u>QUARTO</u> (open and reproducible science)
- Presents the results (transversal skills)
 - defend your assumptions
 - explain how you have solved the problem
 - what are the most important conclusions
- Serves as a support for the exam
 - Individual poster for the exam
 - Support the discussion of the exam

EPFL Case study organisation

- Case study based on one industrial application (Dairy project) description on moodle
- A project solving web site is available
 - Description of the tasks, hints and tricks, FAQ, theory questions
- A full example on an other industrial project is given
- Group work (6 students)
 - sub groups of 2 students to realise tasks
- Weekly meeting with supervisor
 - Monday 16h-19h (+ office hours Thursday @14h)
- Preliminary report after module 3
 - individual review report (10 points)
- Final report after winter holidays 10 days before exam (20 points)
 - A validated report is a condition to present the exam
- Final presentation for exam poster
 - Dry-run preparation : prof feedback and recommendations
- Exam
 - Poster on how the theory has been applied in the case study
 - Oral exam

EPFL Groups for project based learning

- Group
 - 5 students
 - 1 TA + 1 Backup
- Interactive time
 - Monday at time of the course
 - Thursday: office hours 12:00-14:00 upon request

EPFL Computer aided engineering methodology: AGIR

A for Analyse and Activate

Analyse consist in defining what are the expected results. Although most of the time intuitive, it is important to exchange on what you expect, defining the values your are looking for and the physical units associated. When using programming, it is also useful to use names and create your own project specific vocabulary, especially for acronyms abbreviation

A stands also for Activation as you have to decide the knowledge and the tools you need to activate (put in your toolbox) to realise the tasks. It is not forbidden to refresh knowledge or to acquire new knowledge to realize the task.

G for Generate

You are going to use different tools to generate results. It typically requires the

- o formulation of the problem
- the definition of assumptions
- the collection of information (from knowledge data base)
- the definition of the degrees of freedom (decisions you need to make)
- o the choice and the programming of a solving method
- o the calculation realisation
- o the extraction of the numerical results

I for interpretation

Interpretation is the action of converting numerical results into meaningful information for the mission. This means:

- o verifying the validity of the numerical results obtained
- o the consistency with what was expected as defined in the Analyse phase
- o verifying the validity and testing the sensitivity of the assumptions or of the data uncertainty
- o testing the importance of the decision variables

R for reporting

Reporting of the results is the way to communicate not only the outcome of the mission but what you have learned. The report and the associated visual representation are targeting your teammates and classmates when you have realized a task or a broader audience (like your colleagues) so that if someone has the same task as yours, you will save their time. To validate the report, a critical review will be realised.

EPFL Computational thinking

- Using computer softwares to solve problems
 - Finding and accessing data
 - search, find and cite your data sources
 - Programming calculations and reports
 - Variables with an engineering meaning
 - Variable = name + description + value + [physical units]
 - e,g, TempFlow1=25 #[C] temperature of the flow 1
 - Reproducible science
 - Using Professional tools
 - Developed by others but used by you
 - Reporting
 - Extracting data
 - Presenting data (graphs, tables)
 - Programmed reports
 - Project notebook
 - Documenting the calculations
 - Reviewing (do I understand what I'm writing)

EPFL Deliverables

- Quizz : be ready for the tasks (5 points in the final grade)
- Intermediate report : end week 10
 - Groups deliver preliminary report after 60% of the work
- Individual review report
 - Student deliver individual review of the report of one other group
 - Reviews are graded (10 points to the final grade)
 - Groups are supposed to integrate the comments in the final version of the report
- Final presentation
 - A dry run (individual meeting with prof. and assistant) is used to prepare the final presentation at the exam.
- Final report (25 points to the final grade) to be delivered 10 days before the exam

EPFL The exam (20 points)

- Oral exam (20 min/person)
- Poster presentation (individual): 3 min
 - Summary of the case study
 - Methodology applied
 - Major results obtained
- Mastering the skills
 - Explain the theory and its application in the case study
- My own exam:
 - Detailed evaluation before leaving the exam room

EPFL Exam Grading

- Individual grading
 - Defines how you master the subject
 - theory and its application
 - Defines how you master the project realisation
 - Weight to the project (30/60)
 - case study is used a teaching support
 - you are responsible of part the report but you sign the whole report

EPFL Questions of the exam

- Document : Objectives (on moodle)
- each question will be treated during the year by your presentation.

4 Detailed specific goals of the course

The following tables should help you assessing your progress. By filling the bullets you should be able to follow your progress during the lecture.

4.1 Minimum Energy requirement

	Goals		
00000	Compute the energy bill of an industrial system		
00000	Explain what is the meaning of the $\Delta Tmin$ and what are the major parameters that define its value		
00000	Define hot and cold streams for a process integration analysis		
00000	Compute the energy balance of an industrial system including the		
	application of First Law balances to verify the coherency of the data		
	set.		
00000	Explain the construction of the hot and cold composite curves		
00000	Explain the construction and the use of the grand composite curve		
00000	Compute the maximum energy recovery in an industrial process ar		
	compute its minimum energy requirement		
00000	Explain the major assumptions and how these can be assessed		
	overcome		
00000	Estimate the heat recovery heat exchanger network cost and compute		
	the optimal $\Delta Tmin$ value of the plant.		
00000	Identify and quantify pinch violations in a process		
00000	Explain the More-in More-out principle		
00000	Explain the plus-minus principle		
00000	Identify ways to improve the minimum energy requirement from the		
	analysis of the composite curves		

EPFL Comments on the course organisation

My slides

- are not lecture notes but a support to my talk (do not complain if the printed slides are messy!)
- Just in time updates possible
- Lecture notes and previous years lectures are available on video (see on moodle.epfl.ch)

The lecture

- Do not hesitate to ask questions
- Ask questions wrt project (read the projects objectives and ask questions)

Project based learning using a case study

- Theory is associated with the tasks to be realised: the project template report includes a lot of hints concerning the structure of the work to be done. Do not hesitate to read the template again: this is a nice synthesis exercice.
- Learning by doing => you will struggle with numerical problems or software problems: does not always converge: this is real life!
- Discussions => I will come and discuss with you during the project, do not hesitate to ask questions.
- Report => visible part of your work (not only in this lecture)!
 - pay attention to reports, tables, graphs...
 - You sign the report, you are supposed to sign what is in the report

EPFL Comments on the projet organisation

Assistants

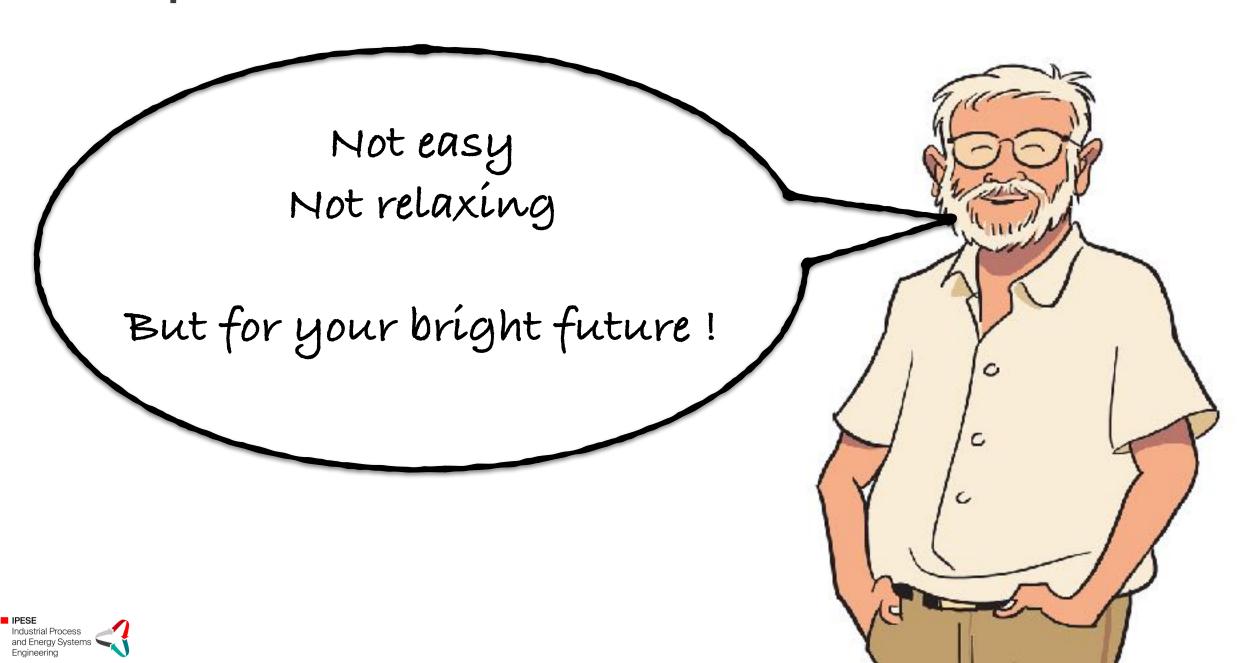
- They are available to help
- They will do their best to coach and organise the project
- They have a limited time available
 - "they are allowed to not answer if they consider that you can find the answer by yourself".
 - Office hour on Thursday 12:00- 14:00 : reserve your time slots and prepare the discussion

Case study formulation and group work

- The case study is like a real problem
 - Distribute the work among yourself
 - Thinks might be missing : Make assumptions
 - Justify and report (journal)
 - Decide (negociation in the group)
 - http://te.epfl.ch (group organisation)

You will have to state the problems for each step

- Analyse => literature search, assumptions, level of detail requested, expected results, ...
- Generate => generate numerical solutions
- Interpret => translate numbers into engineering decisions
- Report => transfer your knowledge to the rest of the world



EPFL Contacts

- Prof. François Marechal
 - mailto:francois.marechal@epfl.ch
 - Office ME-A2-465 (Monday only!)
 - Office : Industrie 17 (Sion)
 - Please take appointment on mattermost
- Q&A via mattermost

EPFL Hope that we will have a lot of fun!

